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Summary. In many experimental measurements, corrupted data and outliers can significantly distort
the coherent structures identified through traditional modal analysis techniques. This distortion becomes
particularly pronounced at higher frequencies, where the corresponding modes are more susceptible to
contamination from measurement noise and uncertainties. To address these limitations, we introduce
a novel approach, robust spectral proper orthogonal decomposition (robust SPOD), which incorporates
the robust principal component analysis method into the SPOD. In this work, we assess robust SPOD
effectiveness through applications to two distinct fluid dynamics problems: a numerically simulated
turbulent subsonic jet flow field and experimental data of the flow within an open cavity. When applied to
turbulent jet data artificially corrupted by salt and pepper and Gaussian noise, the robust SPOD produces
more converged and physically interpretable modes than the standard SPOD method. Furthermore, we
illustrate how robust SPOD can be employed as a powerful tool for data denoising, relying on signal
reconstruction from denoised modes. The analysis of the open cavity flow with the robust SPOD yields
smoother spatial distributions of modes, particularly at high frequencies and for higher-order modes when
compared to the conventional SPOD approach.

1 INTRODUCTION

Data corruption presents a significant challenge in systems modeling and forecasting, where noisy and
incomplete measurements can severely compromise the integrity of learned models and lead to erroneous
conclusions. Effectively managing such data is crucial for the development of reduced-order models
(ROMs) and for deriving physical insights from experimental studies.

A commonly employed approach to constructing a ROM involves extracting physically significant
features or modes that characterize the flow topology and projecting the Navier-Stokes equations onto a
subset of these modes via Galerkin projection, resulting in a system of ordinary differential equations
[1]. By selecting a limited set of modes, it becomes feasible to develop a reduced model that can predict
the flow behavior with lower computational costs. Various techniques are available for identifying the
primary coherent structures of the flow [2, 3], although these methods can be sensitive to the presence of
outliers and incomplete data.
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Among the modal analysis techniques, spectral proper orthogonal decomposition (SPOD) has garnered
substantial attention in recent years due to its ability to extract the dominant spectral features of a flow
field. SPOD optimally captures two-point space–time correlations, yielding modes that evolve coherently
in both space and time [4, 5, 6]. This algorithm has been widely applied in fluid dynamics, primarily for
the post-processing of numerical and experimental data. It serves as a powerful tool for investigating flow
topology [7, 8, 9, 10, 11] and for evaluating flow receptivity and the efficacy of control strategies [12].

Particle image velocimetry (PIV) is one of the most prevalent experimental measurement techniques
used today. However, PIV data can suffer from errors caused by inadequate illumination, optical issues,
reflections, and sharp gradients in field properties [13]. Experimental measurements must navigate a
trade-off between the quantity and quality of PIV data, often resulting in flow fields that contain corrupt or
missing measurements. Standard filtering and reconstruction techniques typically involve interpolation
methods that rely solely on local flow information [14], as well as least-squares methods and Kriging
[15].

The challenge of incomplete measurements has traditionally been addressed using approaches based
on proper orthogonal decomposition (POD), as explored in works such as [16], [17], and [18]. More
recently, [19] demonstrated the effectiveness of gappy SPOD in reconstructing flow fields. Additionally,
machine learning techniques, including Physics-informed neural networks (PINNs) [20], long short-term
memory (LSTM) networks [21], deep generative adversarial networks (GANs) [22], and autoencoders
[23], have shown promise in generating missing data in turbulence and processing PIV data.

Conversely, the issue of outliers, particularly when their locations are unknown, has been effectively
addressed using matrix completion techniques. These methods separate sparse noise from the data [24]
through various algorithmic approaches, such as the augmented Lagrange multiplier (ALM) method
and the alternating directions method (ADM) [25, 26]. These techniques have proven valuable for the
post-processing of experimental data and in modal decompositions [27].

The SPOD technique’s algorithm represents a frequency-domain extension of the standard space-
only POD [28], which is not robust against outliers and corrupted data. This work aims to address
this limitation by introducing the robust spectral proper orthogonal decomposition (robust SPOD) and
providing a detailed description of its algorithm. The technique is applied to classical fluid dynamics
problems to analyze various aspects of the algorithm, including the subsonic jet flow field numerically
computed using large-eddy simulations (LES) from [4] and the flow within an open cavity, obtained from
PIV measurements in [29].

The remainder of this paper is structured as follows. Section 2 introduces the robust SPOD procedure.
The results are presented in Section 3.

2 ROBUST SPOD

Consider a snapshot ensemble {q8}, representing a collection of instantaneous states of a generic field
q(x, C), defined over the spatial domain x at discrete times C8 (with 8 = 1, . . . ,"). These snapshots
are arranged to form a data matrix Q 2 R#⇥" , where # represents the total length of the state vector,
corresponding to the number of grid points multiplied by the number of flow variables. The data matrix
Q is further divided into #1 blocks, denoted by Q( 9 ) , with 9 ranging from 1 to #1. Each block consists
of # 5 snapshots, which may overlap with one another; the number of overlapping snapshots is denoted
as #>. For each block, a (windowed) discrete Fourier transform (FFT) is computed, and the Fourier
components for each block are then stacked into a matrix Q̂ 5:

2 R#⇥#1 for each frequency 5: , with
: = 1, . . . , # 5 .
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The standard SPOD algorithm, as detailed in [5] and [30], relies on the eigenvalue decomposition of
the cross-spectral density (CSD) matrix, defined as:

S 5:
= Q̂ 5:

Q̂⇤
5:

W , (1)

where W is a spatial weight matrix that accounts for the non-uniformity of the data, as described in
[31]. If the original data contain outliers, these anomalies are likely to persist (and possibly be amplified)
in the Fourier realizations, leading to corrupted and noisy modes. To mitigate this issue, we propose
integrating robust principal component analysis (PCA) within the SPOD framework, as introduced by
[24] and reviewed by [27].

Robust PCA decomposes the matrix of Fourier realizations Q̂ 5:
(or equivalently, the snapshot blocks

Q( 9 ) ) into:
Q̂ 5:

= L̂ 5:
+ Ĥ 5:

, (2)

where L̂ 5:
represents a low-rank structure, and Ĥ 5:

is a sparse matrix containing outliers and corrupted
data [24]. Consequently, the principal components of L̂ 5:

remain unaffected by erroneous data.
To demonstrate how robust PCA isolates outliers in the matrix Ĥ 5:

, consider that for standard POD,
the mathematical formulation for extracting the desired low-rank structures L̂ 5:

involves minimizing the
Frobenius norm (k · k�) of the term Ĥ 5:

= Q̂ 5:
� L̂ 5:

:

min
L̂ 5

:

kQ̂ 5:
� L̂ 5:

k� subject to rank(L̂ 5:
)  A . (3)

The use of the Frobenius norm renders the computation highly sensitive to outliers.
In contrast, the robust PCA formulation involves the following optimization problem:

min
L̂ 5

:
,Ĥ 5

:

rank(L̂ 5:
) + kĤ 5:

k0 subject to L̂ 5:
+ Ĥ 5:

= Q̂ 5:
, (4)

where kĤ 5:
k0 represents the cardinality of the nonzero elements in Ĥ 5:

, indicating the sparsity of Ĥ 5:
.

This problem (4) is non-convex and is typically solved by considering its convex relaxation [24]:

min
L̂ 5

:
,Ĥ 5

:

kL̂ 5:
k⇤ + U0kĤ 5:

k1 subject to L̂ 5:
+ Ĥ 5:

= Q̂ 5:
, (5)

where k · k⇤ denotes the nuclear norm (sum of singular values), and k · k1 represents the !1 norm (sum
of the magnitudes of each entry in the matrix). The coefficient U0 is defined as:

U0 = U/
p

max(# , #1), (6)

where U is a tunable parameter representing the filter intensity [27].
The problem (5) is known as principal component pursuit and can be solved using the augmented

Lagrange multiplier (ALM) algorithm, as discussed in [26] and [25]. Following [24], the augmented
Lagrangian is defined as:

✓(L̂ 5:
, Ĥ 5:

,Y) = kL̂ 5:
k⇤ + U0kĤ 5:

k1 + hY, Q̂ 5:
� L̂ 5:

� Ĥ 5:
i + `

2
kQ̂ 5:

� L̂ 5:
� Ĥ 5:

k2
�
, (7)

where Y is the matrix of Lagrange multipliers, h·, ·i denotes the standard trace inner product, and ` is a
parameter that quantifies the error in (2). In this work, ` is chosen according to ` = 0.25##1/kQ̂ 5:

k1.
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Notably, ` does not affect the solution of problem (4) but influences the convergence speed. The optimal
set of (L̂ 5:

, Ĥ 5:
,Y) that minimizes (7) can be found using various methods, as detailed in [24], [26], and

[25]. In this study, the alternating directions method (ADM) has been employed. Once the robust PCA
algorithm converges, the resulting de-noised Fourier realizations matrix L̂ 5:

is utilized in the standard
SPOD procedure in place of Q̂ 5:

.
Further details on the algorithm and hyperparameter tuning can be found in [32].

3 Results

Our investigation focuses on the flow field within an open cavity, where measurements were acquired
using a time-resolved PIV technique. The standard SPOD tends to produce noisy results, especially
for non-leading modes. As demonstrated in this paper, the application of robust SPOD enhances the
smoothness and physical interpretability of these modes. The dataset reported in [29] was considered
here, specifically for a free stream Mach number (defined as the ratio between the incoming flow velocity
*2 and the speed of sound 02) equal to " = 0.6.

Panel (a) of Figure 1 shows a sketch of the rectangular cavity. The cavity has a length of !2 = 158.8
mm, a depth of ⇡2 = 26.4 mm, and a width of ,2 = 101.6 mm, resulting in nondimensional ratios of
!2/⇡2 = 6 and ,2/⇡2 = 3.85.

(a) (b)

Figure 1: Open cavity flows. Panel (a): geometrical sketch; panel (b): mean streamwise velocity component and
streamlines distribution. Data courtesy of [29].

As depicted in panel (b) of Figure 1, which illustrates the temporal mean distribution of the streamwise
velocity component, the incoming boundary layer separates at the leading edge of the cavity, forming
a shear layer. This shear layer is convectively unstable, leading to the generation of Kelvin-Helmholtz
instability waves. These waves travel downstream, impinge on the back edge of the cavity, and partially
reflect as acoustic waves. Then, they propagate upstream and lock in with the Kelvin-Helmholtz in-
stability at the leading edge, completing a feedback cycle [29, 33, 34]. This feedback process results
in an aeroacoustic resonance whose main tones are known as Rossiter modes [35]. The characteristic
dimensionless frequencies (in terms of the Strouhal number, (C) associated with these modes can be
predicted using the empirical relation:

(C= =
5=!2

*1
=

= � 0

1/^A + "/
p

1 + (W � 1)"2/2
. (8)

Here, *1 represents the freestream velocity, ^A = 0.65 is an empirical coefficient, 0 = 0.38 is the phase
lag, and = = 1, 2, . . . corresponds to the Rossiter mode index. Equation (8) predicts the dimensionless
frequencies (C= associated with the resonance modes in open cavities.
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(a) (b)

(c) (d)

Figure 2: Leading SPOD modes of open cavity flows data from [29]. Panel (a): real part of leading SPOD mode
of D at (C = 0.75. Panel (b): real part of leading SPOD mode of D at (C = 1.22. Panel (c): real part of leading
SPOD mode of E at (C = 0.75. Panel (d): real part of leading SPOD mode of E at (C = 1.22.

Velocity components were measured on a uniform grid with dimensions =G ⇥ =H = 156 ⇥ 55 and
with a sampling frequency of 5B = 16000 Hz. The analysis is based on #C = 16000 snapshots, with
#1 = 30 blocks and # 5 = 1024 frequencies. Figure 2 presents the real part of the first SPOD mode at
the two leading frequencies, (C = 0.75 and (C = 1.22. Panels (a) and (b) show the streamwise component
of the mode, while panels (c) and (d) show the transverse component. The spatial structures at higher
frequencies exhibit finer scales than those at lower frequencies.

For this case, the robust SPOD analysis is performed with a de-noising parameter U = 1. Figure
3 presents the spectra obtained from both SPOD (black lines) and robust SPOD (blue lines) analysis.
The robust SPOD analysis primarily focuses on reducing noise at high frequencies, meaning that the
reconstructed signals exhibit less noise contamination than those obtained from SPOD, particularly in the
higher frequency range. To provide a reference for the spectral behavior, the red dashed line represents
the Kolmogorov power law ((C�5/3), which is a well-established representation of the energy spectrum
in turbulent flows and serves as a benchmark for assessing the spectral characteristics of the analyzed
data, showing how the curve tends to align with this well-known benchmark. As expected, the power law
scaling is not valid at low frequencies, where relatively larger coherent structures characterize the flow.

Figure 4 compares the leading E modes obtained from both SPOD and robust SPOD analysis. The
comparison is made for the first four Rossiter frequencies and a generic high Strouhal number ((C = 4).

It is worth noting that applying robust SPOD leads to considerable improvements in the smoothness
of the extracted modes. Specifically, SPOD already performs well for the first mode at the leading
frequencies ((C = 0.75 and (C = 1.70), producing relatively smooth modes. However, for the remaining
modes, the employment of robust SPOD significantly enhances the smoothness of the modes. Moreover,
at high frequencies, such as (C = 4, the coherent structures extracted with the SPOD technique are not
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Figure 3: Comparison between the SPOD spectrum (black) and the robust SPOD spectrum (blue) for the cavity
flow. The reference red dashed curve represents (C�5/3. Vertical dashed lines represent Rossiter frequencies.

easily recognizable, whereas the robust SPOD modes exhibit clearer and more distinguishable coherent
structures.

To quantify the roughness of the modes, following [36], it is convenient to consider the velocity mode
gradient magnitude defined as:

b 5:
(G, H) =

s✓
mqD 5

:

mG

◆2

+
✓
mqD 5

:

mH

◆2

+
✓
mqE 5

:

mG

◆2

+
✓
mqE 5

:

mH

◆2

, (9)

and compute its spatial standard deviation:

f 5:
= std(b 5:

) =

vut
1

=G=H

=G’
8=1

=H’
9=1

�
b 5:

(G8 , H 9) � b̄ 5:

�2 (10)

where b̄ 5:
= 1

=G=H

Õ
=G

8=1
Õ=H

9=1 b 5:
(G8 , H 9). Figure 5 displays the f 5:

values for the leading four modes
obtained from both SPOD and robust SPOD analysis. Comparing the two sets of modes, it is evident
that the robust SPOD modes exhibit greater smoothness, particularly at high Strouhal numbers ((C). The
lower values of f 5:

for robust SPOD modes indicate reduced roughness and enhanced coherence in flow
field structures.

4 CONCLUSIONS

This study marks a significant advancement in the analysis of experimental measurements, particularly
in contexts where corrupted data and outliers can compromise the accuracy of coherent structure extraction
using traditional modal analysis techniques. This challenge is particularly acute at higher frequencies,
where noise and uncertainties can severely degrade data quality.

To address these challenges, we introduced a novel approach: robust spectral proper orthogonal de-
composition (SPOD), which integrates robust principal component analysis within the SPOD framework.
Our investigation centered on assessing this innovative method’s effectiveness in enhancing the extraction
of coherent structures from complex datasets. The efficacy of robust SPOD was thoroughly evaluated
through the analysis of open cavity flow fields obtained from experimental measurements.
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Figure 4: Comparison between SPOD and robust SPOD leading E modes at different (C. Field variables have been
normalized with respect to their maximum. De-noising parameter U = 1. In all panels, the abscissa and ordinate
are the dimensionless axial coordinate G/⇡2 and radial coordinate A/⇡2, respectively, omitted for clarity. (
blue, cyan, black, yellow, red, �1 < q 5:

/kq 5:
k1 < 1. Picture from [32] )
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Figure 5: Spatial standard deviation of the velocity mode gradient magnitude. Comparison between SPOD and
robust SPOD.

The robust SPOD technique demonstrates clear superiority over classical SPOD, particularly at high
frequencies, by yielding modes that are both more physically interpretable and better converged. By
reconstructing signals from de-noised modes, we demonstrated that robust SPOD effectively mitigates
the adverse effects of noise and uncertainties, thereby enhancing data interpretation.

The promising outcomes from both numerical and experimental datasets suggest that robust SPOD has
significant potential to deepen our understanding of complex fluid dynamics phenomena and to improve
the robustness of modal analysis in various practical applications.

References

[1] Bernd R. Noack, Konstantin Afanasiev, Marek Morzyński, Gilead Tadmor, and Frank Thiele. A
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