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Flexoelectricity is a size-dependent electromechanical mechanism coupling polariza-

tion and strain gradient. It exists in a wide variety of materials, and is most no-

ticeable for nanoscale objects, where strain gradients are higher. Simulations are

important to understand flexoelectricity because experiments at very small scales are

difficult, and analytical solutions are scarce. Here, we computationally evaluate the

role of flexoelectricity in the electromechanical response of linear dielectric solids in

two-dimensions. We deal with the higher-order coupled partial differential equations

using smooth meshfree basis functions in a Galerkin method, which allows us to con-

sider general geometries and boundary conditions. We focus on the most common

setups to quantify the flexoelectric response, namely bending of cantilever beams and

compression of truncated pyramids, which are generally interpreted through approx-

imate solutions. While these approximations capture the size-dependent flexoelectric

electromechanical coupling, we show that they only provide order-of-magnitude es-

timates as compared to a solution fully accounting for the multidimensional nature

of the problem. We discuss the flexoelectric mechanism behind the enhanced size-

dependent elasticity in beam configurations. We show that this mechanism is also

responsible for the actuation of beams under purely electrical loading, supporting the

idea that a mechanical flexoelectric sensor also behaves as an actuator. The predicted

actuation-induced curvature is in a good agreement with experimental results. The

truncated pyramid configuration highlights the critical role of geometry and bound-

ary conditions on the effective electromechanical response. Our results suggest that

computer simulations can help understanding and quantifying the physical properties

of flexoelectric devices.
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I. INTRODUCTION

Since its introduction by Mashkevich and Tolpygo1, flexoelectricity has been identified

as an important electromechanical coupling in a wide variety of materials, including cellu-

lar membranes, liquid crystals, polymers, graphene, and piezoelectric and non-piezoelectric

crystals2. With the emergence of nanoscale fabrication and characterization, the interest in

the flexoelectric effect has acquired a renewed vitality. See Refs.2–4 for recent reviews. Phe-

nomenologically, the flexoelectric effect describes the generation of an electric polarization

induced by strain gradient:

Pi = µijkl∇lεjk, (1)

where P is the electric polarization, ε is the mechanical strain, and µ is a fourth order

flexoelectric tensor. Two features make flexoelectricity distinct from other electromechanical

coupling mechanisms such as piezoelectricity. The first feature is its universality, due to the

fact that a strain gradient can disrupt the inversion symmetry of the internal structure of

a material, e.g. its crystalline structure, regardless of the lack of polarity of its undeformed

configuration, hence inducing a polarization. As a result, the flexoelectric coefficients are

generically non-zero for all dielectrics. The flexoelectric effect is prominent in materials with

high dielectric constants such as ferroelectrics5–10. Piezoelectricity is less universal since

it can only appear in non-centrosymmetric crystals. The second distinguishing feature of

flexoelectricity is its size-dependence, due to the scaling of strain gradients with structural

size. Despite its universality, the flexoelectric effect is typically insignificant relative to

piezoelectricity at macroscopic scales, and only manifests itself noticeably at the nanoscale.

For this reason, the experimental observation of flexoelectricity is particularly difficult, which

motivates the development of theoretical models to investigate this phenomenon.

A number of theoretical studies have focused on understanding the flexoelectric behav-

ior of dielectrics. Kogan presented the first phenomenological theory and provided a rough

theoretical estimate of the flexoelectric coefficient11. The first comprehensive study is by

Tagantsev12, who clarified the distinction between piezoelectric and flexoelectric responses.

Refinements of this theory have including connections with core-shell lattice models4,13 and

the contribution of surface piezoelectricity14. A mathematical framework for the governing

equations of flexoelectricity and some simple solutions was proposed subsequently15. Fol-

lowing this work, Sharma and coworkers16,17 presented a theoretical analysis on the role
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of flexoelectricity in both piezoelectric and non-piezoelectric nanostructures, particularly in

nanoscale cantilever beams. They also carried out atomistic calculations to verify the an-

alytical results, showing a considerable enhancement and size-dependence of the apparent

piezoelectricity and elasticity in nanostructures. Based on this theoretical framework, it

has also been demonstrated that (1) nanocomposites and superlattices can be effectively

piezoelectric without using piezoelectric materials18,19 and (2) a dramatic enhancement can

be achieved in energy harvesting in piezoelectric nanostructures20. Cross and coworkers

presented a simple formulation to estimate the effective piezoelectric constant of a dielectric

truncated pyramid under compression accounting for flexoelectricity21,22. The influence of

the flexoelectric effect on the electromechanical properties of bending nanobeams has been

recently investigated23–25. Within the Landau-Ginsburg-Devonshire phenomenological ap-

proach, it has been shown that the flexoelectric coupling influences the majority of properties

of nanoferroics26. Catalan and coworkers presented a phenomenological model of the effect

of flexoelectricity on the properties of ferroelectric thin films6. The surface effects have been

introduced in a theoretical model of flexoelectricity for dielectrics, accounting for both sur-

face stress and surface polarization27. Flexoelectric properties of crystalline dielectrics have

also been estimated using atomistic calculations28–31. Recent works provide a promising path

to connect density-functional calculations with continuum flexoelectricity32,33. However, a

direct comparison of first-principles calculations with experimentally measured coefficients

is still far3, due for instance to finite temperature effects or to finite sample effects such as

surface piezoelectricity, difficult to untangle from bulk contributions14,34.

Focusing on the above-mentioned phenomenological continuum theory, the resulting

fourth-order coupled system of partial differential equations (PDEs) has been approached

with analytical solutions relying on simplifying assumptions and in very simple geometries

(cantilever beams under bending16,17,23, truncated pyramids under compression21,22). In

addition, to interpret experiments, the two-way flexoelectric coupling is often ignored, by

estimating strain gradients from elasticity alone8. The approximate solutions under restric-

tive assumptions may lead to under- or over-estimation of the flexoelectric effect. Moreover,

flexoelectricity can be more prominent in complex geometries favoring strain gradients, for

which analytical solutions are not available (see Ref.35 for recent efforts to provide ana-

lytical solutions for some flexoelectric boundary value problems). More recently, within

the Ginzburg-Landau framework, a number of numerical phase-field simulations have been
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performed to evaluate the effect of flexoelectricity on domain patterns and domain walls

in ferroelectrics36–38. However, these references resort to finite difference methods with

uniform grids, which are limited to very simple geometries and boundary conditions. We

are not aware of previous numerical approaches to solve the boundary value problems of

flexoelectricity, treating the multidimensionality of the coupled fields in general geometries

with different boundary conditions. The main difficulty is the fourth order nature of the

PDEs of flexoelectricity, which demands at least C1 continuous basis functions for a direct

Galerkin method. Alternatively, mixed finite elements only requiring C0 continuity and

previously developed for strain gradient elasticity39–41 could be applied to flexoelectricity.

Here, we resort to local maximum-entropy (LME) meshfree approximants42. The basis

functions exhibit C∞ smoothness, and therefore a straight Galerkin approach is possible.

LME approximants have been successfully applied to a variety of problems with high-order

functionals including biomembrane phase-field models43,44, or thin-shells45,46.

We use this computational approach for flexoelectricity of linear dielectric solids in two-

dimensions to examine common experimental configurations used to evaluate the flexoelec-

tric effect, given the current disagreement of flexoelectric constants obtained with different

methodologies. We anticipate that a poor quantification of the flexoelectric effect with

current simple estimations may be one of the sources of current controversies in material

characterization3. Another controversy in flexoelectricity is even more profound, as its ex-

istence as a bulk effect has been put into question, favoring an explanation of experiments

through surface effects14,34. A proper investigation of this issue demands an accurate so-

lution of the bulk equations. We do not address this controversy here, but our simulation

methodology provides tools for this debate.

A continuum theory of flexoelectricity is presented in Section II. We then perform simu-

lations of a cantilever beam under bending and of a truncated pyramid under compression,

which are the most common configurations to assess the flexoelectric response of dielectric

solids. The results for the beam with different boundary conditions are reported in Sec-

tion III A along with a comparison with analytical and experimental results. Section III B

presents the results for truncated pyramids, which are compared with previous estimations.

Section IV summarizes the main results of the paper.
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II. THEORY

We summarize next a linear theory of flexoelectricity previously proposed in Refs.17,19

and references therein. The electrical enthalpy density of a linear dielectric solid possessing

piezoelectricity and flexoelectricity can be written as

H(εij, Ei, εjk,l, Ei,j) =
1

2
Cijklεijεkl − eiklEiεkl + fijklEiεjk,l

+ dijklEi,jεkl −
1

2
κijEiEj, (2)

where Ei = −φ,i is the electric field, φ being the electric potential. The first energy term is

the elastic potential, where C is the fourth-order tensor of elastic moduli. The piezoelectric

coupling between the strain and electric field is through the second term with the third-order

tensor of piezoelectricity e. The last energy term is the electrostatic contribution, where

κ is the second-order dielectric tensor. Here, our particular attention is on the third and

fourth terms, which define the flexoelectric behavior of the material. The term coupling

the gradient of strain ∇ε to the electric field is the direct flexoelectric coupling through

the fourth-order tensor f . Conversely, the gradient of electric field ∇E is coupled to strain

through the fourth-order tensor d, termed converse flexoelectric effect. Using integration

by parts, it has been shown that these flexoelectric energy terms can be expressed by only

one term with one material tensor µ19. The electrical enthalpy density in Eq. (2) is then

rewritten as

H(εij, Ei, εjk,l) =
1

2
Cijklεijεkl − eiklEiεkl − µijklEiεjk,l −

1

2
κijEiEj, (3)

where µijkl = diklj − fijkl. See Refs.47,48 for recent accounts on the symmetry of the tensor

of flexoelectric coefficients. The two forms of the enthalpy density in Eqs. (2) and (3) result

in identical governing equations, and only the associated natural boundary conditions are

different. We ignore strain gradient elasticity for simplicity and to isolate the effect of

flexoelectricity, although as argued in Ref.35 and later in this paper, this may compromise

the stability of the model in some regimes.

Defining the usual stress and electric displacements

σ̂ij =
∂H
∂εij

, D̂i = − ∂H
∂Ei

, (4)

and the higher-order (hyper) stress and electric displacements arising from flexoelectricity,

σ̃ijk =
∂H
∂εij,k

, D̃ij = − ∂H
∂Ei,j

, (5)
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the physical stresses σ and the physical electric displacements D emerging from the theory

can be written as

σij = σ̂ij − σ̃ijk,k = Cijklεkl − ekijEk + µlijkEl,k (6)

and

Di = D̂i − D̃ij,j = eiklεkl + κijEj + µijklεjk,l. (7)

In these equations we have assumed that the material properties are uniform. The last term

in Eq. (6) is a mechanical stress induced by gradients of the electric field, while the last term

in Eq. (7) is the induced polarization in Eq. (1) due to flexoelectricity.

The physical interpretation of the higher-order stresses is open, and as mentioned earlier it

relates to the electromechanical boundary conditions26. In the model in Eq. (2), both higher-

order stresses and electric displacements affect the natural boundary conditions, while the

model in Eq. (3) does not have a higher-order electric displacement contribution. Therefore,

in this model the essential and natural electrical boundary conditions are identical to those

of electrostatics

φ = φ on Γφ, (8)

Dini = −ω on ΓD, (9)

where φ and ω are the prescribed electric potential and surface charge density, and Γφ∪ΓD =

∂Ω is the boundary of the domain Ω with unit normal ni.

As for the mechanical boundary conditions, either displacement or traction need to be

specified:

ui = ui on Γu, (10)

tk = nj(σ̂jk − σ̃ijk,i)−Dj(niσ̃ijk)− (Dpnp)ninjσ̃ijk = tk on Γt, (11)

where ui and tk are the prescribed mechanical displacements and tractions, Dj = ∂j −njDn

is the surface gradient operator, Dn = nk∂k is the normal gradient operator, Γu ∪ Γt = ∂Ω,

and Γu ∩ Γt = ∅. It is clear that the traction boundary condition in Eq. (11) is affected by

the higher-order stresses. In addition to these, the strain gradients result in other types of

boundary conditions as35:

ui,jnj = υi on Γv, (12)

ninjσ̃ijk = rk on Γr, (13)

7



where υ is the prescribed normal derivative of displacement, rk is the higher-order traction,

Γv∪Γr = ∂Ω, and Γv∩Γr = ∅. Here, we assume homogeneous natural boundary conditions

on Γv and Γr, i.e. υi = r̄k = 0.

The total electrical enthalpy can then be written as

H =
1

2

∫
Ω

(σ̂ijεij + σ̃ijkεij,k − D̂iEi)dΩ−
∫

Γt

tiui dS +

∫
ΓD

ωφ dS, (14)

and the weak form of mechanical and electrostatic equilibrium is

0 = δH =

∫
Ω

(σ̂ijδεij + σ̃ijkδεij,k − D̂iδEi)dΩ−
∫

Γt

tiδui dS +

∫
ΓD

ωδφ dS. (15)

Eq. (15) is the foundation for the computations presented later. The electric potential and

mechanical displacement fields, φ and u, as well as their variations, are approximated with

the local maximum-entropy basis functions and the usual Galerkin procedure is carried out

to derive the discrete algebraic equations. See Appendix A for details.

In the numerical calculations of the paper, we adopt a simple choice for the symmetry of

the material tensors, but general enough to capture the multidimensional couplings of the

field equations. We consider isotropic elasticity under plane strain conditions, adopt cubic

symmetry for the flexoelectric tensor, and tetragonal symmetry for the piezoelectric tensor,

see Appendix A. Because of the cubic symmetry of the flexoelectric tensor, there are only

three independent components, µ1111, µ1221, and µ1212 (or in matrix notation µ11, µ12, and

µ44)21,48. In the paper, we only consider the longitudinal and transversal coefficients, µ11

and µ12, since the shear coefficient µ44 is poorly characterized.

III. NUMERICAL RESULTS

A. Cantilever beam

We consider cantilever beams under a point load and different electrical boundary con-

ditions, as depicted in Fig. 1. The aspect ratio of the beam is fixed to L/h = 20 unless

otherwise stated, where L and h are the length and height of the beam. The two electrical

boundary conditions considered here are termed open circuit and closed circuit configu-

rations. In the open circuit configuration, we assume that the right-end of the beam is

connected to the ground, i.e. the electric potential is fixed to zero, while other sides are
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Open circuit

Closed circuit

F

F

V

h

L

x1
x2

FIG. 1. Electro-mechanical boundary conditions of model cantilever beams. The beams are me-

chanically fixed at the left-end and the mechanical point load F is applied at the right-end. In

the open circuit configuration, the electric potential is fixed to zero at the right-end, while in the

closed circuit configuration, it is fixed to zero at the top and an electrode is placed at the bottom.

This electrode may either fix the electric potential to V at the bottom or undergo a difference of

electric potential as a result of mechanical deformation.

charge free (ω = 0 in Eq. (9)). In the closed circuit configuration, two electrodes are at-

tached to the sample at the top and bottom faces. The top electrode is connected to ground,

and the bottom electrode can either prescribe a voltage difference V , or undergo a change of

electric potential as a result of deformation. In this case, we constrain the electric potential

to a constant but initially unknown value, which is found as a result of the numerical cal-

culation using Lagrange multipliers. The material parameters are chosen to fit the behavior

of single crystals of barium titanate (BaTiO3).

1. Mechanical loading

The cantilever beams presented in Fig. 1 can convert the mechanical energy induced by

the point load into the electrical energy due to electromechanical coupling of the material.
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This energy conversion can be represented by the electromechanical coupling factor keff

k2
eff =

Welec

Wmech

=
1
2

∫
E · κE

1
2

∫
ε : C : ε

, (16)

where the numerator indicates the total electrical or electrostatic energy and the denomina-

tor presents the total elastic energy. Considering both piezoelectricity and flexoelectricity

for the open circuit cantilever beam, an analytical estimation for keff is presented in Ref.17

as

keff =
χ

1 + χ

√
K

Y

(
e2 + 12

(µ
h

)2)
, (17)

where χ = χ33 is the electric susceptibility, K = κ33 is the dielectric constant, Y is the

Young’s modulus, e = e31 = e311 is the transversal piezoelectric constant, and µ = µ12 is

the transversal flexoelectric constant. To obtain this formula, it is assumed that the only

non-zero components of the stress and electric field are σ11 and E2, respectively. Then, the

normalized effective piezoelectric constant is written as17

e′ =
keff
kpiezo

, (18)

where kpiezo is obtained by neglecting flexoelectricity (µ = 0) in Eq. (17).

TABLE I. Material and load data

Y e31 µ12 κ11 κ33 χ33 F

100 GPa -4.4 C/m2 1 µC/m 11 nC/Vm 12.48 nC/Vm 1408 100 µN

To reproduce computationally the one-dimensional analytical model in Ref.17, we consider

a simplified model in which only the transversal piezoelectric and flexoelectric constants e31

and µ12 are non-zero. Therefore, this model neglects the flexoelectric energy associated with

the horizontal component of the electric field E1. We also neglect Poisson’s effect, i.e. ν = 0.

Based on the experimental data49, the flexoelectric coefficients of BaTiO3 can be estimated

to the order of 0.1-1 µC/m in the paraelectric phase, close to the phase transition3. For the

simulations, we choose µ12 = 1 µC/m. With these assumptions and using the material and

load data presented in Tab. I, the normalized effective piezoelectric constant e′ is obtained

as a function of the normalized beam thickness h′ = −eh/µ for the open circuit condition.

Figure 2 presents the results using the analytical formula in Eq. (17) and the present model.

It is clear that the electromechanical response of the beam is enhanced by decreasing the
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Analytical calculation (Piezo + Flexo)

Present calculation (Piezo + Flexo)

Analytical calculation (Flexo)

Present calculation (Flexo)

Present calculation (Flexo)− Full model

FIG. 2. Normalized effective piezoelectric constant e′ as a function of the normalized beam thickness

h′ (see text) for piezoelectric and non-piezoelectric materials. The figure compares the analytical

formula in Eq. (17) and numerical simulations for the open circuit configuration, both under the

simplifying assumptions described in the text and without these assumptions (blue curve).

beam thickness due to flexoelectricity. At larger scales, the effect of flexoelectricity vanishes

and the response of the beam converges to that of purely piezoelectric one, i.e. e′ = 1.

Figure 2 also presents the results for a non-piezoelectric material by setting e31 = 0. Even

though the material is not piezoelectric, we can observe a large electromechanical response

of the beam at small scales. However, as expected, this response decreases by increasing the

beam thickness. An excellent agreement is observed between the analytical and the present

calculations, validating our numerical approach.

To assess the effect of the simplifying assumptions behind Eq. (17), we perform simu-

lations with a more general model including the two-dimensional couplings. We consider

ν = 0.37, and in addition to the transversal flexoelectric coefficient µ12, we also consider the

flexoelectric energy terms associated with the longitudinal coefficient µ11, which is chosen to

be equal to µ12 in Tab. I. The normalized effective piezoelectric constant of this full model

for a non-piezoelectric material is also presented in Fig. 2 as a function of the normalized

thickness. It is apparent that the analytical formula, by neglecting two-dimensional effects,

significantly overestimates the electromechanical response of the beam described by our more

realistic model. For beams of smaller aspect ratio, the discrepancy between the analytical

formula and the numerical simulations becomes even larger. However, we have checked
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numerically that the discrepancies between the simplified beam model and the simulations

with the more realistic model persist (nearly unchanged) when the aspect ratio is further

increased to L/h = 40. From this point on, we report results for the fully two-dimensional

model.
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FIG. 3. Normalized effective piezoelectric constant e′ as a function of the normalized beam thickness

h′ for a non-piezoelectric material in the open and closed circuit configurations, obtained with the

present simulation method. The inset shows the distribution of the electric potential φ in (a) closed

and (b) open circuit beams. The aspect ratio has been modified in the plot to better represent the

field.

To evaluate the effect of electrical boundary conditions on the electromechanical response

of the beam, the results under open and closed circuit configurations are presented in Fig. 3.

In the closed-circuit configuration, we set free the potential of the lower electrode. The en-

hancement of the electromechanical coupling at small scales is stronger for the open circuit

configuration. Thus, the open circuit configuration seems to be better for energy conver-

sion. A non-uniform electric potential distribution is observed along the open circuit beam,

in which the potential difference or electromechanical response reaches its maximum at the

left-end support. This is the point where the beam curvature (the strain gradient) is maxi-

mum, thus leading to the maximum flexoelectric effect. Interestingly, a similar non-uniform

response has been reported by locally probing the piezoresponse in buckled PZT ribbons50.

In contrast, the closed circuit beam exhibits a nearly uniform potential difference along the

beam as a result of the boundary conditions.
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FIG. 4. (a) Normalized stiffness Y ′ as a function of the normalized thickness h′ for a non-

piezoelectric material considering the closed circuit configuration. The insets show the deformation

of the midline of the beam at two different length-scales, with and without flexoelectricity. The

same mechanical load is applied for all the simulations in the figure. (b) Illustration of the defor-

mation mechanism of the cantilever flexoelectric beam at small scales. The circular arrows show

the moments induced by (i) the mechanical point load F and (ii) the converse flexoelectric effect.

Due to the nearly uniform distribution of the electric potential along the beam, a uniform moment

is induced due to the converse flexoelectric effect. (iii) The total moment distribution as the sum-

mation of the moments in (i) and (ii). The total moments lead to a peculiar deformation of the

beam in (iv). The deformation is exaggerated for clarity.
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Another reported manifestation of flexoelectricity is the size-dependent effective elasticity16.

We evaluate this effect by defining the normalized effective stiffness as:

Y ′ =
1
2

∫
εe : C : εe

1
2

∫
εf : C : εf

, (19)

where εf and εe are the strains obtained from the simulations of the model with and without

considering flexoelectricity, respectively. Figure 4(a) presents Y ′ as a function of the nor-

malized thickness h′. An enhanced elasticity is apparent when the beam thickness decreases.

Flexoelectricity makes the beam stiffer against the applied load at small scales. This effect

is vividly shown by plotting the deformation of the beam with and without flexoelectricity

(insets). It is apparent that, at small scales, the beam with the effect of flexoelectricity

undergoes a smaller deflection than the beam without this effect under the same mechanical

load. A similar size effect on the elastic behavior of ferroelectrics due to flexoelectricity has

been reported51.

The particular deformation of the beam due to flexoelectricity observed in the inset of

Fig. 4(a) is examined in Fig. 4(b). We show the moments induced by the mechanical point

load F and converse flexoelectricity in (i) and (ii). The moment due to the mechanical load

increases linearly from zero at the right-end side of the beam to its maximum value at the

left-end side. The mechanical load results in a nearly uniform electric potential distribution

along the beam due to direct flexoelectricity, see Fig. 3. The converse flexoelectricity, in

turn, induces a uniform distribution of bending moment along the beam, acting against the

mechanical load, (ii). Since the flexoelectric moments oppose those mechanically induced,

the total moment decreases and even changes sign close to the right-end of the beam (iii).

This distribution of moments explains the particular deformation of the beam (iv). This

figure, in particular (ii), also suggests studying the actuation induced by flexoelectricity

under an applied voltage difference V . We explore this point in the following Section.

2. Electrical loading

To investigate the electromechanical response of the cantilever beam under purely elec-

trical loading, the mechanical point load F is set to zero and the voltage V is applied to the

bottom side of the closed circuit model, see Fig. 1. This model is inspired in the work of

Bursian and Zaikovskii49, who performed experiments on thin films of single crystal BaTiO3.
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In these experiments, electrodes were deposited on the top and bottom sides of the film to

apply a constant through-thickness electric field with a magnitude of |E| = 8 MV/m. To

apply this electrical load in the simulations, we set V = −8h (MV), where h in the beam

thickness. Simulation results show that the beam is deflected under the applied electrical

load, and thus a cantilever beam can deform as an electromechanical actuator due to flex-

oelectricity. Figure 5 shows the curvature of the beam as a function of the beam thickness,

together with the experimental data in Ref.49. A good agreement is obtained between the

numerical and experimental results. The curvature κ depends strongly on the thickness h

and closely follows

κ = kh−2, (20)

where k is a constant depending on the material properties. From Fig. 5, we obtain k = 0.6

nm. Note that the sign of the beam curvature is reversed by reversing the direction of the

electric field, which was also reported in Ref.49. Bending is always in the direction of the

positive electrode. Since in the thin beam assumption κ ∝ h2M , we conclude that the

bending moment induced by flexoelectricity scales as h−4.

This actuation mechanism is analogous to that behind the enhancement of elasticity

discussed earlier. To closely examine its emergence, the distribution of the electric field

across the thickness of the beam is shown in Fig. 5(b). This distribution is nearly uniform

along the entire length of the beam. However, the electric field is very non-uniform across the

thickness, and considerable gradients are apparent near the surfaces of the beam (top and

bottom sides). These gradients generate high stresses because of converse flexoelectricity,

see Eq. (6). Since the signs of the gradients are opposite, the directions of the induced

stresses are also opposite, generating a clockwise mechanical moment of actuation. This

electrically-induced deformation due to flexoelectricity has been introduced in models for

flexoelectric plates3,14,26, which describe in a simplified manner the physics that naturally

emerge here by solving the flexoelectric boundary value problem.

B. Truncated pyramid

Another setup to quantify the flexoelectric response of dielectric solids is the compression

of a truncated pyramid. The geometry of the truncated pyramid in plane strain and its

boundary conditions are shown in Fig. 6(a). A force of magnitude F is applied uniformly at
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FIG. 5. (a) Curvature of a cantilever beam as a function of the beam thickness under purely

electrical loading. The experimental data are reproduced from the work of Bursian and Zaikovskii49.

The dashed line indicates the extrapolation of experimental data to hypothetical thinner films. (b)

Distribution of the electric field across the beam thickness. Considerable gradients of the electric

field near the beam surface are responsible for the beam deflection.
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the top surface. The top and bottom surfaces have areas a1 and a2. Due to their different

areas, the applied force generates different tractions at the top and bottom surfaces, resulting

in a longitudinal strain gradient and thus generating a flexoelectric polarization. Here, we

focus on a two-dimensional problem by considering a truncated triangle with unit width. If

the material has only the longitudinal flexoelectric coefficient µ11 and the elastic constant

c11, then the longitudinal strain ε22 is the only non-zero strain component, and the effective

piezoelectric constant e33 of the truncated triangle can be obtained as21:

e33 = µ11

(a2 − a1

ha1

)
. (21)

It is clear that these assumptions are simplistic and in practice, the strain and electric field

gradients can be strongly inhomogeneous, particularly near the pyramid corners. To in-

vestigate this point, we perform simulations using the model in Fig. 6(a) and the material

parameters of BaTiO3 in Tab. I. We consider a non-piezoelectric material with the flexoelec-

tric constants µ12 = µ11. The aspect ratio is chosen as h = a1 = a2/3, where h is the height

of the truncated triangle. The electric potential is fixed to zero at the top and to a constant

but a priori unknown value V at the bottom electrode, as discussed earlier. This model is

inspired in the work of Cross and coworkers21,22,52, where they performed experiments on

an array of truncated pyramids under compression. In these experiments, electrodes were

deposited on the top and bottom sides of the pyramids to collect the induced charges. With

the resulting V , the effective piezoelectric constant e33 can be calculated as

e33 =
κ33E2

ε22

= −κ33V a2c11

hF
. (22)

To derive Eqs. (21) and (22), it is assumed that the flexoelectric truncated triangle mimics

the behavior of a piezoelectric rectangle with piezoelectric constant e33, elastic constant c11,

dielectric constant κ33, width a2, height h and under load F .

We consider two sets of mechanical boundary conditions at the bottom surface. The first

assumption is that the bottom support is fully flexible, i.e. the applied force F induces a

uniform traction on the bottom face as in Fig. 6(a). The second assumption considers a

rigid support, which prevents the vertical movement of the bottom side, i.e. u2 = 0. In this

situation, a non-uniform traction is induced on the bottom surface. Figure 6(b) presents

the results for the normalized effective piezoelectric constant e′ = e33/e0 as a function of the

normalized height h′ = h/h0, considering the normalization parameters e0 = 4.4 Cm−2 and
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h0 = 75 µm. These graphs are obtained using Eq. (21) for the estimate of the simplified

model and Eq. (22) for the present computations. As in the beam’s case, the electromechani-

cal response is enhanced by decreasing the size of the truncated triangle. This size-dependent

enhancement is expected from the analytical formula in Eq. (21). However, the results of

the present model indicate that the simplified model underestimates the flexoelectric effect.

This underestimation is less significant for the rigid support configuration. Similar to the

cantilever beam, the difference between the analytical and computational results are due to

the two-dimensional effects, which are neglected in the one-dimensional solution in Eq. (21).

This point can be clarified further by presenting the distribution of the electric potential

and longitudinal strain ε22. These results are obtained for h = 750 µm and F = 4.5 KN.

Figure 6(c) indicates a homogeneous distributions of the gradients of these quantities for

the simplified model, while strongly inhomogeneous distributions are observed in Fig. 6(d)

and (e) for the present model with the flexible and rigid support conditions. In addition,

we observe that the deformation mode of the pyramid with the flexible support includes a

bending component. It is clear in Fig. 6(d) that due to the bending, the strain changes sign

with respect to Fig. 6(c). This is not the case for Fig. 6(e) since the rigid support avoids the

bending of the pyramid. Therefore, the origin of the difference between the analytical and

computational results is mainly the bending deformation mode of the pyramid. Another

source of this difference is sharp changes of the strain and electric potential near the sample

corners, resulting in a flexoelectric effect. These results suggest that simple estimations

such as those leading to Eq. (21) are not reliable to compute the flexoelectric response of

truncated pyramids. Since Eq. (21), used to quantify the flexoelectric constants of dielectric

solids from experimental data21, underestimates the flexoelectric effect, the reported flexo-

electric constants are overestimated, which may at least partially explain the discrepancies

between experimental measurements and theoretical estimates3. Our results also highlight

the importance of boundary conditions on the flexoelectric response. Computationally, the

truncated pyramid problem is more challenging that the cantilever beam, since the complex

fields near the corners need to be resolved to accurately evaluate the effective piezoelectricity

of the system, see Appendix B for a convergence study.

Finally, we note that the minimal normalized thicknesses we have considered for the

cantilever beam and the truncated pyramid are h′ = 0.4 and h′ = 0.05, respectively. Below

these scales, the model predicts that the effective piezoelectric constant decreases with size,
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which is not expected from flexoelectricity. This counterintuitive behavior at such small

scales is a result of the non-positive definiteness of the energy. As suggested in Ref.35,

including strain-gradient elasticity in the model is crucial for the positive-definiteness of the

energy. However, discussing beam bending, it is argued that with the material parameters

of barium titanate (µ12 = 63 nC/m), the bending rigidity would only become negative for

beam thicknesses below 5.39 nm23. According to our calculations with the same material

parameters, we obtain a critical thickness for loss of stability of 5.7 nm. At these small scales,

the continuum model that we are following is insufficient. Leaving aside that atomistic

simulations may be more adequate in some cases, a continuum model at these scales should

include strain gradient elasticity and surface effects, such as surface piezoelectricity14.

IV. CONCLUSIONS

We have addressed computationally the flexoelectric response in dielectric solids, resorting

to smooth local maximum-entropy (LME) meshfree approximants to deal with the high-

order coupled PDE. By considering two standard test examples, bending of a cantilever

beam and compression of a truncated pyramid, we have tested our numerical approach

against simplified solutions of the flexoelectric boundary value problem, and highlighted the

quantitative limitations of such approximations. We have shown that the proper treatment

of the multi-dimensionality of the problem is important to accurately evaluate the effect of

flexoelectricity, which is otherwise under- or over-estimated by simplified models. We have

also shown the critical role of boundary conditions.

Our simulations reproduce well-known features of flexoelectricity, such as the size-

dependent enhancement of piezoelectricity. The simulations provide insights into the en-

hanced elasticity of cantilever flexoelectric beams and their deformation modes as size

shrinks. We have also analyzed the flexoelectric actuation of beams by electric fields, ob-

taining a scaling of the beam curvature with size previously reported in experiments. We

have found that the source of actuation is a high gradient of electric field near the beam

surface, which induces a moment due to the converse flexoelectric effect. Our simulations

on the truncated pyramid system further highlight the need for multi-dimensional treat-

ments that accurately account for boundary conditions to properly understand and evaluate

flexoelectricity. This example shows the strong effects due to a bending component of the
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FIG. 6. (a) Truncated pyramid in plane strain under the mechanical load F , uniformly distributed

at the top surface. The top face has length a1 and the bottom length a2. The electric potential

is fixed to zero at the top and is constant but unknown at the bottom. (b) Normalized effective

piezoelectric constant e′ as a function of the normalized thickness h′ for a non-piezoelectric mate-

rial, (c-e)(left) Distribution of the electric potential and (right) the strain ε22 obtained from the

simplified analytical model (c) and the computational models with the flexible (d) and rigid (e)

supports.
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pyramid deformation and geometric features of the domain, such as corners. The resulting

flexoelectric response indicates that a simple analytical formulae commonly used to interpret

truncated pyramid experiments underestimates the flexoelectric effect.

Our results suggest that actuators or energy-harvesting devices based on flexoelectricity

can be optimized to achieve significantly better performance by properly designing their

geometry and boundary conditions, including the mechanical confinement and electrode

configuration. For this purpose, computational techniques are very valuable to guide exper-

imental implementations.
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APPENDIX A: NUMERICAL APPROXIMATION

In recent years, a new sort of polygonal approximants53 and meshfree approximation

schemes42 have been developed based on the information theoretic concept of maximum-

entropy. Essentially, these methods allows us to determine a set of smooth basis functions

pa(x), each localized around its corresponding node of the grid. In particular, we follow the

LME approximants as detailed in Ref.54, and expand the continuum fields as

u(x) =
N∑
a=1

pa(x)ua, φ(x) =
N∑
a=1

pa(x)φa.

From now on, we ignore the arguments of the basis functions and nodal values for simplicity,

i.e. u =
∑N

a=1 p
aua. We thus have

∂jui =
N∑
a=1

∂jp
auai , ∂j∂kui =

N∑
a=1

∂j∂kp
auai , ∂jφ =

N∑
a=1

∂jp
aφa.

Note that these terms involve the gradient and Hessian of the LME basis functions.

Plugging the discrete representation into the total electromechanical enthalpy in Eq. (14),

we obtain the algebraic function in terms of the nodal displacements and electric potential
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degrees of freedom

H(U, φ) =
1

2

∑
a,b

uaT
(∫

Ω

Bu(pa)CBu
T (pb)dΩ

)
ua

+
∑
a,b

uaT
(∫

Ω

Bu(pa)eBT
φ (pb)dΩ

)
φb

+
∑
a,b

uaT
(∫

Ω

Hu(pa)µTBT
φ (pb)dΩ

)
φb

−1

2

∑
a,b

(∫
Ω

Bφ(pa)KBT
φ (pb)dΩ

)
φaφb

−
∑
a

(∫
Γt

tpa dS

)
ua +

∑
a

(∫
ΓD

ωpa dS

)
φa,

where the stiffness tensor C, the dielectric tensor K, the piezoelectric tensor e, and the

flexoelectric tensor µ have been written in Voigt form as

C =
Y

(1 + ν)(1− 2ν)


1− ν ν 0

ν 1− ν 0

0 0 1−2ν
2

 ,

K =

κ11 0

0 κ33

 , eT =

 0 0 e15

e31 e33 0

 ,
µ =

µ11 µ12 0 0 0 µ44

0 0 µ44 µ12 µ11 0

 .
The gradient operators Bu and Bφ and the Hessian operator Hu can be written in Voigt

form as

Bu =

 ∂
∂x

0 ∂
∂y

0 ∂
∂y

∂
∂x

 , Bφ =
[
∂
∂x

∂
∂y

]
,

Hu =

 ∂2

∂x2
0 ∂2

∂y∂x
∂2

∂x∂y
0 ∂2

∂y2

0 ∂2

∂y∂x
∂2

∂x2
0 ∂2

∂y2
∂2

∂x∂y

 .
Following the usual Galerkin procedure, it is possible to derive the discrete algebraic

equations for the equilibrium asAUU AUφ

AφU Aφφ

U
φ

 =

fU
fφ

 ,
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where the local contribution of each quadrature point to the matrix of system has the

structure

Aab
UU = Bu(pa)CBu

T (pb),

Aab
Uφ = Bu(pa)eBT

φ (pb) + Hu(pa)µTBT
φ (pb),

Aab
φU = Bφ(pb)eTBu

T (pa) + Bφ(pb)µHu
T (pa),

Aab
φφ = −Bφ(pa)KBT

φ (pb),

fU = tpa, fφ = −ωpa,

where the basis functions derivatives are evaluated at the corresponding each quadrature

point.

APPENDIX B: CONVERGENCE ANALYSIS

As in other numerical techniques to approximate boundary value problems, we perform

here a convergence analysis to assure the accuracy of the results. We perform a number of

simulations for both the cantilever beam and the truncated pyramid with fixed normalized

sizes of h′ = 4 and h′ = 10, respectively. For each example, five node sets of variable resolution

are considered. The nodes are uniformly distributed for the cantilever beam. To capture

the sharp changes of the strain and electric field near the edges of the pyramid, the nodal

spacing is chosen to be smaller near the edges than in the bulk. To increase the resolution of

each node set, the nodal spacing is decreased by half by inserting an extra node between each

pair of closest nodes. Figure 7 presents the normalized effective piezoelectric constant as a

function of degrees of freedom (DOF), which is proportional to the number of nodes. Each

simulation is performed with different values of γ, a dimensionless parameter characterizing

the degree of locality of the local maximum-entropy basis function. As γ increases, the basis

functions become sharper and more local. It is obvious from this figure that the results

converge to a single solution, irrespective of the choice of γ in the range [0.8-1.8]. The

convergence is slower for the pyramid since a finer node distribution is required as compared
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to the beam to properly capture the localized effects at the pyramid corners. Note that the

computational cost of each simulation increases considerably by decreasing γ. Based on this

convergence analysis and considering a reasonable computational cost, we choose γ = 1 and

the node sets of 2.8× 104 (DOF) and 1.4× 105 (DOF) for the simulations of Sections III A

and III B, respectively. In all simulations, we build a Delaunay triangulation of each node set

and generate a standard Gauss-Legendre quadrature rule of 12 points (order 6) per triangle,

an overkill integration rule. A tolerance of TOL0 = 10−8 for the cutoff of the neighbor

search and a tolerance of TOLNR = 10−14 for the Newton-Raphson solution of the dual

optimization problem are chosen to provide good accuracy at a reasonable computational

cost45.
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FIG. 7. Normalized effective piezoelectric constant as a function of degrees of freedom (DOF) for

(a) the open circuit cantilever beam with a normalized size of h′ = 4 and (b) the truncated triangle

with a normalized size of h′ = 10. In each case, DOF is proportional to the number of nodes and the

simulations are performed with five node sets of variable resolution. Each simulation is performed

with different values of γ, a dimensionless parameter characterizing the degree of locality of the

LME basis function. The inset shows a representative computational node set for each case.
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