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Summary. This work proposes a hierarchical Bayesian parameter estimation framework for a
nonlinear finite element model (FEM) of a hyperelastic soft pneumatic fiber reinforced actuator
(FRA). The continuous fiber reinforcements are modelled as nearly inextensible truss elements
embedded into an incompressible Neo-Hookean solid mesh. The Bayesian approach sequentially
assimilates prior knowledge on the material constitutive behaviour with full field experimental
data to obtain a posterior on the material model parameters. To avoid intrusive restarting of
the FE solver at each assimilation step, both the model parameters as the model states are
estimated with a discretized hierarchical linear Gauss-Markov-Kalman filter.
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1 NONLINEAR PARAMETER ESTIMATION WITH FULL FIELD MEASURE-
MENTS

Soft continuum arms made from hyperelastic material have considerable potential in handling
delicate objects and tissues, for example in clinical applications and agriculture (1; 2). The
predictive modelling of soft continuum arm behaviour under quasi-static/dynamic conditions is
often based on merging finite element (FE) models coming from the physics-based principles
with experimental data. To deduce the underlying model parameters from observed data, one
has to solve the corresponding high-dimensional inverse problem. In this paper we pose the
parameter estimation problem in a probabilistic setting seen from a Bayesian point of view (3).
The model parameters are assumed to be unknown and further modelled as uncertain by use
of the prior experts information. Posteriors on the parameter are obtained by introducing full
field displacement observations, obtained by e.g. Digital Image Correlation (4). However, this
process of estimating the parameter posterior distribution usign a FE model is computationally
expensive. Therefore, in this paper we propose the approximate Bayesian learning in a Kalman
filter setting (5).

To make the estimation online, we pose the inference problem in a sequential manner. The
current knowledge on the parameter set is updated incrementally with every new observation
for each loading step. Although computationally efficient, the proposed approach requires the
so-called restarting procedure of the FEM model at each increment. This means that the
complete material state predicted with the previous distribution has to be rewritten with the
new material state that corresponds to the current distribution. The restarting process thus can
become practically cumbersome, and in some commercial FEM environments even impossible.

To address this problem we suggest the novel approach of estimating the approximate pos-
terior distribution by using a hierarchical approach, following (6). We develop a hierarchical
generalized Kalman filter approach that can be used for nonlinear problems as well as non-
Gaussian parameter description (5). The hierarchical algorithm distinguishes between a master
and a slave filter. The former is responsible for the parameter estimation given observation data,
whereas the second is responsible for the real-time estimation of the prediction of the material
state given updated parameter distribution. In this manner we achieve the restart-free estima-
tion. The novel approach is studied with respect to the accuracy of the mean estimates on a
simple example of one soft segment exposed to quasi-static loading conditions, using a Monte
Carlo sampling approach (Ensemble Kalman filter (7)).

2 MODEL DEFINITION

A reinforced inflatable body that occupies region G0 in the reference configuration is illus-
trated in Fig. (1). The shaded region depicts the solid material, whereas the crosslinked lines
represent the continuous reinforcement fiber, wrapped around the inflatable chamber. The body
consists of a collection of material particles with initial positions X (see (8)). The trajectory
of the particles is described by the current position x(X, t) = X + u(X, t), where u(X, t) de-
notes the displacement field. The local deformation is measured by the deformation gradient
F = ∂x

∂X = ∇0x = I + ∇0u. As hyperelastic material and slender structures may experience
large deformation and kinematic motions, the appropriate and convenient measure of strain is
the Green Lagrange strain E = 1

2 (C− I) with C = FT ·F being the right Cauchy Green defor-
mation tensor and S = JF−1 · σ · F−T being the work conjugate second Piola Kirchhoff stress
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Minke W. Berghuis, Andjelka Stanić, Ali Sadeghi and Bojana V. Rosić

expressed in terms of the Cauchy stress σ (9; 10).

Figure 1: Deformation of a reinforced inflatable body in reference configuration G0 onto current
configuration G with Dirichlet boundary ΓD

0 and pressure boundary ΓD
0

For many elastic materials, the constitutive behaviour is described by an explicit strain energy
density function. There are several particular forms of this potential, but this work considers
the simple isotropic Neo-Hookean form (11; 12; 13) for the solid body:

ψNH = C10

(
Ī1 − 3

)
+

1

D1
(J − 1)2 (1)

where 2C10 = µ0 and k0 = 2
D1

with µ0 and k0 being the initial shear and bulk modulus, re-

spectively and Ī1 the first invariant of the isochoric right Cauchy Green deformation tensor
C̄ = J−2/3C. The dependence of ψ on the second invariant is omitted in the Neo Hookena
formulation, as the sensitivity to this invariant is generally very small. Time dependence and
hysteretic effects (14) are also neglected. Additionally, we assume the material to be incom-
pressible, i.e. D1 → 0. The reinforcement fibers are assumed to be nearly inextensible and their
material behaviour is described by an isotropic and homogeneous Hookean material law, as usual
defined by Youngs modulus E and poisson ratio ν. The constitutive behaviour of the reinforced
soft segment is thus parametrized by the set of parameters κ := {C10, D1, E, ν}, κ ∈ Rdκ .

Following the previous material assumptions, the mechanical behaviour of the body can be
described by the equilibrium equations, given in reference configuration by

∇0 ·P+ b0 = 0 in G0

u = u0 on ΓD
0

P ·N = tN = PJF−TN on ΓP
0

(2)

where P = FS is the first Piola Kirchhoff stress, b0 = Jb is the body force per unit undeformed
volume and tN = da

dAtn = |JF−TN|tn (Nanson’s formula) is the traction force expressed on the
reference surface with normal N, with tn its counterpart on the current surface. The applied
pressure with magnitude P and Dirichlet condition are imposed on their respective boundaries
ΓP
0 and ΓD

0 , where ΓP
0 ∩ ΓD

0 = ∅, see Fig. (1).
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The weak form of Eq. (2) is spatially discretized using the Finite Element Method (15;
16; 8). The displacement field of the solid body is approximated by 20-node (i.e. serendipity)
quadratic brick elements, using reduced integration. The incompressibility condition is enforced
by augmenting the displacement field with an indepedent hydrostatic pressure field leading to
the mixed formulation (17; 18; 16). The pressure stress is discretized independently, introducing
additional degrees of freedom to these hybrid elements. The pressure is assumed to be linear in
second order elements. This approach simultaneously avoids volumetric locking effects, at the
cost of additional pressure variables that act as Lagrange multipliers (19; 15). The reinforcements
are discretized using 3-node quadratic truss elements. These elements are embedded into the
solid elements using the ’embedded element’ constraint following (20; 21), see also (22) for a
short history of developments. Benefits of this formulation are the independent meshing of the
host and reinforcement fibers without the introduction of additional degrees of freedom. For the
sake of simplicity, it is assumed that the fibers adhere perfectly to the solid mesh, i.e. there is a
no slip bond, as the configuration of the fibers does not lead to pull-out behaviour. The two non-
conforming meshes are then coupled by imposing the relevant kinematic coupling constraints.
The translational degrees of freedom of the embedded nodes are constrained to the interpolated
values of the host element. This embedding formulation therefore modifies the stiffness matrix
of the host elements, see (23). It is clear that due to the geometrical component this modified
stiffness matrix need not be symmetrical.

The nonlinear static equilibrium equations for the incompressible hyperelastic material with
embedded trusses is solved using the full Newton method (8; 24; 16). This method has high
accuracy and fast (quadratic) convergence, compared to the alternate modified- and quasi-
Newton methods.

3 BAYESIAN PARAMETER ESTIMATION

The finite element problem posed in the previous section can be solved for the model state x
in Rdx given the parameter set κ, that is usually unknown before collecting experimental data.
The model state for a dynamic finite element analysis with mixed formulation includes the nodal
displacements, velocities and hydrostatic pressure variables. Experimental observations provide
indirect information on κ and thus κ can only be estimated. In this paper we assume that κ
is a priori unknown and thus uncertain. Hence, we employ the probabilistic formulation of the
aforementioned inverse problem.

Let F : Rdx × Rdκ × R+ → Rk be a function describing the nonlinear evolution of the full
model state of the body according to:

ẋ(t) = F (x(κ), κ, t) + ϵ(t), κ ∈ Rdκ , x ∈ Rdx , x(0) = x0 ∈ Rdx . (3)

The previous equation describes the abstract formulation of the semi-discretized finite element
problem stated in section 2. The following estimation approach can also be applied on applica-
tions more general than the soft reinforced segment.

The state given in Eq. (3) can only be partially observed following:

z(t) = y(t) + ε(t), y(t) = H(x(t), κ, t), z(t) ∈ Rdz (4)

in which H : Rdx ×Rdκ ×R+ → Rdz is a possibly nonlinear function and y denotes the noiseless
model signal. The goal is to estimate κ by having the finite data set

Rdz ∋ zk = H(x̂(tk), κ̂, tk) + ε̂k, k = 1, ..., N (5)
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at equidistant sample times tk in a predefined time interval k = 1, ..., N , where the quantities
with ˆ represent the ”true” values of the model state, parameters and observation noise. The
modeling- ϵk := ϵ(tk) and observation noise εk := ε(tk) are assumed to be additive and i.i.d.
sequences.

This work adopts a Bayesian approach to estimation by the help of which the lack of knowl-
edge on κ, i.e. the ”extended state” q := (x0, κ), can be modelled a priori as a random variable
(RV) q(ωq) ∈ L2(Ωq,Fq,Pq) assumed to be independent from the measurement and modeling
noise εk and ϵk at time instances tk, k = 0, ..., kT , respectively

1. Given the whole history of
observations z1:N = [zk]

N
k=1 and the prior probability density function p(q), one may estimate

the posterior of the extended state p(q|z1:N ) by use of Bayes´ rule

p(q|z1:N ) =
p(z1:N |q)p(q)
p(z1:N )

, (6)

in which p(z1:N |q) denotes the corresponding likelihood function defined by the shape of the
measurement noise. It is clear that in this general formulation, the prior parameter uncertainty
p(q) has to be propagated through the evolution and observation model given in Eq. (3) and
Eq. (4), respectively, over the whole time interval [0, T ]. The previously described estimation
is performed only once after collection of all measurement data. See Fig. (2a), for a schematic
representation of this general update, where the state evolves along the horizontal axis. State
uncertainty is depicted by the shaded regions, that represent the lower and upper (e.g. the
10th and 90th) percentiles of the distribution. The probability density functions (pdfs) of the
prior and posterior state evaluated at discrete time instances are depicted along intermediate
vertical axes. The general estimation is of an offline type and thus cannot be used in real
time measurements. Therefore, in this paper the previous problem is restated as a sequential
estimation problem as described hereafter.

3.1 Sequential Gauss-Markov-Kalman filter

Assuming that the state evolution is a one step Markov process, one may introduce the prior,
i.e. forecast, p(qk,f ) := p(qk|z1:k−1) describing the extended state at time tk as

p(qk,f ) = p(qk|qk−1)p(qk−1|z1:k−1) = p(qk|qk−1)p(qk−1,a), (7)

where p(qk−1,a) := p(qk−1|z1:k−1) denotes assimilated entity in the previous time step. Clearly,
the previous posterior p(qk−1,a) is evolved from k − 1 to k by the evolution model given in
Eq. (3) to obtain the prior for the state qk at the current timestep, as well as likelihood function
in Eq. (7). The sequential assimilation then reads as

p(qk,a) = p(qk|z1:k) ∝ p(zk|qk)p(qk,f ). (8)

The previous equation is further referred as the master filter. See Fig. (2b) for a schematic
representation of this filter, shaded regions and pdfs at at discrete time instances are defined as
before.

1Note that state qk contains both the model state xk and the parameter set κ
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time

assimilation  

(a) General assimilation with p(q) and
p(q|z1:N )) the joint pdf of all priors and
posteriors from Eq. (6)

assimilation forecasting

time

(b) Sequential filter, forecasting the state
p(qk,f ) with the assimilated state p(qk−1,a) us-
ing the evolution model

Figure 2: Schematic representation of assimilation approaches, given all observations until time
instance k. Lines denote pdf at discrete time instences, regions denote the upper and lower
percentiles of the continuous pdf implied by the evolution model.

As the full probability (density) in Eq. (8) is often not required in engineering practice, we
first estimate only the expected value of the state given the observations. Therefore, the problem
of conditional probability densities in Eq. (8) is reformulated into estimating

E(qk|zk) =
∫
qkp(qk|zk)dqk (9)

sequentially. The conditional expectation of a RV qk,f given a RV zk,f is a measurable function
φ(·) of zk,f (Doob-Dynkin lemma (25)). Following (26; 5), one may then introduce the Gauss-
Markov-Kalman filter

qk,a = φ(zk; θ) + (qk,f − φ(zk,f ; θ)), (10)

with φ being the optimal map parameterized by θ. The latter can be estimated in a mean
squared sense according to:

θ∗ = arg min
θ

∥qk,f − φ(zk,f , θ)∥2. (11)

The simplest possible choice for the optimal map φ is affine map:

φ(zk,f ) = Kzk,f + b, (12)

parametrized by the Kalman gain K and the bias term b, i.e. θ := {K, b}. By solving the
corresponding optimization problem in Eq. (11) and assuming the observation model in Eq. (4)
one obtains

K = Σqk,fyk,f (Σyk,f +Σεk,f )
−1, (13)

where
Σqk,fyk,f := E ((qk,f − E(qk,f ))(yk,f − E(yk,f )))
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is the cross covariance matrix between qk,f and yk,f with Σyk,f and Σεk,f being the covariance
matrices of the forecasted observation and observation noise. Following this, the sequential
update in Eq. (8) becomes

qk,a = qk,f +K(zk − zk,f ). (14)

In a Gaussian case this is equivalent to the classical Kalman filter estimate (i.e. MAP) (27).
The previous formulation Eq. (14) describes the estimation of the expected value of Eq. (8).

3.2 Hierarchical estimation

The sequential forecasted state presents a problem for large FE models, as the evolution
model (time integration) has to be evaluated using the updated state qk,a to predict p(qk+1,f ).
For a finite element procedure this means that both the model state xk and the parameters κ
have to be exported from the FE solver at time step tk, assimilated externally using Eq. (14) and
then imported back into the FE software. After this, the integration can be continued until the
prediction time tk+1. For large state models, this poses memory problems. Alternatively, one
could restart the time integration from t0 with the updated parameters and initial conditions
(restarting approach) after each assimilation step. In contrast to the memory problem, this may
lead to very long computational times that are not suited for the use in practice.

This work proposes to consider the forecasting step as an estimation problem too, following
(6), by exploiting the Markovian property of the states. The idea is to introduce master and slave
filters in which the former plays a role of assimilating real measurement data into the system
following Eq. (14), whereas the latter has to take care of the prediction step needed for estimating
the forecasted observation zk,f . To achieve this, we propose to offline perform the uncertainty
quantification of the observation zk given given the initial prior p(q0,f ) := p(x0,f , κ0,f ) over the
complete time interval [0, T ] to obtain:

yk,fe = H(xk,fe, κ0,f , tk) k = 1, ..., N (15)

in which the subscript fe stands for the forecast of the observation that is not the same as
the forecast of the observation given in Eq. (14). The main difference is that the state yk,fe in
Eq. (15) is calculated given initial prior p(x0,f ) of the state and the parameter p(κ0,f ) at time
t0, whereas the forecast of the observation used in Eq. (14) is calculated given the current prior
p(qk,f ) at the time tk such that:

yk,f = H(xk,f , κk,f , tk) (16)

and
zk,f = yk,f + εk (17)

hold. As we need the latter and not the former, we use the assumption that the next prior on
the parameter set p(κk+1,f ), falls under (i.e. is narrower than) the initial prior p(κ0,f ) reflecting
the arrival of the new measurement information in the assimilation process. For a constant
parameter, the next parameter prior is simply the current parameter posterior in Eq. (14), i.e.
p(κk+1,f ) = p(κk,a), see Eq. (7). Hence, we can use this information from the current time
instance to estimate the state yk+1,f given the state yk+1,fe and the pair p(κ0,f ) and p(κk,a).
For this we can use another linear Kalman filter, further referred as a slave filter, that reads:

yk+1,ae = yk+1,fe +B(κk,a − (κ0,f + ek)) (18)
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in which p(yk+1,ae) denotes the posterior estimate of p(yk+1,f |z1:k). The pseudo-measurement
of the assimilated parameter is denoted κk,a and yk+1,fe is the pseudo-prior p(yk+1,f |z1:k−1).
We introduce the pseudo-measurement error ek following (6). See Fig. (??) for a schematic
representation of the slave filter, where the offline uncertainty quantification of the state is
denoted with the shaded region as before, and the current observation prediction is estimated
using this forecasted evolution, i.e. without time integration of the evolution model. The master
filter in Eq. (14) with the slave filter estimate of the current observation in Eq. (18) and Eq. (17)
is thus

qk,a = qk,f +K (zk − (yk,ae + εk)) . (19)

After this state assimilation with the master filter, the slave filter estimates the observation
forecast for the next time step, and the process is repeated each time an observation becomes
available for assimilation.

assimilation forecasting

time

Figure 3: Hierarchical assimilation, given all observations until time instance k with predictions
until N . Lines denote pdf at discrete time, regions denote the continuous pdf implied by the
evolution model.

3.3 Ensemble based hierarchical Gauss-Markov-Kalman filter

In this paper we exploit a Monte Carlo approach to discretize Eq. (14) and Eq. (18) and
propagate an ensemble of Ns draws from the prior q0,f (n) through the model to obtain an
ensemble of Ns predicted observations and use these to assimilate the parameter posterior (28;
29). The state ensemble at time index k is denoted byQk := [qk(ω1), ..., qk(ωn)] and the predicted
observation ensemble by Yk := [yk(ω1), ..., yk(ωn)], where subscripts f,a are added to denote the
assimilated and forecasted ensembles and fe,ae the assimilated and forcasted evolution ensembles
(6). The observation forecast is perturbed with an ensemble of samples from the assumed noise
model εk ∼ N (0, Rk) denoted Ek := [εk(ω1), ..., εk(ωn)]. This pertubation of the signal with
the assumed noise model is needed to avoid underestimation of the assimilated error covariance
matrix with updating each ensemble member with the same Kalman update, see (30; 31; 32).
The expected value of the state

E(qk) =
∫
qkP(dω) (20)
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is estimated by the sample mean

q̄k :=
1

Ns

Ns∑
n=1

qk (ωn)

in which qk (ωn) is a sequence of i.i.d. random variables.
The covariances in the (pseudo-) Kalman gain in Eq. (14) and Eq. (18) are approximated by

the sample covariances of the ensembles (7; 33)

Σqkyk ≈ Cqkyk :=
1

Ns − 1

Ns∑
n=1

(qk (ωn)− q̄k) (yk (ωn)− ȳk)
T

Σyk ≈ Cyk :=
1

Ns − 1

Ns∑
n=1

(yk (ωn)− ȳk) (yk (ωn)− ȳk)
T

and

Σykqk ≈ Cykqk :=
1

Ns − 1

Ns∑
n=1

(yk (ωn)− ȳk) (qk (ωn)− q̄k)
T

Σqk ≈ Cqk :=
1

Ns − 1

Ns∑
n=1

(qk (ωn)− q̄k) (qk (ωn)− q̄k)
T

These sample covariances are interpreted as the sensitivity of the state to observation model
Eq. (4), evaluated around the sample mean (34; 35; 36). Both the finite number of samples as
the possible model nonlinearity distinguish the sample covariance from the covariance (37).

3.4 Hierarchical sequential EnKF

The sequential assimilation with hierarchical update can be summarized as follows. First,
the prior state ensemble Q0,f is propagated through the (nonlinear) forward model to obtain the
forecasted signal evolutions Yk,fe in Eq. (15). Second, at each assimilation timestep k, both the
state and the observation forecasts are assimilated with the available observations. The state
update is then given by the master filter, see Eq. (14),

Qk,a = Qk,f +Kk (zk − (Yk,ae +Ek)) , (21)

where zk are the collected observations at the current timestep and the Kalman gain is computed
as

Kk = Cqk,yk (Cyk,yk +Rz,k)
−1 .

The state forecast for the next timestep is given by

Qk+1,f = Qk,a (22)

and the signal evolution forcast for the next timestep is updated by the slave filter

Yk+1,ae = Yk+1,fe +Bk (Qk,a − (Q0,f +Eq,k)) , (23)

where the indices are defined as before and the pseudo Kalman gain is computed by

Bk = Cyk,qk (Cqk,qk +Rq,k)
−1 ,

in which the state pertubation covariance matrix Rq,k is introduced following (6) to account for
the transformed observation error in the assimilated state.
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4 NUMERICAL RESULTS

A finite element model is made for a soft inflatable segment with initially square cross section
of dimension 16×16×60 mm3 see Fig. (4). The soft body has a hollow cylindrical cavity of radius
2 mm, located 5 mm from the segment centroidal axis. The cavity is closed off with 10 mm thick
endcaps and reinforced with 0.1 mm diameter fibers, that are wrapped with a radius of 3 mm
around the cavity center in a double helix pattern with a 2◦ pitch angle. The solid body is

(a) Boundary conditions (clamped-free) and
pressure load

(b) rigid top surface and embedded fiber con-
straints

Figure 4: Schematic FEM

partitioned such that a structured mesh of solid hybrid quadratic brick elements with reduced
integration (Abaqus; C3D20RH) is possible. The reinforcement fibers are meshed into quadratic
truss elements (Abaqus: T3D3) and embedded into the solid mesh with the previously described
embedding constraint. The segment top surface is constrained to remain flat and undeformed,
as the fabricated segment also has a solid endcap, see Fig. (4b). The bottom end of the segment
is considered clamped. A pressure load of 0.022 MPa is applied incrementally to the hollow
chamber, see Fig. (4a), matching the pressure magnitude of the experiments.

The fiber material is modelled as an axially stiff Hookean material (cotton fiber) with Youngś
modulus 31 GPa and Poisson ratio 0.36. The soft hyperelastic material is modelled as an
incompressible Neo-Hookean solid with unknown material parameter C10. As this parameter
has to be positive definite based on physical grounds, we model it a priori as a lognormal RV
C10 ∼ logN

(
1.1κt, (0.2κt)

2
)
with κt = 0.005615MPa. For the ensemble representation we use

Ns = 100 Monte Carlo samples.
The nodes that are observed are on the front y−z surface of the segment, as only this surface

is in line of sight of the experimental camera. Only y and z displacements are observed, as the
out of plane displacements cannot be directly captured and have a too low signal-to-noise ratio.

The FEM output is synchronized by linear interpolation to the measurement sample rate
such that observations are predicted for each ∆t = 0.01 on a normalized timescale 0 ≤ t ≤ 1.

4.1 Perturbed FEM numerical experiment

The assimilation approach is demonstrated first on a numerical experiment with known model
parameter C10 = 0.0048MPa, which is in a region of low probability in the chosen prior.
The observations are the perturbed values of the true model output. The observation noise is
assumed to be independent for each node with εk ∼ N

(
0, 12

)
. State perturbation is set to

zero εq,k ∼ N
(
0, 02

)
. Assimilation results of the sequential hierachical filter in Eq. (21) and

Eq. (23) over (quasi) time are plotted in Fig. (5a). The states and observations evolve along the
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horizontal axis. The shaded regions show the 10 − 90% percentiles, whereas the markers show
the deterministic value or the sample mean of the plotted quantity. For plotting purposes, only a
single observed node is plotted, i.e. a top center node at initial location of (y, z) = (0.0, 40.0) mm,
alongside the state q, which in this case only holds the unknown parameter C10. In Fig. (5b)
the pdfs of the prior (solid red line) at t0 and posterior (dashed green line) at t = 1 are plotted
along with the known ’true’ value of the parameter (vertical solid black line). It is clear that
the posterior has reduced variance and the sample approximation of the sample mean finds the
true parameter value.

(a) (b)

Figure 5: Perturbed FEM experiment

5 CONCLUSION

In this work we propose a hierarchical linear Gauss-Markov-Kalman filter for parameter es-
timation using a nonlinear FEM model and full field observations. The master filter assimilates
the prior parameter knowledge with the information from the experimental data. The slave
filter avoids the sequential restart of the FEM model by also estimating the observation pre-
dictions. The approach is demonstrated on a FE model of a hyperelastic soft pneumatic fiber
reinforced actuator. The continuous nearly inextensible fiber reinforcements are embedded into
the incompressible Neo-Hookean solid mesh. It is shown that the hierarchical filter reduces the
parameter uncertainty within the span of the experiment and finds the known true parameter
value for a perturbed numerical experiment.
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