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Abstract. Steger-Warming (SW) [1] and Lax-Friedrich-type (LF) [2] flux vector splitting meth-
ods are used extensively by shock capturing WENO schemes in varieties of compressible flow
simulations. Due to the less dissipation, the SW method is preferred in flow calculations that
require fine scale structures such as direct numerical simulation of turbulence. However, this pa-
per shows that, even if the characteristic-wise WENO scheme is used, the SW method may still
exhibit some oscillations near contact discontinuities, while the LF method does not. Analysis
similar to the reference [3] shows that, using the SW method may make the characteristic-
wise WENO scheme become close the component-wise WENO scheme near subsonic contact
discontinuities. Based on that, an improved flux vector splitting method, which adjusts the
eigenvalues of the flux vector splitting in the characteristic-wise WENO procedure, is pro-
posed to obtain the low-dissipation property and prevent contact discontinuity oscillations at
the same time. Numerical experiments are performed to validate and evaluate the new method.
Numerical results show that the proposed method keeps the non-oscillatory flow field near dis-
continuities as LF method and also avoids smearing out other flow regions, similar to the SW
method.

1 INTRODUCTION

For the Euler systems of the gas dynamics, Jiang and Shu [4] proposed the characteristic-
wise WENO scheme. The flux is first split into positive and negative parts, and then the local
characteristic fields (is defined as the production of the left-eigenvectors matrix of the Jacobian
matrix and the split flux) at each interface (for example, at the interface j + 1/2, the local
characteristic fields for a 5th-order WENO scheme are needed on the stencil S = (j − 2, j −
1, ..., j + 3)) are calculated. The characteristic-wise WENO reconstructions at the interface
j+1/2 are obtained by using the scalar WENO scheme for each component of the characteristic
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fields. Finally, by multiplying with the right-eigenvectors matrix, we get the numerical fluxes
for the Euler systems.

There are many methods were proposed for spitting the flux vector. The Steger-Warming flux
vector splitting (SW-FVS) method [1] is one of the popular methods and has been extensively
applied in computational fluid dynamics. However, for some extreme cases, the high order SW-
FVS method may generate some issues, such as numerical oscillations and unstability. While,
the Lax-Friedrich flux vector splitting (LF-FVS) method [2] utilized the maximum eigenvalue
of the Jacobian matrix has simple form and strong robustness and hence has also been used in
many studies. Compared with the SW-FVS method, the LF-FVS method has been demonstrated
to be more dissipative.

For resolving the contact discontinuities, Johnsen [5] analyzed the reason of the velocity and
pressure oscillations caused by the LF solver with component-wise WENO reconstruction, and
proposed to use the reconstruction of the primitive variables or the reconstruction of the charac-
teristic variables to suppress this kind of oscillations. He et al.[5] analyzed the component-wise
WENO-FVS method, and proposed to combine the global LF-FVS (GLF-FVS) method with a
consistent discretization between different equations to reduce the velocity and pressure oscil-
lations. Although the characteristic-wise WENO reconstruction based the FVS methods were
developed earlier, there is seldom analysis about resolving the contact discontinuity problem.

In this paper, we analyze the characteristic-wise WENO scheme of the FVS (SW and GLF)
methods. It shows that, for the case of subsonic contact discontinuity, the characteristic-wise
WENO scheme based on the SW-FVS method becomes close to the component-wise WENO
scheme and produces oscillatory distribution of density. Then, we propose a characteristic-wise
WENO reconstruction based on the hybrid FVS method of SW-FVS and GLF-FVS. That is,
in the first step of the characteristic-wise reconstruction, we identify if the global stencil (for
example, the global stencil S = (j − 2, j − 1, ..., j + 3) is used for the 5th-order WENO
scheme) includes the density discontinuity in the subsonic region, then the GLF-FVS method is
used to get the split flux vector just for calculating the local characteristic fields on this stencil.
And SW-FVS method is used for other stencils. The hybrid method for the characteristic-wise
reconstruction can keep the ENO property as that of GLF-FVS method and has low-dissipation
in smooth regions as that of SW-FVS method.

2 NUMERICAL ALGORITHM

The one-dimensional Euler equations are taken as an example to describe the WENO schemes
for the governing equations of gas dynamics,

∂U

∂t
+

∂F

∂x
= 0, (1)

U =

 ρ
ρu
E

 ,F =

 ρu
ρu2 + p
(E + p)u

 , (2)

2
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and the equation of state is

p = (γ − 1)

(
E − 1

2
ρu2

)
, (3)

where ρ, u, E and p are the density, velocity, total energy and pressure, respectively, γ is the
ratio of specific heat.

According to the hyperbolic character of the Euler system, there are

F = AU,A =
∂F

∂U
,A = RΛL, (4)

where, Λ is the diagonal matrix of the eigenvalues of the Jacobian matrix A,Λ = diag (λ1, λ2, λ3) =
diag(u − c, u, u + c), c =

√
γp/ρ is the speed of sound, and R and L are the matrices of the

right and left eigenvectors, respectively. For convenience, here we give the formulations of the
matrices A,R and L,

A =

 0 1 0
γ−3
2
u2 (3− γ)u γ − 1

γ−1
2
u3 − uH H − (γ − 1)u2 γu

 ,R =

 1 1 1
u− c u u+ c
H − uc 1

2
u2 H + uc

 ,

L = R−1 =

 1
2

(
γ−1
2c2

u2 + u
c

)
−1

2

(
γ−1
c2

u+ 1
c

)
γ−1
2c2

1− γ−1
2c2

u2 γ−1
c2

u −γ−1
c2

1
2

(
γ−1
2c2

u2 − u
c

)
−1

2

(
γ−1
c2

u− 1
c

)
γ−1
2c2

 ,

(5)

with the enthalpy H = (E + p)/ρ.

2.1 The flux vector splitting methods for Euler equations

The flux F can be split into positive and negative parts as F = F+ + F−,

F± = A±U, A± = RΛ±L, (6)

where the eigenvalues matrices Λ+ = diag
(
λ+
1 , λ

+
2 , λ

+
3

)
and Λ− = diag

(
λ−
1 , λ

−
2 , λ

−
3

)
with

λ+
k ≥ 0, λ−

k ≤ 0(k = 1, 2, 3), and Λ = Λ+ + Λ−. The generalized formulations of the split
fluxes can be written as

F± =

 f±
1

f±
2

f±
3

 =
ρ

2γ

 λ±
1 + 2(γ − 1)λ±

2 + λ±
3

(u− c)λ±
1 + 2u(γ − 1)λ±

2 + (u+ c)λ±
3

(H − uc)λ±
1 + u2(γ − 1)λ±

2 + (H + uc)λ±
3

 . (7)

There are many methods to carry out Eq. (7). For example, in the Steger-Warming (SW) flux
vector splitting method [1], the eigenvalues are calculated as

λ±
k =

1

2
(λk ± |λk|) , (8)
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the global Lax-Friedrichs (GLF) splitting method [2] takes

λ±
k =

1

2
(λk ± α) , (9)

where α is the maximal eigenvalue over the whole computational domain. Clearly, the global
Lax-Friedrichs splitting method has a simple form as

F± =

 f±
1

f±
2

f±
3

 =
1

2

 ρu± αρ
ρu2 + p± αρu
(E + p)u± αE

 . (10)

2.2 The WENO schemes

The semi-discrete form of Eq. (1) on the equally spaced grid ( with ∆x = xj+1 − xj) can be
written as

∂U

∂t
= −

Fj+1/2 − Fj−1/2

∆x
, (11)

where Fj+1/2 = F+
j+1/2 + F−

j+1/2 is the numerical flux at cell interface j + 1/2.
For simplicity, the superscript ± is dropped. A scalar flux f is used to briefly introduce the

WENO schemes. The general numerical flux of a fifth-order WENO [4] scheme can be written
as

fj+1/2 =
2∑

k=0

ωkqk, (12)

where qk is the third-order flux on the sub-stencil Sk = (xi+k−2, xi+k−1, . . . , xi+k) and given by
q0 =

1
3
fj−2 − 7

6
fj−1 +

11
6
fj,

q1 = −1
6
fj−1 +

5
6
fj +

1
3
fj+1,

q2 =
1
3
fj +

5
6
fj+1 − 1

6
fj+2.

(13)

The weight ωk of WENO-JS scheme [4] is calculated as

ωk =
αk

α0 + α1 + α2

, αk =
ck

(βk + ε)2
, k = 0, 1, 2, (14)

where βk is the local smoothness indicator (LSI) used to measure the relative smoothness of
a solution on the substencil Sk. Constants c0 = 0.1, c1 = 0.6 and c2 = 0.3 are the optimal
weights, which generate the fifth-order upstream scheme. The parameter ε is a positive real
number introduced to avoid the denominator becoming zero and ε = 10−6 is suggested by
Jiang and Shu [4]. The classical local smoothness indicator (LSI) proposed by Jiang and Shu is
given by

βk =
r−1∑
l=1

∫ xi+1/2

xi−1/2

(∆x)2l−1
(
q
(n)
k

)2

dx, (15)
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where q
(n)
k is the n th order derivative of qk(x), and qk(x) is the interpolation polynomial on

sub-stencil Sk. For the fifth-order WENO scheme (r = 3), Eq. (15) gives
β0 =

13
12
(fj−2 − 2fj−1 + fj)

2 + 1
4
(fj−2 − 4fj−1 + 3fj)

2 ,

β1 =
13
12
(fj−1 − 2fj + fj+1)

2 + 1
4
(fj−1 − fj+1)

2 ,

β2 =
13
12
(fj − 2fj+1 + fj+2)

2 + 1
4
(3fj − 4fj+1 + fj+2)

2 .

(16)

There are many methods proposed [6, 7, 8] to improve the performance of WENO-JS scheme.
For example, Borgers et al. [7] introduced the global smoothness indicator τ5 to calculate the
weights and the proposed WENO-Z scheme has less dissipation and higher resolution than
WENO-JS scheme. The un-normalized weights αz

k of WENO-Z scheme are calculated as

αz
k = ck

(
1 +

τ5
βk + ε

)
, τ5 = |β0 − β2| , k = 0, 1, 2. (17)

The global smoothness indicator τ5 has the following properties [9]:
(1) For a stencil S5 = (xj−2, xj−1, . . . , xj+2), if S5 does not contain discontinuities, then

τ5 ≪ βk for k = 0, 1, 2;
(2) If the solution is continuous at some of the stencil S3

k , but discontinuous in the whole
stencil S5, then for the smooth stencils, βk ≪ τ5;

(3) τ5 ⩽ max (β0, β1, β2).
Following the above properties, Shen and Zha [9] proposed a detecting method for a non-

smooth stencil, that is:
If τ5 > min (β0, β1, β2), then S5 is a non-smooth stencil.

2.3 The analysis of characteristic-wise WENO reconstruction based on FVS

If a characteristic-wise reconstruction method is used to reconstruct F+
j+1/2 and F−

j+1/2, all
the characteristic variables of F+

j and F−
j on the used global stencil are first calculated. For

brevity, only the reconstruction of F+
j+1/2 (the five-point global stencil S5 = (j−2, j−1, ..., j+

2) is used for a fifth-order WENO reconstruction) is discussed. Noted that, for F−
j+1/2, point

j+3 is needed. The local characteristic variables F+
i (i = j− 2, ..., j+2) on the stencil S5 are

F+
i = [ f1, f2, f3 ]Ti = L̂j+1/2F

+
i =


λ∗p

2ĉ2
− λ∗∗ρc

2γĉ

−λ∗p

ĉ2
+ f+

1

λ∗p

2ĉ2
+

λ∗∗ρc

2γĉ


i

, (18)

where f+
1 is the split flux of f1 in Eq. (7), and

λ∗ =
λ+
3 + λ+

1

2
, λ∗∗ =

λ+
3 − λ+

1

2
. (19)
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The values (̂·) in the matrix L̂j+1/2 are calculated by a certain averaged method of nodes j
and j + 1 (in this paper, the simple mean is used). If a fifth-order WENO scheme is used to
reconstruct the characteristic variables, the reconstructed values can be calculated as

F+
j+1/2 =



2∑
k=0

[ωk(f1)Qk(f1)]

2∑
k=0

[ωk(f2)Qk(f2)]

2∑
k=0

[ωk(f3)Qk(f3)]

 =



1

2

2∑
k=0

[ωk(f1)Qk(
λ∗p

ĉ2
)]− 1

2

2∑
k=0

[ωk(f1)Qk(
λ∗∗ρc

γĉ
)]

−
2∑

k=0

[ωk(f2)Qk(
λ∗p

ĉ2
)] +

2∑
k=0

[ωk(f2)Qk(f
+
1 )]

1

2

2∑
k=0

[ωk(f3)Qk(
λ∗p

ĉ2
)] +

1

2

2∑
k=0

[ωk(f3)Qk(
λ∗∗ρc

γĉ
)]


,

(20)
where ωk(fl) and Qk(fl) (l = 1, 2, 3) are the weights and linear candidate reconstructions cal-
culated by using the characteristic variable fl on the sub-stencil Sk = (j − 2 + k, ..., j + k),
respectively.

The final numerical flux are obtained by

F+
j+1/2 = R̂j+1/2F+

j+1/2. (21)

2.3.1 Different performances between SW and LF-type splitting methods

Without loss of generality, suppose that a contact discontinuity is located between the nodes
j + 1 and j + 2 (see Fig. 1), and the velocity and pressure can be set as

u = uo, p = po. (22)

Figure 1: Stencil with a contact at the third sub-stencil

Combining with c2i =
γpi
ρi

, the expressions for the characteristic variables in Eq. (18) cal-

culated by using the different flux vector splitting methods at different Mach numbers (M ) are
listed in Table 1. From the table, the following information can be obtained:

(1) Case 1 : |M | > 1

6
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For both the SW-FVS and GLF-FVS methods, the characteristic variables f1 and f3 are con-
stants on the global stencil S5 shown in Fig. 1, hence the weights calculated by them are the
ideal weights. While, the weights calculated by f2 give different weight distributions. For con-
venience, we give these approximate weights in Table 2. Therefore, Eq. (20) can be written
as

F+
j+1/2 = R̂j+1/2F+

j+1/2 =
2∑

k=0

ω∗
kQk(F

+) + ξSj+1/2, (23)

where

ω∗
k =

ωk(f1) + ωk(f3)

2
, ξ = (1, u, u2/2)T , Sj+1/2 =

2∑
k=0

[(ω∗
k − ωk(f2))Qk(f2)], (24)

and
|ω∗

k − ωk(f2)| = O(1), (k = 0, 1, 2). (25)

The second term ξSj+1/2 of the right-hand side of Eq. (23) can be regarded as a modified term
for the WENO reconstructions of the split flux F+.

Eq. (25) shows that, the modified term ξSj+1/2 cannot be neglected, and this is the actual dif-
ference between the characteristic-wise reconstruction and the component-wise reconstruction.

(2) Case 2 : |M | < 1
For the SW-FVS method, all the characteristic variables fl (l = 1, 2, 3) are discontinuous

across the contact discontinuity, and the approximate weights (also see Table 2) have the same
magnitude of order, that is

|ωk(fm)− ωk(fn)| = O(ϵ), (k,m, n = 0, 1, 2). (26)

Hence, the effects of the modified term ξSj +1/2 plays a negligible role on the reconstruction,
and the characteristic-wise reconstruction becomes close to the component-wise flux recon-
struction

F+
j+1/2 =

2∑
k=0

ω∗
kQk(F

+) +O(ϵ). (27)

On the other hand, the GLF-FVS methods still can keep the relationship of Eq. (25).

Table 1: The variables near contact discontinuities.

Splitting method M λ∗ λ∗∗ f1 f2 f3

SW

M > 1 u c
up

2ĉ2
− p

2ĉ

−up

ĉ2
+ f+

1

up

2ĉ2
+

p

2ĉ

0 < |M | < 1
u+ c

2

u+ c

2

(u+ c)p

4ĉ2
− ρuc

4γĉ
− p

4ĉ

(u+ c)p

2ĉ2
+ f+

1

(u+ c)p

4ĉ2
+

ρuc

4γĉ
+

p

4ĉ
M < −1 0 0 0 f+

1 0

GLF M ∈ R
u+ α

2

c

2

(u+ α)p

4ĉ2
− p

4ĉ

−(u+ α)p

2ĉ2
+ f+

1

(u+ α)p

4ĉ2
+

p

4ĉ

7
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Table 2: The approximate weights of the substencils in Fig. 1.

Splitting method M k ωk(f1) ωk(f2) ωk(f3)

SW

|M | > 1
0 1/10 1/7 1/10
1 6/10 6/7 6/10
2 3/10 0 3/10

|M | < 1
0 1/7 1/7 1/7
1 6/7 6/7 6/7
2 0 0 10

GLF M ∈ R
0 1/10 1/7 1/10
1 6/10 6/7 6/10
2 3/10 0 3/10

2.3.2 A new characteristic-wise WENO scheme based on a hybrid FVS method

The analysis of Sec. 2.3.1 shows that, for the case of subsonic contact discontinuities, even
the characteristic-wise WENO scheme based on the SW-FVS method may lose the local prop-
erty of characteristic-wise (it performs similarly as the component-wise flux reconstruction),
and hence the method may results in spurious numerical oscillations near the subsonic contact
discontinuities.

To keep the local property of characteristic-wise for the subsonic contact discontinuities
and obtain the low dissipative solution in other regions, we propose a new characteristic-wise
WENO scheme based on a hybrid FVS method.

First, we detect the trouble stencil (of discontinuous and subsonic) by combining the τ5
detecting method (τ5 > min(β0, β1, β2)) [9] and the Mach number, then for the characteristic-
wise WENO reconstruction on this stencil (for example, S5=(j − 2, j − 1, ..., j + 2)), the split
fluxes (FGLF,±

j−2 , ..., FGLF,±
j+2 ) of GLF-FVS are used to obtain the final numerical flux Fj±1/2. For

the other normal stencils, the split fluxes of SW-FVS are used
For convenience, the new method (take F+

j+1/2 as an example, and the stencil for a fifth order
WENO scheme is S5 = (j − 2, .., ..j + 2)) is briefly given in Algorithm 1.

8
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Algorithm 1 Algorithm
DO j=1 to N

1. Detecting and flux vector splitting
if τ5 > min(β0, β1, β2) (calculated by desity) and |Mj+1/2| < 1

for j − 2 ≤ i ≤ j + 2
F+

i = L̂j+1/2F
GLF,+
i ,

end for
else

for j − 2 ≤ i ≤ j + 2
F+

i = L̂j+1/2F
SW,+
i ,

end for
end if

2. WENO reconstruction and the final numerical flux

F+
j+1/2 =



2∑
k=0

[ωk(f1)Qk(f1)]

2∑
k=0

[ωk(f2)Qk(f2)]

2∑
k=0

[ωk(f3)Qk(f3)]

,

F+
j+1/2 = R̂j+1/2F+

j+1/2.
END DO

3 NUMERICAL EXAMPLES

In this paper, the 3th order Runge–Kutta-type method [10] is used for the time marching.
In the figures, the results of the component-wise WENO scheme directly weighting the split
fluxes of the GLF-FVS method are denoted as CP; those of the characteristic-wise WENO
scheme based on three different flux splitting methods are denoted as GLF, SW, and Present,
respectively.

3.1 The Sod-type problems

The initial conditions of a pair of Sod-type problems [11, 12] are given by:

Case 1 : (ρ, u, p) =

{
(1, 0, 1), 0 ≤ x ≤ 0.5,

(0.125, 0, 0.1), 0 < x ≤ 1;

Case 2 : (ρ, u, p) =

{
(1, 1.25, 1), 0 ≤ x ≤ 0.3,

(0.125, 0, 0.1), 0.3 < x ≤ 1.

The final solution times are t = 0.14 and 0.2 for the two sets of initial values, respectively.
The zero gradient boundary conditions are used. The solutions with the grid of N = 200 are
given in Figs. 2 and 3.

9
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(1) In the both cases, the component-wise WENO scheme (the directly weighting for the
split flux of the GLF method, denote as CP in the figures) generates oscillations. (2) The
characteristic-wise WENO scheme based on the SW-FVS method (denoted as SW in the fig-
ures) generates overshoots in the subsonic case (|M | < 1, Fig.3) and does not in the supersonic
case (|M | > 1, Fig.4), that is in agreement with the above analysis in Sec. 2.3.1. (3) Both the
characteristic-wise WENO scheme of GLF-FVS and the prerent hybrid FVS (denoted as GLF
and present) do not generate spurious solutions, the present method is less dissipative than GLF.
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Figure 2: Solutions of the Sod problem (Case 1).
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Figure 3: Solutions of the Sod problem (Case 2).
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3.2 The Lax-type problems

The initial conditions of a pair of Lax-type problems [13, 12] are given by:

Case 1 : (ρ, u, p) =

{
(0.445, 0.698, 3.528), −1 ≤ x ≤ 0,

(0.5, 0, 0.571), 0 < x ≤ 1;

Case 2 : (ρ, u, p) =

{
(0.445, 6.98, 3.528), −1 ≤ x ≤ −0.6,

(0.5, 0, 0.571), −0.6 < x ≤ 1.

The final solution times are t = 0.26 and 0.245 for the two sets of initial values, respectively.
The zero gradient boundary conditions are used. The solutions with the grid of N = 300 are given
in Figs. 4 and 5, which include the subsonic and supersonic contact discontinuity respectively.
As the previous conclusions, the present method can prevent oscillations and shapely capture
contact discontinuities.
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Figure 4: Solutions of the Lax problem (Case 1).
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Figure 5: Solutions of the Lax problem (Case 2).

3.3 The Shu-Osher problem

The initial conditions of the Shu-Osher problem [2] are

(ρ, u, p) =

{
(3.857143, 2.629369, 31/3), −5 ≤ x ≤ −4,

(1 + 0.2 sin(5x), 0, 1), −4 < x ≤ 5.

The final solution time is t = 1.8 and the zero gradient boundary conditions are used. The
solutions are given in Figs. 6 and 7. It can be seen that, CP method overshoots as grid refining.
The present, as the SW method, has higher resolution and less dissipation properties in smooth
regions.
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Figure 6: Solutions of the Shu-Osher problem with N = 300.
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Figure 7: Solutions of the Shu-Osher problem with N = 400.

4 CONCLUSIONS

In this paper, the reason of the oscillation near the subsonic contact discontinuities caused
by the characteristic-wise WENO reconstruction based on the SW-FVS method is analyzed.
Then a characteristic-wise WENO reconstruction based on the hybrid FVS method is proposed.
Numerical results are presented to show the new method can effectively suppress the oscillation
near the subsonic contact discontinuities and also keep the low-dissipation and high-resolution
as that of SW-FVS in other regions .
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