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Summary. This study investigates the application of the quadratic manifold method for model
order reduction of geometrically nonlinear structures with friction contact. Quadratic mapping
has recently shown its ability to accurately capture the vibrations of a slender structure with
geometric nonlinearity. Component Mode Synthesis methods are also well-established reduction
approaches for structures with local nonlinearity. These methods allow keeping the contact de-
grees of freedom (DoFs) in the reduced vector of unknowns and incorporate the corresponding
static modes into the reduction basis. In this research, the quadratic manifold method is imple-
mented while contact DoFs are kept in the generalized coordinate vector. So, the manifold is
tangent to the subspace spanned by the linear vibration and static modes, and the manifold’s
curvature is determined by the static derivatives of the linear vibration modes. The inclusion
of the static modes enhances the representation of the behavior of a structure under nonlinear
friction forces. The proposed reduction approach is evaluated using a simplified model of a
cantilever vibrating beam undergoing rubbing against a wall. The reduced model maintains ac-
curacy while reducing the number of the generalized coordinates compared to a linear manifold,
resulting in less online computation time. However, the frequent updating of the projection
basis at each iteration imposes an extra online computational burden.

1 INTRODUCTION

The relative displacements between the structural components cause friction contacts in many
engineering applications like joints [1] and friction dampers [2]. The resulting nonlinear forces
contribute significantly to the dynamics of structures. Furthermore, the increasing demand for
lighter, more flexible structures is leading to the design of structures more prone to geometric
nonlinearity [3]. This increases the likelihood of cases undergoing these two types of nonlineari-
ties simultaneously [4, 5, 6]. For example, aero-engine blades can exhibit both large deformations
and rubbing phenomena between the blade and the casing [7]. These nonlinearities lead to com-
plex behavior, while high-fidelity FE models are needed to model these structures accurately.
However, the simulation of the dynamic behavior of these structures is very time-consuming.
This paper aims to apply model order reduction techniques that allow accurate prediction of
the structure behavior within an affordable computational time.

Component Mode Synthesis (CMS) methods [8, 9] are extensively used for the model order
reduction of structures with friction contact [10, 11]. These techniques allow for keeping the
DoFs subjected to contact forces (contact DoFs) in the reduced vector of unknowns. This
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feature removes the requirement for back-and-forth transfer between the reduced and full space
in order to have the nonlinear contact forces, and it also makes it possible to compute the
nonlinear contact forces accurately. The CMS methods have been enhanced in several studies
[12, 13, 15, 14] to capture also the effect of geometric nonlinearity. In these studies, the modal
derivatives [16] are added linearly to the CMS basis, which consists of the linear normal modes
and a set of static deformations.

The addition of modal derivatives using a quadratic function is proposed in [17, 18] and
later studied in [19, 20, 21] for the substructuring of geometrically nonlinear structures. Here,
this quadratic mapping method is implemented for the model order reduction of a geometrically
nonlinear structure with friction contact such that contact DoFs are kept in the reduced vector of
unknowns. The aim is to examine the performance of this reduced model and also to investigate
the effect of friction contact on the nonlinear relation between geometrically coupled modes.

This paper is organized as follows: Sec. 2 starts with the reduction of the governing equations.
Then, the linear and nonlinear mapping functions and parameters are explained in Secs. 2.1 and
2.2. Finally, the model used to study the reduced model is introduced in the Numerical Analysis
Sec. 3 along with the obtained results.

2 METHODOLOGY

The nonlinear dynamics of a structure with elastic material undergoing large displacement/rotation
and having frictional contact excited by a periodic external force is governed by the second-order
differential equations:

Mü(t) + Cu̇(t) + fnl(u(t)) = fe(t) + fc(u̇,u, t) (1)

where M ∈ RN×N and C ∈ RN×N represent the mass and viscous damping matrices and
u(t) ∈ RN is the vector of nodal displacement. The force vectors are the internal elastic forces
fnl(u(t)) : RN 7→ RN , the time-varying external force vector fe(t) ∈ RN , and the nonlinear
contact forces fc(u̇,u, t) : RN 7→ RN . The dots refer to the derivatives with respect to time
t ∈ R.

To keep contact DoFs in the reduced model, first, the vector of displacements is partitioned
into two components:

u =

[
uk

up

]
(2)

where uk ∈ RNk is the vector of displacements kept in the newly defined vector of coordinates
(generalized coordinates), but up ∈ RNp is the vector of displacements that will be defined as
a function of a small set of modal generalized coordinates q ∈ Rnq and uk. So, the generalized
coordinate vector z(t) will be

z =

[
uk

q

]
(3)

A mapping function Γ(u,q) : Rnq+Nk 7→ RN relating the reduced order DoFs z to the full
order DoFs u is considered as u = Γ(uk,q) and substituted into governing Eq. 1 to obtain the
reduced set of governing equations. According to the principle of virtual work, the residual force
is selected to be orthogonal to the tangent projector PΓ = ∂Γ

∂z [18, 22]. Hence, pre-multiplying

the resulting equations by the PT
Γ yields the reduced set of equations:

PT
ΓMΓ̈ + PT

ΓCΓ̇ + PT
Γ fnl(u) = PT

Γ fe(t) + PT
Γ fc(u̇,u, t) (4)

The mapping function Γ form and parameters should be defined to have the reduced equations.
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2.1 MAPPING FUNCTION

The parameters of Γ set a reduced basis spanned by a few carefully selected modes. Three
sets of modes are assumed here, enabling the simulation of the behavior of a geometrically
nonlinear structure with friction contact. The first set consists of the normal modes of the linear
system, which are excited by the external forces. The second set includes the structure static
deformations referred to as static modes. These modes are considered to describe the contact
behavior better and are necessary for keeping physical DoFs in the generalized coordinates. The
last set Θ includes the modes that are excited due to geometric nonlinearity and are referred
to as geometrically coupled modes in this study. To have the function Γ, the relation between
these modes and physical DoFs should be defined. The linear relation is defined well in literature
[24, 25]; however, for the sake of completeness, it is also mentioned here in line with describing
the nonlinear relation to better representation of the nonlinear mapping features. The linear
and quadratic functions based on free interface CMS reduction techniques are as follows:

u(t) = Ψfk + Υ (5)

for the linear mapping, the function Υ is

ΥL = Φqϕ + Θ(2)qΘ (6)

while for the quadratic mapping, the function Υ is

ΥNL = Φqϕ +
1

2
Θ(3)qϕqϕ (7)

where matrices Ψ ∈ RN×Nk and Φ ∈ RN×nϕ are, respectively, the residual flexibility attachment
modes and free interface normal modes. The geometrically coupled modes in this work are
presented by Static Modal Derivatives (SMD) [16], which are gathered in the matrix Θ(2) for

the linear mapping Eq. 6 and in the third-order tensor Θ(3) for the nonlinear mapping Eq. 7.
These modes are described more in Sec. 2.2. The modal generalized vectors qϕ ∈ Rnϕ and
qΘ ∈ RnΘ include the participation factor of normal modes and SMDs, respectively. However,
the participation factor of SMDs in nonlinear mapping Eq. 7 is considered a function of the
participation factor of the corresponding normal modes. fk ∈ RNk is the vector of forces applied
to DoFs intended to be kept in the generalized coordinates.

Eq. 5 describes the nodal displacement vector u(t) as a function of the vector fk and the
modal generalized coordinates. To replace the force vector fk by the nodal displacement vector
uk, Eq. 5 is partitioned into the same components as Eq. 2. Then the force vector fk is computed
as a function of uk from one set of the equations and replaced in the other set resulting in the
following equations:

u = Γ(uk,q) =

[
uk

ΨpΨ
−1
k uk + ΨpΨ

−1
k (Υk) + Υp

]
(8)

where subscripts p and k refer to the rows of matrices and vectors related to the projected and
kept DoFs, respectively. Function Γ stands for the nonlinear mapping ΓNL if the nonlinear
function ΥNL is replaced in Eq. 8; otherwise it stands for the linear mapping ΓL.

Now the tangent projector matrix PΓ could be computed taking into account that the vector
of generalized coordinates is [uT

k ,q
T
ϕ ,q

T
Θ] for the linear mapping, while it is reduced to [uT

k ,q
T
ϕ ]

for the nonlinear mapping. Therefore, the partial derivatives of Γ for the linear mapping will be

PΓL =

[
I 0 0

ΨpΨ
−1
k Φp + ΨpΨ

−1
k Φk Θ

(2)
p + ΨpΨ

−1
k Θ

(2)
k

]
(9)
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and for the nonlinear one:

PΓNL =

[
I 0

ΨpΨ
−1
k (Φp + Θ

(3)
p qϕ) + ΨpΨ

−1
k (Φk + Θ

(3)
k qϕ)

]
(10)

These relations show the most important features of the nonlinear mapping that are the state
dependency of the tangent projector matrix as well as its smaller size. It is also notable that
the participation factors of SMDs are limited to the square of the participation factor of the
corresponding normal modes.

The time derivative of the mapping function will be as follows using the chain rule:

Γ̇ = PΓż, Γ̈ = PΓz̈ +
∂PΓ

∂z
żż (11)

∂PΓNL

∂z
=

[
0 0

0 Θ
(3)
p + ΨpΨ

−1
k Θ

(3)
k

]
,

∂PΓL

∂z
= 0

Substituting Eq. 11 and Eq. 10/Eq. 9 in Eq. 4 results in the reduced equation of motion as a
function of the generalized coordinates:

M̄z̈ + PT
ΓM

∂PΓ

∂z
żż + C̄ż + f̄nl(u) = f̄e(t) + f̄c(u̇,u, t) (12)

where the reduced mass matrix M̄ ∈ Rn×n, reduced damping matrix C̄ ∈ Rn×n, and reduced
forces vector f̄e/c/nl(t) ∈ Rn are given by

M̄ = PT
ΓMPΓ, C̄ = PT

ΓCPΓ, f̄e/c/nl(t) = PT
Γ fe/c/nl(t). (13)

The convective term PT
ΓM

∂PΓ

∂z żż is additional compared to full order equation of motion Eq. 1
which appears in nonlinear mapping. Eq. 12 is numerically integrated with the implicit Newmark
method (average acceleration method) [26] to reach steady state response. In each time step,
this second-order nonlinear equation is solved by the Newton/-Raphson algorithm.

2.2 MAPPING BASIS

Rubin reduction technique as a free interface CMS method relies on the normal and static
modes of the structure with open contact in which the contact surfaces are fully separate. The
projection basis of this technique consists of free interface normal modes, residual flexibility
attachment matrix, and rigid body modes. Since the vibration behavior of structures that are
not free–free individually is under investigation, rigid body modes are not included here.

The structure deformation due to a unit force applied at a kept DoF is an attachment mode.
These modes correspond to the columns of the flexibility matrix G related to the kept DoFs
Gk. Removing the contribution of the retained free interface normal modes from the set of
attachment modes matrix Gk results in the residual flexibility attachment matrix Ψ:

Ψ = Gk −
nϕ∑
p=1

ϕpϕ
T
p

ω2
p

(14)

where ωp is the natural frequency of pth free interface normal mode ϕp.
Modal derivatives are obtained by taking the derivative of the generalized eigenvalue problem

of the linearized system around an arbitrary displacement state such that the internal elastic
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forces are cast in the form fint = Ku. Ignoring the inertia term, the so-called S tatic Modal
Derivatives (SMDs) are computed while they can also be derived by the differentiation of the
nonlinear static equation [24, 25]. Hence, the static derivative of the ith normal mode with
respect to the amplitude of the jth normal mode, θij , is as follow:

θij =
∂ϕi

∂qj
= −K−1K′

jϕi (15)

where K′
j is the derivative of the tangent stiffness matrix (K) with respect to a displacement

in the direction of ϕj . It is prominently approximated nonintrusively via finite differences. The
central finite difference yields the following formulation [18]:

K′
j =

∂K

∂qj

∣∣∣
eq

=
K(u = ϕjh) −K(u = −ϕjh)

2h
(16)

The SMDs do not feature orthogonality to linear modes, so a Gram–Schmidt process is
employed to provide a linearly independent basis. The size of a complete set of SMDs that can
be computed from n modes is quadratic to n. However, due to their symmetry, Nd = nϕ(nϕ+1)/2

unique SMDs can be computed. Therefore, the SMD matrix (Θ(2)) for the linear mapping takes
the form:

Θ(2) = [θ11,θ12, ...,θ1nϕ
,θ22, ...,θnϕnϕ

] (17)

However, the tensor of SMDs (Θ(3)) in the nonlinear mapping function Eq. 7 is consisted of

nϕ matrix while ith matrix Θ
(3)
i include the derivatives of ith mode with respect to others such

that:

Θ
(3)
i = [θi1,θi2, ...,θinϕ

] (18)

The number of SMDs grows quadratically with the number of linear modes. So, it is important
to find the most relevant SMDs, particularly for the linear mapping that the size of the equation
increases by the number of SMDs. To achieve this the Maximum Modal Interaction (MMI)
criterion proposed by Tiso [23] is used which requires a linear run under external loading over
time [0,T], then the weighting of each SMD is computed:

Wij = max|ηi(t)|.max|ηj(t)| (19)

where ηi(t) is the time-varying amplitude of the ith mode. The SMDs that have the greatest
Wij value will be chosen.

2.3 REDUCED NONLINEAR FORCES

The intrusive method is used to compute the reduced nonlinear forces in Eq. 12 which means
that the full-order nonlinear forces are computed as a function of the physical displacements.
It requires the mapping of the generalized coordinates to the physical displacements (Eq. 8)
and also the mapping of the full-order nonlinear forces to the reduced space (Eq. 13). In other
words, a back-and-forth exchange between the ROM and the FEM variables is needed at each
iteration of the numerical solver as shown in Figure. 1.
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Figure 1: Computation of internal elastic forces and contact forces

The difference between linear and nonlinear mapping in the procedure shown in Figure. 1
is that the mapping function is constant in linear one but it is state-dependent in nonlinear
one and should be computed in each iteration. It is also noteworthy that if a non-intrusive
method is used to compute the internal elastic forces, there will be no need to transfer between
full and reduced space because the reduced force will be computed directly as a function of the
generalized coordinate. These methods are not the topic of this study.

Nonlinear elastic forces fnl arise from large displacements and rotations, leading to a nonlin-
ear relation between displacement and strain, while the material behavior remains within the
linear elastic range. The Nonlinear Finite Element method (NL-FE) is employed to compute
the nonlinear elastic forces. However, the nonlinear contact forces fc are due to the relative
displacement between two components, and a contact element [27, 28] is used to compute them.
The contact model is shown in Figure. 2, the contact parameters are the tangential and normal
contact stiffness kt and kn, respectively, and a friction coefficient between the contact surfaces µ.
The relative displacements in the tangential and normal directions are u(t) and v(t), respectively,
while the amount of tangential slip between the contact surfaces is w(t).

Figure 2: Contact model with 1D tangential displacement and variable normal load

During oscillation, the contact state alternates between slip, stick, and liftoff. Normal contact
force (N) and tangential contact force (T) are defined as:

N = max(N0 + knv, 0) ; T =

{
kt(u − w) stick state
sgn(ẇ)µN slip state
0 lift-off state

(20)

where N0 is the static normal load obtained based on a preliminary static analysis. The
normal and tangential contact forces are added to fc vector considering the required coordinate
transformation. In terms of contact states, two limit cases could be regarded as full-liftoff and
full-stick configurations in which contact is, respectively, in liftoff and stick states at all time
steps during a period of oscillation. The structure characteristics in full-liftoff configuration are
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similar to the structure without contact while in full-stick configuration the structure behaves
like one with added contact stiffness. The Frequency Response Functions (FRF) of the model
considered in this study are presented in different contact configurations in the presence of
geometric nonlinearity.

3 NUMERICAL ANALYSIS

The dynamic response of a geometrically nonlinear cantilever beam under periodic excitation
is examined to investigate the performance of the previously discussed techniques. A friction
contact is considered at the beam tip as seen in Fig. 3. The beam motion is described in plane
(ex, ey) which are the axial and transverse coordinates, respectively. Axis ex is along the beam
neutral axis in undeformed configuration while ey is perpendicular to it. Notably, this model
can be assumed as a simplified representation of the rubbing interaction between the blade and
casing in gas turbines with an assumed rigid casing and disk.

Figure 3: Model of a planar cantilever beam with friction contact at its end.

The beam length is L = 2.54 m and internal structural damping is introduced as mass-
proportional viscous damping, where α = 5. The beam material properties are Young’s modulus
E = 207 GPa, density ρ = 7801 kg/m3, and Poisson’s ratio of ν = 0.28. The beam cross-section
is square with area A = 0.6451 m2. A harmonic force with the amplitude of Fe = 111.29 N in a
constant direction (y coordinate) is applied on the beam. A FE beam model based on a total
Lagrangian nonlinear formulation and a Timoshenko kinematics [29] is considered. This model
consists of 20 elements while each node has 3 DoFs.

The contact state is dependent on the static normal load N0 and contact parameters, including
contact stiffness and the friction coefficient. The effects of these parameters have been studied
extensively in the literature [30]. Here, the friction coefficient and contact stiffness are considered
as µ = 0.5 and kt = kn = 10 N/mm.

To provide a better understanding of the dynamics of the structure under study, initially, the
forced response analysis of its full order model is studied. The frequency response functions of
the beam at four values of the static normal preload (N0 = 0, 40, 80, and 350 N) are shown in
Figure 4. In the case of blade–casing rubbing interaction, the normal preload N0 is due to the
centrifugal force acting on a rotating blade. The reference system is the so-called open contact
(N0 = 0 N) corresponding to the cantilever beam with no friction contact.
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Figure 4: Frequency response function of the beam tip with four values of contact normal preload.

Figure 4 shows that in agreement with literature [30], when normal preload increases, there
is an initial fall in resonance amplitude because of the increased energy dissipation (N0 = 40
and 80 N). However, when normal preload grows, there is an increase in resonance amplitude
and frequency (N0 = 350 N) because of the higher stiffening effect of the contact.

The goal of this study is to investigate the quadratic relation between geometrically coupled
modes in different contact conditions and to evaluate the performance of the quadratic manifold
method for the forced response analysis of the geometrically nonlinear structures with friction
contact. In order to do this, three resonance points with different contact configurations are
considered which occur at the specific normal loads and excitation frequencies: a) N0 = 40 N,
Freq = 3.2 Hz, b) N0 = 80 N, Freq = 3.5 Hz, and c) N0 = 350 N, Freq = 8.2 Hz.

The hysteresis loop, the contact tangential force vs. tangential displacement in a period of
oscillation, is shown in Figure. 5 at the aforementioned contact configurations. Based on the
contact states that the structure undergoes, the contact configurations are called Slip-Liftoff
(N0 = 40 N, Freq = 3.2 Hz), Slip-Stick low normal load (N0 = 80 N, Freq = 3.5 Hz), and
Slip-Stick high normal load ( N0 = 350 N, Freq = 8.2 Hz). The beam tip contact node in Slip-
Liftoff configuration undergoes slip and liftoff states. As a result, the amplitude of vibration is
21 % smaller than the maximum amplitude of the reference system (open contact) due to the
energy dissipated by friction during slip. However, the resonance frequency is the same as the
reference system. The contact alternate slip and stick in higher normal loads while the slip state
is dominated in Slip-Stick low normal load configuration, although, the stick state dominates in
slip-stick high normal load configuration.
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Figure 5: Hysteresis loop in (a) Slip-Liftoff, (b) Slip-Stick low normal load, and (c) Slip-Stick high
normal load

In these three configurations, the relation between geometrically coupled modes is investigated
using linear mapping in which the contribution factors of the SMDs (qΘ) are also unknown.
Then, the accuracy and efficiency of the quadratic mapping method are examined.

3.1 QUADRATIC MANIFOLD

Quadratic relation between geometrically coupled modes which are here the axial and trans-
verse modes is examined by the application of the linear mapping. So, first, the linear Rubin
reduced model is built with the 1st vibration mode ϕ1, 2 residual flexibility attachment modes,
and the first modal derivative of the 1st vibration mode θ11. Then the steady-state response
of the beam is obtained using this model in Slip-Liftoff configuration. In Figure. 6, the SMD’s
contribution factor qθ11 and the half of the square of the first vibration mode’s contribution
factor (qϕ1

2/2) are plotted in a period of vibration versus the 1st vibration mode’s contribution
factor qϕ1

and its time derivative q̇ϕ1
.

Figure 6: Modes contribution factor (a) without and (b) with orthogonalization of modal derivatives
with respect to static modes

Figure. 6 (a) shows the results when the static modal derivative is not orthogonalized to
the residual flexibility attachment modes. In this case, the error in the computed amplitude
of the beam tip is 3.55 %. After orthogonalization, this error diminishes to 1.87 % while there
is also a perfect match between contribution factor plots which admit the quadratic relation
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between the axial and transverse modes in this contact state and load level. The analysis is
performed with the Linear Rubin ROM of the same size in the slip-stick contact configurations.
The same results are obtained in terms of the quadratic relation between the contribution factor
of transverse and axial modes. However, the percentage error is not the same. In Table. 3.1,
the errors of the beam tip amplitude obtained by the linear and quadratic manifolds and their
computational time difference are shown:

Table 1: Beam tip amplitude error using linear and quadratic mapping and the percentage of difference
between the computational time in different contact configurations

Contact configuration Rubin Linear Rubin Quadratic Time difference %

Slip liftoff 1.87 % 2.79 % +0.008%

Slip-Stick low normal load 2.75 % 2.37 % -0.005%

Slip stick-high normal load 11.2 % 11.1 % +0.22%

The results presented in this table show that in slip-stick contact configuration with a high
normal preload, the error is noticeably larger. Taking into consideration the low amplitude of
vibration in this contact configuration, it could not be due to geometric nonlinearity. Indeed,
the nonlinear contact stiffness added to the system is higher and the first free interface normal
mode is not enough to simulate the structure displacement. So the second vibration mode is
added to the basis. The error of the linear and quadratic Rubin with the size of five and four,
respectively, will be reduced to 2.36 % and 1.36 %.

In Figure. 7, the participation factors of the 2nd normal mode ϕ2 and 1st SMD θ11 (qθ11 and
qϕ2

) and the half of the square of participation of ϕ1 (q2ϕ1
/2) are plotted against qϕ1

in Slip-Stick
high normal load contact configuration.

Figure 7: Modal contribution factor of the modal derivatives and second vibration mode vs. Modal
contribution factor of the first vibration mode

Figure. 7 shows that the quadratic relation qθ11 = q2ϕ1
/2 is no longer valid in this configura-

tion. However, since the amplitude of vibration is very low, this approximation still yields an
acceptable accuracy (Error = 1.36 %). This figure also depicts the nonlinear relation between
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the contribution factors of the 1st and 2nd linear normal modes (qϕ1
and qϕ2

) which is due to
the nonlinear effects of contact [31].

The other considerable point in Table. 3.1 is the computational time difference between the
two methods. It is expected that due to the smaller size of the nonlinear reduced model, the
computational time will be less with nonlinear mapping. However, the time is only smaller
in the Slip-Stick low normal load contact configuration. This is due to two reasons: first, the
computation of the projection matrix in each solution iteration; more importantly, it is due to
the higher number of iterations needed to reach convergence via nonlinear mapping.

4 CONCLUSIONS

In this article, the Rubin method is enhanced to capture the behavior of a geometrically
nonlinear structure with friction contact by the addition of the Static Modal Derivatives using a
quadratic function. It shows that the contact DoFs could be kept in the generalized coordinate
while a nonlinear relation is defined between the generalized and physical DoFs.

The methodology is applied to a cantilever beam model with friction contact at its tip. Three
contact configurations with different contact states are investigated using the linear function,
where the contribution factors of the geometrically coupled modes are unknown. It has been
shown that the nonlinear relation between geometrically coupled modes holds in the presence of
friction forces only in Slip-liftoff and Slip-Stick low preload. It is also important that the static
modes added to keep contact DoFs are orthogonal to Static Modal Derivatives. As expected, the
accuracy of quadratic mapping was comparable to linear mapping; however, the computational
time is not always reduced.

The next steps will be using non-intrusive methods to compute the internal elastic forces
considering the effect of contact configuration on structure dynamics.
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