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Summary. Manufacturing industries contribute to 16.7% of global CO2 emissions. Any waste
generated during manufacturing processes such as defective or rejected products due to poor
tolerances or quality issues, results in excessive energy consumption and unnecessary carbon
emission. Most manufacturing waste and quality fluctuations arise from uncertainty and varia-
tion in raw materials and process conditions. Moreover, manufacturing with recycled materials
introduces challenges related to quality control. For this purpose, uncertainty quantification via
surrogate models and robust optimization are among the promising methods to reduce waste
during manufacturing processes. Inverse robust optimization, also known as tailored scatter,
tailored variation, or tailored uncertainty is a recently-introduced method that explores design-
ing uncertainty for a given robust performance. These inverse problems face computational
complexities due to process non-linearities, correlations and problem dimensionality. In this
work, an efficient implementation of robust optimization using Robustimizer software is applied
and its potential for tailored variation is presented. An additive manufacturing process, laser
powder bed fusion, is used to demonstrate the potential of presented methods in increasing effi-
ciency, and reducing environmental footprints in a more accurate and computationally efficient
way. Robust process settings are achieved leading to minimal variation in melt pool size in the
presence of uncertainties of material and process. In addition, the tailored scatter approach is
implemented to provide a methodology for tighter control of noise variables in the laser powder
bed fusion process considering uncertainties.

1 INTRODUCTION

Manufacturing industries are responsible for 16.7% of global CO2 emissions [1]. The 16.7%
figure includes contributions from components which are defective, have poor tolerances, or do
not meet the performance criteria due to quality issues. This excessive energy consumption
and unnecessary carbon emissions, which have its root in variations of raw material and process
conditions can be significantly reduced by robust optimization methods. [2, 3]

Most manufacturing processes are single-stage operation meaning that the transformation of
raw material to the final product occurs in a single step. The output of the process depends on
many variables some of which are easy to control while others are difficult, expensive or energy-
consuming to control. The later are called noise variables in robust optimization and can be
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described using a probability distribution. Robust optimization aims to find the optimal values
for controllable variables (Design variables) while considering the statistics of noise variables to
achieve the required performance and has been applied in many disciplines [4, 5, 6]

Additive manufacturing is rapidly evolving, enabling the production of highly intricate and
functional parts. It significantly reduces material waste compared to traditional subtractive
methods and reduces the lead times for low-batch production. Various methods of additive
manufacturing encounter specific challenges, particularly when it comes to predicting part per-
formance. Changes in material properties or process conditions can have a significant impact,
making it difficult to ensure consistent outcomes.

In this study, an additive manufacturing process, laser powder bed fusion (LPBF), is used to
demonstrate how robust optimization and tailored scatter can contribute to sustainable process
optimization, minimizing the impacts on unwanted input. Section 2 introduces efficient formu-
lations of robust optimization using Robustimizer and the concept of tailored scatter. Section 3
introduces the additive manufacturing model used in this work. The results are presented and
discussed in Section 4 .

2 Robust optimization and tailored scatter

While numerical simulations and analytical models provide insight about LPBF process, the
major challenge that is still open is how to obtain the model parameters. Statistical methods
provide a reasonable approach by assigning distributions to uncertain variables instead of as-
suming fixed values. This approach is also practical because, in reality, measuring the exact
value of a parameter is tedious and susceptible to measurement and environmental errors.

A surrogate model-based robust optimization procedure consists of several building blocks.
First a design of experiments (DOE) is generated in the combined design and noise space. Then
the responses of the process model are evaluated for the discrete DOE points. In the next step,
a surrogate model is constructed, which is an approximate representation of the process. The
search for the robust optimum design parameter consists of uncertainty quantification and the
repetitive evaluation of objective function value and constraints, which subsequently leads to the
optimal design variables. Since the reliance on a surrogate model might lead to loss of accuracy,
iterative improvement of the surrogate model is usually applied [7].

In the context of surrogate modeling, exploration and exploitation are two key concepts that
relate to how the surrogate model is utilized. Exploration refers to the process of gathering
information about the input output relationship across the entire input space. Exploitation,
on the other hand, involves utilizing the surrogate model to make predictions or decisions that
maximize the desired outcome within the known regions of interest. Striking a balance between
exploration and exploitation is crucial in surrogate modeling to ensure that the model is both
accurate and efficient in finding the robust optimum. New DOE points are added to the initial
DOE to improve the surrogate model of the process. A new infill point is selected in the combined
design and noise space and added to the initial DOE. This procedure can be repeated until the
updated surrogate model does not lead to further improvement of the predicted optimum design
variables. For each building block of robust optimization, various methods exist and a variety
of functions and toolboxes can be combined to perform robust optimization [8, 9]. In this study,
Robustimizer software is used offering various possibilities for all these steps in one easy-to-use
graphical interface.
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Table 1: Model parameters for Ti-6Al-4V

Name Symbol Value

Laser absorptivity (-) A 0.36

Thermal conductivity (W/(mK)) k 7.4

Boiling temperature (K) Tb 3560

Table 2: Ranges of design variables

Name Symbol Upper bound Lower bound

Scanning speed (m/s) v 0.5 1.5

Laser power (w) P 100 200

3 Additive manufacturing via laser powder bed fusion

LPBF is one of the promising additive manufacturing methods in which the powder is selec-
tively melted layer-by-layer using a laser beam. Manufacturing challenges arise while producing
the components. Specifically in LPBF, various types of defects can be introduced such as balling,
keyhole-induced pores, lack of fusion, and cracks if the processing parameters are not optimized.
Many recent studies have focused on modeling and simulation of LPBF using different levels
of complexity [10]. Most studies focus on predicting the melt pool size which is an important
metric for print quality and defect formation[11, 12]. Existing models and simulations include
many parameters which might not be easy to determine. Therefore, robust optimization opens
a new horizon in investigating these processes with a statistical approach.

In this work an analytical model of melt pool depth is chosen to demonstrate how uncertainties
in process modeling can be taken into account during process optimization. The keyhole mode
melting [13, 14] is selected in which instabilities can cause keyhole-induced pore formation among
other issues. In this case, the melt pool depth can be described by:

D =
AP

2πkTb
ln

a+ α/v

a
(1)

where A is laser absorptivity (-), P is laser power (W), k is the thermal conductivity (W/(m.K)),
Tb is the boiling temperature (K), a is laser beam size (m), α is the thermal diffusivity (m2/s),
and v is the scanning speed (m/s).

The model parameters are grouped into three categories. Some model parameters are assumed
to be fixed. The nominal values for these parameters are listed in table 1. Laser power and
scanning speed are chosen to be the design variables which can be adjusted to achieve the desired
performance within their lower and upper bounds (Table 2). Moreover, thermal diffusivity
and laser beam size are assumed to be noise variables meaning that their exact values are
unknown. These can be assumed as probabilistic inputs to the model with given means and
standard deviations as shown in Table 3. Laser beam size can be considered a source of process
variability, influenced by factors such as optical alignment, thermal effects, lens quality, and
environmental conditions. In addition, thermal diffusivity can be considered as a source of
material uncertainty due to inconsistencies in material composition, and complexity of thermal
response of the material under process. The aim is to identify the design variables necessary to
achieve a consistent melt pool depth, considering uncertainties.
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Table 3: Statistics of noise variables

Name Symbol Mean Standard deviation

Thermal diffusivity (m2/s) α 8e-6 0.5e-6

Laser beam size (m) a 40e-6 0.5e-6

4 Results and discussion

To achieve a constant melt pool depth in the presence of noise, the following objective is
implemented in the robust optimization framework:

minimize
x

(
µD(x)−Dt

)2
+ 3

(
σD(x)

)2
(2)

where µD defines the mean depth of the melt pool, σD is the standard deviation, and Dt is the
target depth which is set to 100µm in this work. An initial DOE of 20 points in a 4D space of
design-noise variables is created via combination of full factorial design and Latin hypercube and
the results are evaluated using Equation (1). A surrogate model based on Gaussian processes
which is an approximate of this function is created in Robustimizer and is used to search for
robust optimum. This approach is used to compare the accuracy of the results and it must
be noted that in general the relationship between input and output is not explicitly known. A
modified infill criterion based on [7] is used to search for the robust optimum by adding new
points to the initial DOE. Figure 1 represents the initial DOE with unfilled circles and the added
points in the combined design-noise space with filled circles. The darker and larger the filled
circle, the later it was added to the DOE. 15 points are added sequentially until the expected
improvement value converged to a small number (< 0.001). Figure 2 shows the search for the
robust optimum via exploration and exploitation. The darker and larger the filled circle, the
later the optimum was found in the search process. After adding 15 points adaptively, the
optimum was found at x = [121.81, 0.50].

The ground truth objective function in the design space using Equation (1) is represented
by contour lines in Figure 2. The reference robust optimization solution is at x = [122.77, 0.50],
which means the surrogate-based approach could predict the optimum with only 0.8% deviation.

To achieve a target melt pool depth without considering uncertainties, process optimization in
a deterministic manner leads to x = [198.68, 0.86]. This highlights the importance of considering
noise in the optimization process, as ignoring it can lead to suboptimal settings. In contrast, a
robust approach can lead to significantly different process settings. It is interesting to see that
higher stability against noise is achieved with less laser power and scanning speed.

Inverse robust optimization also known as tailored scatter, is a recently introduced method
[15] that explores the possibilities of designing uncertainty for a given robust performance.
This approach identifies the largest possible noise variations that still ensure a tightened robust
performance. The formulation applied in this work is as follows:

min
x,σz

1∑
iwiσ̄i

s.t.

(
µD(x,σz)−Dt

)2
+ 3

(
σD(x,σz)

)2(
µD(x,σn)−Dt

)2
+ 3

(
σD(x,σn)

)2 − Ctol ≤ 0

(3)

where wi are the weights corresponding to the cost of tightly controlling the noise variable i,
σ̄i =

σzi
σni

, σzi is the optimization variable representing the standard deviation for noise variable
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Figure 1: Initial DOE shown with unfilled circles and the additional points added through exploration
and exploitation shown with filled circles in the (a) design space and (b) noise space. (The darker and
larger the filled circle, the later it was added to the DOE)

Figure 2: Search for the robust optimum via exploration and exploitation. ( The darker and larger the
filled circle, the later the optimum was found in the search process)

i, σni is the nominal standard deviation for noise variable i, and Ctol represents the tightening
ratio of the objective value to the nominal objective value.

Figure 3 shows the tolerable variations for two Ctol values with various control cost weights.
This figure indicates how to achieve a tighter tolerance on the melt-pool depth by tightening
the control on two noise variables. In general, variations in laser beam size have a smaller
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Figure 3: Tolerable scatter for (a) Ctol = 0.25 and (b) Ctol = 0.5 for various control cost weights

influence on overall performance. However, if the cost of controlling the thermal diffusivity is
around three times that of the laser beam size, the variation in both noise variables needs to be
controlled upto 20% of the nominal variation, to achieve a melt pool depth variation of 25% of
the original depth variation. These results provide insight for decision-making in controlling the
LPBF process from a statistical point of view.

5 CONCLUSIONS

This study explored the application of robust optimization to the laser powder bed fusion
process, addressing key challenges related to manufacturing quality. A surrogate model-based
robust optimization procedure was effectively applied to minimize variations and achieve a con-
sistent melt pool depth, which is crucial for enhancing print quality and reducing defects. By
employing the tailored scatter technique, the potential for controlled reduction of uncertainties
and improvement of performance was demonstrated. The approach facilitated the identification
of the largest possible noise variations that ensured required performance. This work contributed
to a deeper understanding of how statistical approaches can be employed to achieve a more ro-
bust process for reducing manufacturing-related variations, paving the way for more efficient,
reliable and sustainable production methods.

REFERENCES

[1] J. Olivier and J. Peters, “Trends in global co2 and total greenhouse gas emissions,” PBL
Netherlands Environmental Assessment Agency, 2020.

[2] O. Nejadseyfi, H. Geijselaers, E. Atzema, M. Abspoel, and A. van den Boogaard, “Ac-
counting for non-normal distribution of input variables and their correlations in robust
optimization,” Optimization and Engineering, pp. 1–27, 2021.

6



O. Nejadseyfi

[3] H. Li, Z. Huang, T. Yang, H. Wang, Z. Fu, J. Chen, and S. Wu, “Robust optimization of
prismatic lithium-ion cells for reducing thermal performance fluctuations and manufacturing
costs,” Journal of Energy Storage, vol. 72, p. 108391, 2023.

[4] A. Yaqoubi, F. Sabouhi, A. Bozorgi-Amiri, and M. S. Amalnick, “A light robust optimiza-
tion model for a hierarchical healthcare network,” Kybernetes, vol. 53, no. 3, pp. 990–1014,
2024.

[5] S. Singh and M. Biswal, “A robust optimization model under uncertain environment: An ap-
plication in production planning,” Computers & Industrial Engineering, vol. 155, p. 107169,
2021.

[6] O. Nejadseyfi, H. J. Geijselaers, and A. H. van den Boogaard, “Evaluation and assess-
ment of non-normal output during robust optimization,” Structural and multidisciplinary
optimization, vol. 59, pp. 2063–2076, 2019.

[7] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive
black-box functions,” Journal of Global optimization, vol. 13, pp. 455–492, 1998.

[8] S. Kitayama and K. Yamazaki, “Sequential approximate robust design optimization using
radial basis function network,” International Journal of Mechanics and Materials in Design,
vol. 10, pp. 313–328, 2014.

[9] O. Nejadseyfi, H. J. M. Geijselaers, and A. H. van den Boogaard, “Robust optimiza-
tion based on analytical evaluation of uncertainty propagation,” Engineering Optimization,
pp. 1–23, 11 2018.

[10] H. Bikas, P. Stavropoulos, and G. Chryssolouris, “Additive manufacturing methods and
modelling approaches: a critical review,” The International Journal of Advanced Manufac-
turing Technology, vol. 83, pp. 389–405, 2016.

[11] J. Yang, J. Han, H. Yu, J. Yin, M. Gao, Z. Wang, and X. Zeng, “Role of molten pool mode
on formability, microstructure and mechanical properties of selective laser melted ti-6al-4v
alloy,” Materials & Design, vol. 110, pp. 558–570, 2016.

[12] B. Liu, G. Fang, L. Lei, and X. Yan, “Predicting the porosity defects in selective laser
melting (slm) by molten pool geometry,” International Journal of Mechanical Sciences,
vol. 228, p. 107478, 2022.

[13] G. G. Gladush and I. Smurov, Physics of laser materials processing: theory and experiment,
vol. 146. Springer Science & Business Media, 2011.

[14] J.-N. Zhu, E. Borisov, X. Liang, E. Farber, M. Hermans, and V. Popovich, “Predictive ana-
lytical modelling and experimental validation of processing maps in additive manufacturing
of nitinol alloys,” Additive Manufacturing, vol. 38, p. 101802, 2021.

[15] O. Nejadseyfi, H. Geijselaers, E. Atzema, M. Abspoel, and A. Van Den Boogaard, “From
specified product tolerance to acceptable material and process scatter: an inverse robust
optimization approach,” International Journal of Material Forming, vol. 13, pp. 467–478,
2020.

7


	INTRODUCTION
	Robust optimization and tailored scatter
	Additive manufacturing via laser powder bed fusion
	Results and discussion
	CONCLUSIONS

