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ABSTRACT  
In the quality assurance procedure of the deep cement mixing method, the statistical parameters of the unconfined 
compressive strength of core samples, core strength, are adopted to assess the quality of the cement-treated soil ground. 
Since the statistical parameters of the core strength are the sample statistical parameters, the statistical uncertainty emerges 
when estimating the population parameters. Moreover, the spatial correlation of the core strength should be considered 
on the evaluation of the overall strength of cement-treated soil ground. The paper presents a reliability-based assessment 
for the deep cement mixing soil column based on the core strength. The analysis method in which the statistical uncertainty 
included in the core strength and the spatial variability of the strength are considered simultaneously is adopted to calculate 
the overall failure probability of the cement-treated soil column. The statistical uncertainty is estimated using a Bayesian 
inference method and the random fields of the strength are generated with the statistical parameters involving the 
statistical uncertainty. The random finite element method with the generated random fields is performed to simulate the 
compression failure behaviour of a cement-treated soil column. The analysis result provides the cumulative distribution 
function of the overall strength of the cement-treated soil column. The reliability-based assessment is performed on the 
basis of the cumulative distribution function of the overall strength. 
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1. Introduction  
Deep cement mixing is one of the major ground 

improvement methods and has been widely adopted in 
practical projects. The strength of the cement-treated 
ground constructed by deep cement mixing method 
varies spatially due to in-situ soil variability, mixing 
effectiveness of cement, and other factors. Therefore, the 
quality assurance of the cement-treated ground is very 
important in this method. On the normal quality 
assurance procedure, core samples are retrieved from 
cement-treated soil columns and unconfined 
compression tests of the core samples are conducted to 
obtain the core strength. Then the mean and standard 
deviation of the core strength are considered when 
assuring the quality of the cement-treated soil columns. 
In the current procedure, the influence of the strength 
variability on the quality of the cement-treated soil 
columns is taken into account by considering the standard 
deviation of the core strength. However, the influence of 
the spatial variability of the strength on the overall 
strength of cement-treated soil columns is not considered 
in the current procedure. Moreover, since the core 
strength data provides the sample mean and standard 
deviation of the strength, the statistical uncertainty 
emerges when evaluating the population mean and 
standard deviation. Thus the statistical uncertainty should 
be considered in the evaluation of the statistical 
parameters of the strength. 

This paper presents a reliability-based assessment for 
the deep cement mixing columns based on the core 

strength. In the proposed method, the spatial variability 
and the statistical uncertainty are simultaneously 
considered when assuring the quality of the cement-
treated ground. The strengths of core samples retrieved 
from a lattice-shaped ground improvement by deep 
cement mixing method were used. The improved ground 
was constructed at a site located at Kobe city in Japan 
(Namikawa et al. 2007). The random finite element 
method (RFEM) analysis is adopted to calculate the 
overall failure behaviour of a cement treated soil column 
with the spatial variability of the strength. RFEM 
analysis has widely adopted to analyse ground with 
spatial variabilities of soil properties (e.g., Griffiths and 
Fenton 2001, Fenton and Griffiths 2008). The statistical 
uncertainty is estimated using a Bayesian inference 
method. In the Bayesian inference method, a Markov 
chain Monte Carlo (MCMC) method is adapted to 
generate the realization values from the joint probability 
distribution of the statistical parameters. The Bayesian 
inference method with MCMC has used to evaluate the 
uncertainty of soil materials (e.g., Zhang et al. 2009, 
Wang and Aladejare 2016, Ching et al. 2016, Ching and 
Wang 2016). The generated realization values involving 
the statistical uncertainty are used when generating the 
random fields for RFEM. The compression failure 
behaviour of the cement-treated soil column is simulated 
in the RFEM analysis. In the present study, the statistical 
uncertainty and spatial variability are simultaneously 
considered in the evaluation of the overall failure 
probability of the cement-treated soil column. The 
analysis result provides the cumulative distribution 
function of the overall strength of the column. The 



 

reliability-based assessment is performed on the basis of 
the cumulative distribution function of the overall 
strength. 

2. Analysis method 
Namikawa (2021, 2022) has proposed the analysis 

framework of RFEM with the statistical uncertainty. The 
analysis framework is illustrated in Figure 1. First, the 
realizations of the population mean µquf, variance σquf

2, 
and the autocorrelation distance θquf, of the strength are 
estimated using the Bayesian inference method. Second, 
the random fields of the strength are generated with the 
realizations of µquf, σquf

2, and θquf. Thus these parameters 
values vary with each random field. Finally, the RFEM 
analysis is performed for the random fields of the 
strength. Using this analysis framework, the statistical 
uncertainty and spatial variability can be simultaneously 
considered in the evaluation of the overall failure 
probability of the cement-treated soil column. 

 

 
Figure 1. Analysis framework 

2.1. Probability distribution of strength 

Namikawa and Koseki (2013) examined the 
probability distribution of the core strength and 
concluded that the normal and lognormal distributions 
can be adopted for the probability distributions of the 
unconfined compressive strength quf of the deep cement 
mixing columns. In the present study, quf of the cement-
treated soil is assumed to follow the multivariate 
lognormal distribution:  
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where n is the number of quf values, ri is the space vector 
at the point i, µlnquf is the mean of ln quf, σlnquf

2 is the 
variance of ln quf, and θlnquf is the autocorrelation distance 

of ln quf. In this equation, an exponential type 
autocorrelation function is assumed for the spatial 
variability of ln quf. µlnquf and σlnquf

2 are expressed in 
terms of µquf and σquf

2: 

𝜇𝜇lnquf = ln 𝜇𝜇quf −
1
2

ln �1 +
𝜎𝜎quf2

𝜇𝜇quf2
� (2) 

𝜎𝜎lnquf2 = ln �1 +
𝜎𝜎quf2
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In the Bayesian inference approach, realizations of µlnquf, 
σlnquf

2 and θlnquf are drawn from the posterior probability 
distribution. Thereafter, µquf and σquf

2 are calculated from 
the realizations of µlnquf and σlnquf

2. It should be noted that 
the statistical uncertainty of θlnquf is examined as the 
parameter of the autocorrelation distance.  

2.2. Bayesian inference of statistical 
parameters 

 Posterior probability distribution of statistical 
parameters 

The population statistical parameters µquf, σquf
2, and 

θquf are expressed as the posterior probability distribution 
in the Bayesian inference. The posterior probability 
distribution is defined as a product of the prior 
distributions and the likelihood function of observed data 
(Gelman et al. 2014). The posterior distribution p(µlnquf, 
σlnquf

2, θlnquf | lnquf) after observing quf values is described 
as follows: 
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where p(lnquf | µlnquf, σlnquf
2, θlnquf) is the likelihood 

function of the observed quf values, and p(µlnquf), p(σlnquf
2), 

p(θlnquf) are the prior probability distributions. The 
posterior distribution is expressed as a joint probability 
density function among µlnquf, σlnquf

2, and θlnquf. 

 Markov chain Monte Carlo method 

Markov chain Monte Carlo (MCMC) method is 
adopted to draw the realization values of µlnquf, σlnquf

2, and 
θlnquf from p(µlnquf, σlnquf

2, θlnquf | lnquf) (Gamerman and 
Lopes 2006). The realizations can be sequentially 
sampled from the conditional distributions as follows: 
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p(lnquf | µlnquf, σlnquf
2, θlnquf)  is calculated with the 

previous realization values of µlnquf, σlnquf
2, and θlnquf. It is 

assumed that p(µlnquf) follows a normal distribution and 
p(σlnquf

2) follows an inverse gamma distribution. Then 
these prior distributions become natural conjugate 

 



 

distributions. The Gibbs sampling can be adopted to draw 
the realizations of µlnquf and σlnquf

2. It is assumed that θlnquf 
follows a truncated normal distribution. Since this prior 
distribution is not a natural conjugate distribution, the 
Metropolis-Hastings algorithm is adopted to draw the 
realizations of θlnquf. The drawn realization values of 
µlnquf and σlnquf

2 can be transformed to µquf and σquf
2 using 

the following relationships. 

𝜇𝜇quf = exp �𝜇𝜇lnquf +
𝜎𝜎lnquf2

2
� (8) 

𝜎𝜎quf2 = exp�2𝜇𝜇lnquf + 2𝜎𝜎lnquf2� − exp�2𝜇𝜇lnquf +
𝜎𝜎lnquf2� (9) 

The Bayesian inference and MCMC methods adopted in 
this study have been described in detail in another 
publication (Namikawa 2019).  

2.3. Random field of strength 

The covariance matrix decomposition method 
(Fenton and Griffiths 2008) is adopted to generate the 
realizations of the random field of quf. In this method, a 
production of a lower triangle of the correlation matrix C 
in Eq.(1) and a standard normal random variable vector 
yields a standard normal random field in the presence of 
the spatial autocorrelation with  θlnquf. Then the random 
field is generated from the standard normal random field 
with µlnquf and σlnquf

2. 
In a normal RFEM, the random fields are generated 

with constant values of the statistical parameters. In the 
preset study, the random fields are generated with the 
µlnquf, σlnquf

2, and θlnquf values calculated using the 
Bayesian inference method. Thus the statistical 
parameter values vary in each realization of the random 
field of quf. The RFEM analysis that simultaneously 
accounts for the statistical uncertainty and the spatial 
variability is possible with the random fields generated 
by the method in the present study.  

2.4. Random finite element method 

A three-dimensional FEM analysis was conducted to 
calculate the unconfined compressive strength Quf of the 
full-scale cement-treated soil column. The FEM software 
DIANA was used in the FEM analysis. A full-scale 
cement-treated soil column of 1 m in diameter and 2 m in 
height is modelled as shown in Figure 2. A mesh consists 
of eight-node isoparametric elements. Most of the 
elements are cubic with a side length of 100 mm. The 
boundary conditions are smooth at the top and bottom of 
the model. A uniform displacement is applied at the top 
surface in the vertical direction during the loading 
process. 200 realizations of the random field of quf were 
analyzed in the RFEM analysis. 

An elasto-plastic model proposed by Namikawa and 
Mihira (2007) was used to describe the mechanical 
behaviour of cement-treated soils. This model can 
describe the compressive and tensile failure behaviour of 
cement-treated soils appropriately. The material 
parameter values of the elasto-plastic model are listed in 
Table 1. These values for quf = 3 MPa were determined 
based on the laboratory test results. (Namikawa and 

Koseki 2006: Namikawa and Mihira 2007). Namikawa 
and Mihira (2007) performed the triaxial compression 
and tension tests of cement-treated soils and provided the 
elastic modulus E, the internal friction angle φ, cohesion 
c, and tensile strength Tf of cement-treated soils. 
Namikawa and Koseki (2006) performed the plane strain 
compression and bending tests of cement-treated soils 
and provided Poisson’s ratio ν, dilatancy characteristic, 
localization size ts0, and fracture energy Gf of cement-
treated soils. 

The quf values for each element were calculated from 
the assigned random variables generated as the random 
fields. The material parameter values shown in Table 1 
was determined from the quf values assigned at each 
element. E, c, Tf, and Gf were assumed to be stochastic 
parameters and vary with quf proportionally. The other 
parameters, φ, ν, hardening parameter α, and ey, 
softening parameter er, dilatancy coefficient Dc, ts0, and 
characteristic length lc, were assumed to be constant. The 
determination of the material parameters has been 
described in detail in other publications (Namikawa and 
Koseki 2013; Namikawa 2021).  

 

 
Figure 2. Mesh of  a full-scale column 

Table 1. Material parameters for cement-treated soil with quf = 
3 MPa 

Parameter Stochastic or 
deterministic Value 

Elastic modulus E Stochastic 5280 MPa 
Poisson’s ratio ν Deterministic 0.167 

Friction angle φ Deterministic 30 degree 
Cohesion c Stochastic 0.866 MPa 
Tensile strength Tf Stochastic 0.672 MPa 
Fracture energy Gf Stochastic 15.9 N/m 

Hardening parameter α Deterministic 1.05 
Hardening parameter ey Deterministic 0.0002 
Softening parameter er Deterministic 0.4 
Dilatancy coefficient Dc Deterministic -0.4 
 

 

1 m 

2 m 

X 

Z 

Fixed in Z direction 

Imposed displacement in  Z 
direction 



 

3. Analysis results 

3.1. Core strength data 

The strengths of core samples retrieved from a lattice-
shaped ground improvement by deep cement mixing 
method were used. The improved ground was 
constructed at a site located at Kobe city in Japan 
(Namikawa et al. 2007). Namikawa and Koseki (2013) 
have reported the core strength data in this project. The 
core strength data is shown in Figure 3. The quality of the 
cement-treated clay columns was assured using the core 
strength data shown in Figure 3. 

The statistical parameters calculated from the core 
strength are shown in Table 2. Three analyses were 
conducted using the core strength data. quf of the core 
samples retrieved from the single column was used in the 
C-1 and C-2 cases. The two columns data was used in the 
C-12 case. The sample size n is around 20 in the single 
column case, and that is 40 in the two columns case. The 
autocorrelation distance of ln quf, sθlnquf, in the vertical 
direction was calculated by the maximum likelihood 
method. Table 2 shows the sample mean sµquf, variance 
sσ2

quf, and autocorrelation distance sθlnquf. The statistical 
uncertainty emerges when evaluating the population 
statistical parameters from the core strength data. 

 
Figure 3. Core strength data.  

Table 2. Sample statistical parameters of core strength data 

Case n sµquf sσquf2 sθlnquf 

C-1 19 2.92 MPa 1.37 0.6 m 
C-2 21 4.20 MPa 0.910 0.3 m 
C-12 40 3.59 MPa 1.52 0.9 m 

3.2. Population statistical parameters 

The population statistical parameters were evaluated 
using the Bayesian inference with the MCMC method. 
11000 realizations of µquf, σquf

2, and θlnquf were drawn in 
each case. The realizations of the population mean µquf of 
the strength drawn by the MCMC method are shown in 
Figure 4 for the C-1 case. The variability of the 
realizations indicates the degree of the statistical 
uncertainty emerging in the evaluation of the population 
mean. Figure 4 shows that the the statistical uncertainty 

cannot be ignored when evaluating the population 
statistical parameter from the core strength data with the 
sample size n = 19.  

200 realizations of µquf were randomly selected from 
the MCMC analysis results. Then the initial 1000 
realizations were discarded to avoid the influence of the 
starting values. The µquf, σquf

2, and θlnquf values selected 
for generating the random field of quf are shown in Figure 
5 for the C-1 case.  

 
Figure 4. Realizations of population mean µquf of strength in 
C-1 case.  

 
Figure 5. Population mean µquf, variance σquf2, and 
autocorrelation distance θlnquf used in generating random field 
of strength in C-1 case.  

3.3. Random finite element analysis result 

The RFEM analysis was performed to simulate the 
unconfined compression behaviour of the cement-treated 
soil column with the spatial variability. The 200 
realizations involving the statistical uncertainty and the 
spatial variability were analysed in the C-1, C-2, and C-
12 cases. The analysis in which the statistical uncertainty 
is not taken account into was also performed in all the 
cases. An example of the strength distribution of the 
realization is shown in Figure 6. Although the same 
random variables are used for the cases with and without 
the statistical uncertainty, the generated random field 
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with the statistical uncertainty differs from that without 
the statistical uncertainty. 

The histogram of the overall strength Quf calculated 
by the RFEM analysis is shown for the C-1 case. It can 
be seen that the variability of Quf for the case with the 
statistical uncertainty is larger than that without the 
statistical uncertainty.  
 

 
Figure 6. Example of random field of strength in a full-scale 
column with and without statistical uncertainty (SU) in C-1 case.  

 
Figure 7. Histogram of overall strength Quf in C-1 cases with 
and without statistical uncertainty (SU).  

Table 3. Statistical parameters of overall strength Quf 

Case Mean sµQuf Coefficient of 
variation sVQuf 

C-1 with SU 2.44 MPa 0.230 
C-1 without SU 2.29 MPa 0.202 

C-2 with SU 3.79 MPa 0.195 
C-2 without SU 3.75 MPa 0.0864 
C-12 with SU 3.01 MPa 0.284 

C-12 without SU 2.93 MPa 0.212 
Note: SU = statistical uncertainty 

The mean sµQuf and coefficient of variation sVQuf of 
the calculated Quf are summarized in Table 3. There is 
little difference in sµQuf between the analysis results with 
and without the statistical uncertainty. Table 3 shows that 
sVQuf in the cases with the statistical uncertainty is larger 
than that without the statistical uncertainty. Thus the 
statistical uncertainty affects the variability of the overall 
strength calculated by the RFEM analysis significantly. 

4. Reliability-based assessment 
The reliability-based assessment based on the failure 

probability of the full-scale cement-treated soil column 
was conducted using the RFEM analysis results. In this 
project, the specific design strength of the cement-treated 
soil was 1.18MPa and the improved ground was adopted 
to prevent the large deformation of soil deposits. The 
quality assurance of the cement-treated soil column was 
performed against seismic events. Normally the safety 
factor for seismic events is 2 in the design and quality 
assurance of the deep cement-mixing method (CDIT 
2002). Thus the strength of the cement-treated column 
should be more than 0.590 MPa in this project.  

The empirical cumulative distribution function of Quf 
obtained from the RFEM analysis results is shown in 
Figure 8. The smallest values of Quf is larger than 0.590 
MPa in all the cases. Since the number of the realizations 
of the cement-treated soil column is 200, the RFEM 
analysis results indicate that the failure probability of the 
cement-treated soil column is less than 0.5%.  The failure 
probability for the seismic events is normally set to be 
less than 1.0%. The reliability-based assessment 
indicates that the constructed cement-treated soil 
columns satisfies the quality specified in the design 
procedure. 

The characteristic value Xquf of the strength can be 
determined from the empirical cumulative distribution 
function of Quf. Eurocode 7 (CEN 2004) has proposed 
that the characteristic value should be derived so that the 
calculated probability of a worse value governing the 
occurrence of the limit state under consideration is not 
greater than 5%. According to Eurocode 7, the 
characteristic value Xquf of the strength is defined as the 
5% fractile value of Quf. The characteristic value is 
plotted in Figure 8. Xquf is 1.91 MPa for the C-12 case. 
The statistical uncertainty and spatial variability are 
properly taken into account in the estimation of this value. 
However, the characteristic value should be estimated in 
the design procedure. The cement-treated soil columns 
are normally constructed after the design procedure. 
Further study is required to determine the characteristic 
value of the cement-treated soil strength without the core 
strength data in the design procedure. 

5. Conclusions 
The present study demonstrated the reliability-based 

assessment of the cement-treated soil columns by the 
deep mixing method. The reliability-based assessment 
was performed based on the RFEM analysis results. In 
the present study, the statistical uncertainty which 
emerges in the population statistical parameters was 
evaluated from the core strength data and the strength 
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Figure 8. Empirical cumulative distribution function of 
overall strength Quf.  

random field was generated with the statistical 
parameters involving the statistical uncertainty. The 
statistical uncertainty was estimated using a Bayesian 
inference method. In the Bayesian inference method, a 
Markov chain Monte Carlo (MCMC) method was 
adapted to generate the realization values from the joint 
probability distribution of the statistical parameters. The 
generated realization values were used when generating 
the random fields for RFEM. The compression failure 
behaviour of the cement-treated soil column was 
simulated in the RFEM analysis. 

The RFEM analysis results showed that the statistical 
uncertainty involved in the sample statistical parameters 
affect significantly the variability of the overall strength 
Quf of the cement-treated soil column. The cumulative 
distribution function of Quf provided from the RFEM 
analysis results indicated that the failure probability is 
less than 0.5% for the design strength in the project. 
Moreover, the cumulative distribution function was used 

to determine the characteristic value of the strength of the 
cement-treated soil column. 
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