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Summary. A partitioned algorithm couples distinct solvers by exchanging data on their com-
mon interface. In the case of strong coupling, where multiple coupling iterations are performed
per time step, a convergence criterion is required to indicate that a time step has converged. A
variety of such criteria exists, but they typically compare a quantity representing the change in
interface data between successive coupling iterations, e.g., the interface residual, to a prescribed
tolerance. The choice of its value is often ad hoc and based on experience. Moreover, its rela-
tionship to the tolerances of the subproblems is unclear and often not considered, even though
the accuracy of the coupled simulation is inherently linked to that of the subproblem solutions.

This work addresses this shortcoming by discussing and investigating a newly introduced
criterion that does not require the choice of a coupling tolerance, but bases the convergence of
the time step on the number of subproblem iterations required to reach convergence. The new
criterion can be applied to black-box solvers under the condition that they provide information
on whether they have converged and on how many subproblem iterations have been run, which is
not a very restrictive assumption in practice. Additionally, the solvers must be able to start from
the solution of the previous coupling iteration. Although this work focuses on fluid-structure
interaction simulations, the criterion is also applicable to other multiphysics problems.

1 INTRODUCTION

Partitioned algorithms for fluid-structure interaction (FSI) couple separate flow and struc-
tural solvers by exchanging data on their common interface. The goal is to ensure that the
displacement of this interface is identical in both solvers, and that the forces on this interface
are equal in size but opposite in sign. These two requirements are the kinematic and dynamic
equilibrium conditions, respectively.
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In strongly (implicitly) coupled problems, these conditions are satisfied by evaluating the
solvers multiple times per time step, each time updating the interface boundary conditions of
one solver based on interface data from the other. A single evaluation of both the flow and
structural solver is called a coupling iteration. The degree to which the equilibrium conditions
are fulfilled is commonly determined by comparing a norm of a change of interface data between
consecutive coupling iterations to a so-called coupling tolerance. Only when this change drops
below the prescribed value, the time step is considered converged and the next one can be
started.

There are many variants for calculating a single scalar measure for the change in interface
data, but for the most part they make use of the coupling residual. Focusing on the Gauss-
Seidel type, where the flow and structural solver are called sequentially, this quantity can be
defined as the difference between the output interface data of the structural solver and the
corresponding prior input interface data of the flow solver. As a consequence, for Dirichlet-
Neumann decomposition, this coupling residual is expressed in units of displacement. A similar
value is sometimes defined for the traction forces which are the out- and input of the flow and
structural solver, respectively.

The most straightforward approach is to compare the Euclidean norm of the coupling residual
to a tolerance value [1–5]. The disadvantage of this approach is that the value of the residual
will depend on the discretization. To alleviate this, the norm can be scaled with the square root
of the number of degrees of freedom on the interface [6, 7]. Still, the residual will depend on the
magnitude of the displacement values. Therefore, the absolute norm can be normalized using
either the initial residual norm at the start of the time step [2, 8] or the Euclidean norm of the
interface data itself [4, 9, 10]. Finally, a combination of these criteria can be applied, and while
often only the displacement coupling residual is checked, a criterion can also be defined for the
force interface residual.

The common factor among the multitude of criteria is that they require to specify a tolerance.
The choice of an appropriate value is not straightforward and often made based on experience
or trial-and-error. Moreover, its value does not independently determine the performance of
the coupled simulation in terms of accuracy and run time but is also strongly linked to the
tolerances of the solvers themselves. For example, if the solver tolerances are set very strict
while the coupling tolerance is loose, a lot of time is invested in accurate solving the separate
domains without it being reflected in the quality of the coupled solution because the equilibrium
conditions are only loosely satisfied. Conversely, if the coupling tolerance is too strict compared
to the solver tolerances, convergence may never be achieved. This is because the decrease
of the coupling residual and thus the satisfaction of the equilibrium conditions is limited by
the numerical solution errors of the separate solvers. In other words, the remaining change in
interface data between coupling iterations results from the solution errors of the solvers and might
not be reduced by performing more coupling iterations. Moreover, also the solver tolerances are
linked to each other. For instance, if the tolerance of the structural solver is much stricter than
that of the flow solver, computational time will be misspend on resolving the structural domain.
Obviously, the inverse is also true.

The choice of a coupling tolerance and by extension the solver tolerances is very problem-
dependent. First of all, the convergence criteria for the solvers differ considerably between solver
packages. While they commonly compare one or more integral residual measures to prescribed
tolerances, a direct comparison with the tolerances of other solver codes or the coupling tolerance
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is typically not possible. Second, appropriate values for the tolerances depend on the physics
occurring as well as the size, geometry and discretization of the domain. For example, some
problems might feature large displacement and small pressure differences, while for others the
inverse could be true. Third, in most problems the solution of one of the subsolvers requires
more effort than the other, which also affects the optimal choice.

The main question is how to assess which choices lead to the desired accuracy without over-
spending computational resources. As part of the solution, this work discusses a new coupling
criterion [11] that avoids the need of a coupling tolerance but bases the convergence of the time
step on the number of iterations each of the subproblem requires to reach convergence. Although
the focus of this work is on fluid-structure interaction problems, the concepts and results can be
translated to any type of partitioned coupling of black-box solvers.

The next section introduces the necessary notation and a typical convergence criterion using
a coupling tolerance. Thereafter, Section 3 discusses the new coupling criterion and provides
details on its implementation. Section 4 presents simulation results for two test cases: the
flexible tube and lid-driven cavity. Finally the main conclusions are presented in Section 5.

2 PARTITIONED FLUID-STRUCTURE INTERACTION

Flow solver Structural solver

if
∥∥rk−1

∥∥ < εcIQN k += 1

Coupling loop

Next time step

then

else

ỹk yk

x̃kxk

Figure 1: Illustration of the coupling of the flow and structural solver, where the non-normalized
criterion is used to determine convergence of the coupling. Each solver block is run until the
corresponding solver tolerance is achieved.

Fig. 1 illustrates a typical setup for partitioned coupling of a flow and structural solver, where
in each call the solvers are run to full convergence. The displacement data on the interface is
represented by the vector x (unit m), while the pressure and traction forces are grouped in the
vector y (unit Pa). To avoid divergence and accelerate convergence of strongly coupled problems,
it is often required to update the interface data between solvers, through, for example, relaxation
or the use a coupling algorithm such as the interface quasi-Newton (IQN) type [2]. Therefore, the
output of the solvers is distinguished by the use of a tilde. Generally, the interface displacement
and forces will not be identically discretized in both solvers, necessitating spatial interpolation.
Since this is not the focus of the current work, it is tacitly assumed to occur.
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With these notations, the kinematic and dynamic equilibrium conditions can be expressed as∥∥∥x̃k − xk
∥∥∥ < εx and

∥∥∥ỹk − yk−1
∥∥∥ < εy, (1)

where the subscript k is denotes the coupling iteration (k = 0, 1, . . . in every time step).
Often, only the displacement interface data is modified between the solvers, for example by

IQN, and only the kinematic equilibrium condition is checked. The difference x̃k − xk is then
regarded as the coupling residual with unit m, defined as rk = x̃k − xk.

As detailed in Section 1, the convergence is typically assessed by requiring that the norm
of this coupling residual is sufficiently small. In this work, the non-normalized convergence
criterion will be used as the typical convergence criterion to be compared to the new criterion
explained in the next session. This convergence criterion is expressed as∥∥∥rk∥∥∥ < εc, (2)

where εc is the coupling tolerance with unit m.

3 NEW COUPLING CRITERION

3.1 Motivation

In Spenke and Delaissé et al. [11], a new coupling criterion is introduced that bases the
convergence of the coupling loop on the convergence of the solvers and avoids the use of a
coupling tolerance. A closer look at the solvers is needed to justify this criterion.

A great advantage of the partitioned coupling approach is that solvers can be black boxes
meaning that no access to the solver codes is required. Nevertheless, since the flow and structural
problems are typically nonlinear, each solver can be assumed to have an internal iteration loop,
as shown in Fig. 2. In these internal loops, so-called subproblem iterations (i = 0, 1, . . . in every
solver call) are performed until the subproblem residual rip becomes smaller than a prescribed
solver tolerance εp, where the subscript p is a general notation for f or s, respectively referring
to the flow and structural subproblem. The exact implementation differs strongly between
solution methods and implementations, but in general the loop consists of three consecutive
steps: assembling the system, evaluating the residual and solving the system.

Here, it is assumed that all dependency on the solution field u inherent to the subproblem
is included in the system matrix A(u). Therefore, the right-hand side (RHS) b containing
the boundary conditions and thus also the interface data received from the other solver stays
constant within each subproblem call. When coupled to another subproblem as in partitioned
FSI, the received interface data contained by the RHS has been determined by the other solver
using the solution field u. As a consequence, the RHS of the solver is also dependent on u, even
if only in an implicit manner. For example, a change in position of the interface will affect the
fluid forces and hence also the boundary condition for the structural subproblem. Analogously,
the structural solver uses the forces on the interface to calculate the interface position which, in
turn, influences the flow solution and thus the pressure and traction forces on the interface.

The received interface data and RHS b are determined based on the last subproblem solution,
which is also the initial iterate u0 for the next subproblem evaluation. Hence, the RHS can be
written as b|u0 , where the vertical line expresses the implicit dependence through the other
subproblem.
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Flow solver

convergedf = false

i = 0

do

assemble A(ui)

rif = b|u0 −A(ui)ui

ui+1 = A(ui) \b|u0

i += 1

until
∥∥ri−1

f

∥∥ < εf
if i == 1 then

convergedf = true

end if

u0 = ui

Structural solver

convergeds = false

i = 0

do

assemble A(ui)

ris = b|u0 −A(ui)ui

ui+1 = A(ui) \b|u0

i += 1

until ∥ri−1
s ∥ < εs

if i == 1 then

convergeds = true

end if

u0 = ui

if convergedf and convergedsIQN

Coupling loop

Next time step

then

else

Figure 2: Illustration of the new coupling criterion [11] with three iteration loops: the coupling
loop and an internal iteration loop in each subproblem. Note that the assembly is done with
the previous solution. The notation A(ui) \b|u0 is symbolic and refers to solving the system.
Similarly,

∥∥ri−1
p

∥∥ < εp (p = f, s) is a notation for the convergence criterion of the solvers.

Considering the subproblem residual rip in subproblem iteration i

rip = b|u0 −A(ui)ui for i = 0, 1, . . . , (3)

it becomes clear that only the initial subproblem residual of the solver call r0p considers left-
and right-hand sides referring to the same solution field u0. For the subsequent subproblem
iterations (i > 0), the left-hand side A(ui)ui is updated, while the RHS stays unchanged and
refers to the outdated u0. The updated RHS b|ui would only become available after solving the
other subproblem using ui as boundary condition.

This finding motivates the use of r0f and r0s to assess the convergence of the coupling loop:
the coupling is considered converged when both solvers fulfill their convergence criteria in the
first subproblem iteration: ∥∥r0f∥∥ < εf and

∥∥r0s∥∥ < εs. (4)

In other words, the change in the RHS of the subproblems between two coupling iterations has
to be so small that the solvers immediately converge.
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An additional benefit of the new criterion is that it is not required to fully converge the
solvers in each call. Instead, a maximal number of subproblem iterations nmax,p (p = f, s) can
be defined for each solver. It has been shown that this can reduce the run time of the partitioned
simulation, while maintaining the accuracy [11]. Doing so with the typical convergence criteria is
not possible without additional checks, since there is no guarantee that the solvers are converged
once the coupling converges.

In Fig. 2, the residual is determined before the system is solved. This means that one
more update is performed even when the subproblem has converged. While this is not strictly
necessary, it is often impossible to change in black-box solvers. Moreover, by omitting this
update, the accuracy of the coupled simulation would be determined by the tolerances that is
satisfied first, rather than the one that is satisfied last.

The reasoning in this section in principle only holds when the interface data is not changed
between the solvers, while in practice, this is often done as part of relaxation or a quasi-Newton
update. However, the update increment of the interface data is proportional to the interface
residual and therefore vanishes upon convergence as is also confirmed in [11]. The effect of the
update can therefore safely be neglected.

3.2 Implementation

To implement the new criterion, it is often simplest to check after each solver call whether
the solver has converged and whether only one subproblem iteration was run. Alternatively,
one could start with a solver call allowing only one subproblem iteration and check its conver-
gence. If the solver did not converge, another solver call is made with a maximal number of
subproblem iterations nmax,p − 1. The latter approach was followed for the two solvers used
in this work: OpenFOAM 11 [12] for the fluid and the Sturctural Mechanics Application of
Kratos Multiphysics 9.4 [13] for the structure. The Python code CoCoNuT (GitHub repository
pyfsi/coconut) establishes the coupling and the application of the new criterion.

Since the solvers are considered black boxes, their solution procedures are not modified. For
instance, OpenFOAM is a finite-volume solver that uses a segregated pressure-velocity coupling,
meaning it sequentially solves for velocity and pressure. Therefore, a flow solver call is considered
converged if both the initial residual of the velocity equation and the initial residual of the
pressure equation calculated with the updated velocity are less than εf . Once this occurs, the
solver performs a final iteration, where relaxation of the equations can be turned off. In this
work, no relaxation factors are applied in order not to obscure the effects of interest, but the
final flow solver iteration is still run. As a consequence, when the initial residual converges, still
two subproblem iterations are performed.

4 RESULTS AND DISCUSSION

4.1 Test cases

Two test cases are considered. The first is a three-dimensional flexible tube enclosing an
incompressible fluid [14], shown in Fig. 3. In this case, a pressure pulse at the inlet causes a
wave to travel through the tube at a finite velocity. The second is a two-dimensional cavity
with a flexible bottom [15, 16], shown in Fig. 4. By applying a periodically varying horizontal
velocity at the top, the flexible membrane starts to oscillate.
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Figure 3: Illustration of the flexible tube at t = 0.004 s.
The upper half shows the fluid pressure field in Pa and
the lower part illustrates shell elements of the structure.

Figure 4: Illustration of the lid-
driven cavity case at t = 65 s, show-
ing the deformation of the flexible
bottom and the corresponding veloc-
ity field in m/s.

The material parameters and boundary conditions are adopted from literature [1, 15]. The
discretizations of the subproblems are identical to those of the FV-FE framework described in
Spenke and Delaissé et al. [11], except for the flow domain of the lid-driven cavity which has
been refined with a factor three in both the vertical and horizontal direction. Here OpenFOAM
is used as the flow solver instead of Ansys Fluent. Because of the segregated pressure-velocity
coupling in OpenFOAM, the time step of the lid-driven cavity case had to be decreased with
a factor ten to 0.01 s. To limit the computational time of the study presented hereafter, the
lid-driven cavity case is always restarted from a saved state at t = 60 s and run up to t = 70 s.

The coupling algorithm for these FSI problems is IQN-ILSM [17] with reuse as surrogate
model. For the flexible tube case, the last ten time steps are reused (q = 10) and none (q = 0)
for the lid-driven cavity case. No filtering of linear dependencies in the residual data is applied,
as this is not really required for IQN-ILSM, as opposed to IQN-ILS where it is important for
cases with reuse.

4.2 Parameter study

To gain insight in the effects of the solver and coupling tolerances as well as to study the
performance of the new criterion, a parameter study is performed for each test case, visualized in
Figs. 5 and 6. Two tolerance levels are selected for each solver, resulting in four combinations of
flow and structural solver tolerances, each indicated by its own color. Several different coupling
criteria are examined:

� First, a series of coupling tolerances εc are chosen which are used to determine convergence
of the coupling loop as explained in Section 2.

� Further, another set of runs uses the new criterion.

� In order to compare these two criteria, a third type of runs is performed, for which the
coupling tolerance εc has been chosen in such a way that the norm of the coupling residual
at the end of each time step is approximately equal to that of the new criterion. This will
allow to compare the performance in terms of accuracy and time. Since these runs are not
obtainable without running the new criterion first, their colors are faded.
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� Next, another set of runs is performed where the new criterion is applied but now also
limiting the number of subproblem iterations.

� Finally, a reference run (purple) is performed with strict solver and tolerance settings
which will allow to evaluate the error on the interface, as will be detailed below.

For each bar in these plots, the run was performed three times and the mean is reported.
The error bars in black representing one standard error of the mean provide a measure for the
spread.

4.2.1 Flexible tube

Fig. 5 gives an overview of the parameter study for the flexible tube case. Fig. 5a shows the
average norm of the coupling residual ∥r∥ at the end of each time step. This value is lower than
the prescribed tolerance εc which sets the upper limit for each time step. Here, the obtained
value is each time about half of the prescribed value. The coupling tolerances εc = 10−10m
and εc = 10−3m are not shown because the simulation diverges for all four solver tolerance
combinations. For the reference run, a coupling tolerance of εc = 10−13m is set and the solver
tolerances for the flow and structure are εf = 10−8 and εs = 10−12. Also the tolerances for the
solution of the subsystems of the flow solver (e.g., velocity and pressure equations) have been
decreased. The figure clearly illustrates that with the new criterion, the final coupling residual
is determined by the choice of solver tolerances, independent of the number of subproblem
iterations per solver call.

In Fig. 5b, the effect on calculation time is reported. As expected, a stricter coupling tolerance
generally leads to a higher computational cost. However, for the loosest tolerance (εc = 10−4),
the run time increases for the two runs with the strict structural solver tolerance (orange and
red). In that regard, it is important to note that the structural part of the calculation for this test
case takes about twice as much time as the flow part, and therefore, the value of the structural
tolerance will have a larger effect. Comparing the new criterion to the use of a coupling tolerance
(faded color) 11235813 reveals that the efficiency in terms of run time is comparable, but the
new criterion is on average a 8% slower. However, if the number of subproblem iterations is
limited, the new criterion is on average 25% faster for the runs with the strictest structural
solver tolerance (orange and red).

Furthermore, Figs. 5c and 5d show the accuracy in terms of both interface displacement x
and interface forces y. This error is calculated by comparing the interface solution with the
reference run. The average norm of these difference is divided by the number of degrees of
freedom on the interface n to result in a root-mean-square error (RMSE). For example, for the
displacement, this value is given by

RMSEx =
1

m

∑
m

∥x− xref∥√
n

, (5)

where m is the number of time steps. The trends and the number of orders of magnitudes that
are spanned in these figures are very close to those in Fig. 5a.

Figs. 5e and 5f visualize the trade-off between accuracy and computational cost by plotting all
runs with respect to these criteria. The markers with a black outline are located on the Pareto
front [18], which means that they are optimal in the sense that there are no runs better in
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(a) Norm of the coupling residual. (b) Run time.

(c) RMSE of the interface displacement. (d) RMSE of the interface forces.

(e) Pareto front of displacement error and time. (f) Pareto front of forces error and time.

Figure 5: Parameter study for the flexible tube case. The error bars in black represent one
standard error of the mean. In e and f, the area indicated in gray is the dominated region
bounded by the Pareto front and the faded colors refer to the runs with a coupling tolerance
chosen to match the new criterion.
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terms of both accuracy and computational cost. Conversely, for the other so-called dominated
runs, another run exists that performs better in both criteria. Clearly, the runs with strict
structural tolerance perform worse. Nevertheless, with new criterion and by limiting the number
of subproblem iterations, the runs with these solver settings are on or close to the Pareto front.

4.2.2 Lid-driven cavity

In Fig. 6, the parameter study for the lid-driven cavity case is presented. Figs. 6a and 6b show
similar trends as the flexible tube case, but the optimal coupling tolerance is now εc = 10−6m,
which is the second most strict coupling tolerance for which the calculation converged. For the
coupling tolerance εc = 10−7m, the runs did not consistently converge. Here, the new criterion
does not lead to a speed-up, not even if the number of subproblem iterations is limited. The
remaining advantage of the new criterion is that the user has to set one fewer tolerance.

By comparing with a reference run, root-mean-square errors are again calculated with Eq. (5).
This reference run uses solver tolerances for the flow and structure equal to εf = 10−6 and
εs = 10−12. While the behavior of the RMSEy (Fig. 6d) is once more very similar to the
coupling residual, this is not the case for RMSEx (Fig. 6c).

Furthermore, Figs. 6e and 6f plot the trade-off between the computational cost and the
accuracy. For this test case, there is no clear set of solver tolerances that performs best, but as
for the flexible tube case, the runs with new convergence criterion are on or close to the Pareto
front.

4.2.3 Remarks

The new criterion, Eq. (4), poses a condition for each solver. The solver tolerances can be
balanced by choosing them such that both conditions are met in approximately the same coupling
iteration (orange color). However, this did not lead to visible performance improvements.

The number of subproblem iterations can be optimized to achieve minimal run time for each
set of solver tolerances when using the new criterion [11]. While doing so might result in a larger
speed-up, this is postponed to future work.

5 CONCLUSIONS

Typically, partitioned FSI simulations require choosing three tolerances: besides the flow
and structural tolerance needed for the subproblems, an additional tolerance is set for the
coupling. The choice of this tolerance is not straightforward. Moreover, these three tolerances
are not independent and have a significant impact on the accuracy and computational cost of
the simulations.

In this work a new coupling criterion is discussed which avoids this additional tolerance and
instead assesses the convergence of the coupling based on the convergence of the subproblems.
This approach provides the additional benefit that the number of subproblem iterations can be
limited which can reduce the run time.

With respect to performance, general conclusions are difficult to draw, since the relation
between the tolerances are very case-dependent and depend on many factors, such as the com-
puting infrastructure. However, for the two cases examined, the new criterion with limitation
of the number of subproblem iterations resulted in (close to) optimal settings.
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(a) Norm of the coupling residual. (b) Run time.

(c) RMSE of the interface displacement. (d) RMSE of the interface forces.

(e) Pareto front of displacement error and time. (f) Pareto front of forces error and time.

Figure 6: Parameter study for the lid-driven cavity case. The error bars in black represent
one standard error of the mean. In e and f, the area indicated in gray is the dominated region
bounded by the Pareto front and the faded colors refer to the runs with a coupling tolerance
chosen to match the new criterion. For the coupling tolerance εc = 10−7m, some runs are
missing since they did not consistently converge. Also the red run with limited number of
subproblem iteration and the reference run diverged at times.
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Nicolas Delaissé, Thomas Spenke, Norbert Hosters and Joris Degroote

REFERENCES

[1] J. Degroote, R. Haelterman, S. Annerel, P. Bruggeman, and J. Vierendeels, “Performance of par-
titioned procedures in fluid-structure interaction,” Comput Struct, vol. 88, no. 7–8, pp. 446–457,
2010. doi: 10.1016/j.compstruc.2009.12.006.
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