The 9th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2024
3-7 June 2024, Lisboa, Portugal

GAUSS-MARKOV-KALMAN REINFORCEMENT
LEARNING FOR TEMPORAL DIFFERENCE USING AN
ENSEMBLE

VASOS ARNAOUTIS! and BOJANA ROSIC

! University of Twente, Netherlands
e-mail: v.arnaoutisQutwente.nl

Key words: Reinforcement learning, Kalman filter, Stochastic Optimization, Conditional Ex-
pectation

Summary. Temporal-Difference reinforcement learning can be seen as an inverse problem
in a probabilistic setting through Bayes’s rule. In particular, we formulate a learning problem
by approximating the posterior by the conditional expectation and variance. We show that
the resulting Temporal-Difference method arises from the generalization of classical Kalman-
based reinforcement learning. The corresponding stochastic formulation of Temporal-Difference
is further discretized by an ensemble method. The method is tested on a 2D control problem of
an escape room.

1 Introduction

Model-free reinforcement learning [I] has gained more prominence in control and optimiza-
tion applications. Observing information within an unfamiliar environment can help formulate
strategies in the decision-making process across control and design domains [2]. This approach
is beneficial in the case of complicated systems because one can avoid physics-based modeling.

In the context of decision-making under expert knowledge, the Bayesian framework emerges
as a notable paradigm [3]. The ability to account for prior knowledge and the expression of
uncertainty over decision-making is a critical component that benefits reinforcement learning
in explainability and exploration [4, 5]. Stochastic reinforcement learning aims to improve
convergence and sampling efficiency by adjusting each sample’s importance during training or
selective exploration, which reduces the sampling effort [6], [7].

This work establishes the reinforcement learning theory for model-free value function ap-
proximation algorithms in a Bayesian framework [8, [9]. The approach is based on a temporal
difference (TD) learning, defined through Bayesian conditional moments of the value function,
adding existing experts knowledge (prior information) and addressing process and measurement
noise [10].

Existing implementations show the possibility of a probabilistic framework in various con-
texts. In the field of model-free algorithms and, specifically, value function approximation algo-
rithms, these can be already summarised by existing literature reviews [11], [I2]. Prior research
has demonstrated the application of Kalman filter to TD, as exemplified by the Kalman Tem-
poral Difference (KTD) framework [4]. While the KTD theory is derived from the unscented
Kalman filter theory, it cannot fully approximate nonlinear reward-to-state mapping due to
affine representations in the update equation. A similar approach is the one of Gaussian Process
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Temporal Difference (GPTD) learning [13], [I4]. GPTD learning models the prior of the value
function by using Gaussian processes for stochastic transitions and rewards. The algorithm is
further improved by introducing a weighted ensemble of Gaussian priors to enhance the represen-
tation of function space over a single kernel prior [15]. Another expansion of temporal difference
is successor representation, which models the value function through a successor representation
matrix and the reward that generalizes over states that predict similar outcomes [16]. A multi-
modal optimization further improves this by multiple initializations of the priors and variable
basis functions, which are additionally optimized by a gradient descent method [I7]. A modified
extended Kalman filter loss function compatible with non-linear function approximators such as
neural networks has also been developed to deal with higher dimensionality systems [18].

While classical Kalman filter theory represents only a special case of Bayesian learning, in
this paper we propose more general variant based on the notion of conditional expectation (CE).
The main idea is to estimate the first two moments of the posterior directly without assuming
linear approximations like in a classical setting [9] [19], and not restrict ourselves to Gaussian
measure.

Conditional expectations (CE) are closely related to the Bayesian update and can be ef-
fectively expressed by functional approximation and sampling methods in stochastic problems
[9]. The utility of CE is shown in the Gauss-Markov theorem and its extensions related to the
Kalman filter, defined as a linear approximation of the conditional expectation [19, 0]. While
known, this association has not been explicitly established in the case of temporal-difference re-
inforcement learning. This paper demonstrates the relation between the return and conditional
expectations and shows a derivation of the temporal difference learning through the Gauss-
Markov theorem. In the linear case and assuming Gaussian distributions, this turns out to be
the Kalman filter update equation [20], and under the right assumptions for discretization and
noises, it is identical to the KTD algorithm. The paper derives the linear case of GMKF-TD
with a discretization of the value function using an ensemble filter.

2 Reinforcement learning

The decision-making process of reinforcement learning is based on the Markov decision process
(MDP) described by the tuple {S, A, R,~} [21], 22], in which S and A are the state and action
sets, respectively, R is the reward that can be observed for each transition and + is the discount
factor used to diminish the impact of rewards collected far in the future. An MDP can be
sufficiently described by the current state and action taken, with conditional independence to
previous historical states and actions. The objective of reinforcement learning is to maximize
the return Gy, described by the discounted cumulative rewards over a trajectory of T steps, i.e.

T
Gi= Y +""'Ry. (1)
k=t+1
To optimize policy m, the goal is to maximize the expected cumulative reward

Va(s) =Ex[G|S =s], VseS (2)

also known as the state value function. The expectation is given for a policy 7 that is followed
for selecting future actions given the state s.
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3 Gauss-Markov-Kalman Temporal Difference

Let the unknown future cumulative reward Gy be modeled as uncertain in Ly(£2,§,P). In
other words, we model G based on prior (expert) knowledge as a finite variance random variable
(RV) Gt(w) in a probability space (£2,F,P) in which {2 is the sample space, § is a o-algebra of
measurable events, and P is a probability measure. Given states S one can define a sub-o-algebra
B where B = o(S5) C § is generated by S. Then, one may define the conditional expectation

E(Gy|B) := Py(Gy) = argnéin |Gy — Gy (3)

as orthogonal projection of G; on the space of RVs generating measurement [23]. This further
leads to orthogonal decomposition of the cumulative reward:

G; = PpG; + (I — P‘B)Gt- (4)
Having Doob-Dynkin lemma [24], one may further state

E(Gi|B) = ¢(S) (5)

in which ¢(S) is a measurable function of state S. Substituting the previous equation into Eq
[l one can write

Gi = ¢(5) + (G — ¢(5)). (6)

Instead of directly observing the states, one is often observing some indirect function of them.
Hence, one may further write

E(Gi[Bg) = #(9(5)) (7)

in which B, := o(g(S5)), and ¢ is an observation function of the state. Let R := g(S) be a
reward observed in a state S then

E(Gi|Bg) = ¢(R) (8)
and Eq. @ can be further written as
G = p(R) + (G — p(R)). (9)
Given data for the reward R and the prior information R(w), one may further write
G (w) = ¢(R) + (Gi(w) — p(R(w))- (10)

This equation represents the assimilation process of data and prior knowledge, denoted by the
superscript a. Here, G¢(w) on the left side is our prior random variable, and R(w) is a forecast
of the reward. Averaging Eq. with respect to policy 7 and taking specific state S = s, one
may further write

Er(Gi(w)|S = 5) = Ex(@(R)|S = 5) + Ex(Gi(w)]S = ) — Ex(p(R(w))[S = ). (11)

As V(s,w) := Ex(G¢(w)|S = s) is a random variable describing our prior knowledge about the
state value function, one may further rewrite previous equation as
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V(s,w) =V (s,w) +Ez(p(R)|S = s) — Er(p(R(w)|S = s). (12)

The function ¢(-) can have any form that expresses the possible non-linearity of the mapping. In
the simplest case, one can assume a linear function (affine) such that ¢(R(s)) = K R(s)+b, where
K is the optimal Kalman gain and b is a bias term. The linear coefficients can be computed by
minimizing the orthogonal residual [19, [§], i.e.,

(K.b) = argmip | G1(w) — KR(w) - B(e)]*. (13)

Following this, Eq [12] reads
V(w) =V(w) + K(r(s) —r(s,w)) (14)

in which r(s) = Ex(R(s)|S = s) is the observed mean reward and r(s,w) is the forecast of the
mean reward. It should be clear now that the innovation r(s) — r(s,w) is the so-called temporal
difference error. From Eq. , one can derive a recursive form of the value function, namely
the Bellman equation defined as

Vis,w) = Er(R(s,w)+vGi11(w)|S = s) (15)
which can be rewritten for the forecast reward as

r(s,w) = V(s,w) =~V (s,w)+ e (16)
r(s,w) = 7(s,w)+ e (17)

in which €, denotes the modelling error, and s’ is the next state. Substituting Eq. and Eq.
back into Eq. one has

Va(‘S?w) = V(‘S?w) + K(T‘(S) - V(va) + fyv(slﬂ")) - 67“)' (18)

Here, the gain K can be derived by minimizing the loss of the value function [19]. From Eq.
the gain is derived as

K= CV(s,w),f(s,w) (Cf(s,w) + CG’I‘)T (19)

where Cy (s ) r(sw) 18 the covariance between the forecast reward and value function, and Cg,
C., are the auto-covariance of the reward and modeling error. The above filter is called the
Gauss-Markov-Kalman Filter TD (GMKF-TD) as it is an extract of the theory presented in
[9], implemented for temporal difference. In the linear (affine) case, GMKF-TD is the same as
KTD. From Eq. and Eq. , it is clear that the forecast of the reward depends on the
transitioned probability for state s’. This recursion results in a biased estimate of the value
function [25]. One method to remove the bias is using a colored noise for €, [14]. In the simplest
case, the modeling error ¢, can be modeled as white noise. However, this is shown to produce a
biased value function [4].
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3.1 Parameterization

Solving Eq. requires parameterization of the value function. One may assume the
following parameterization

Vo~ V() = 67 ®(s) (20)

with ®(s) being a known kernel function and 6 a vector of parameters. For the prior, the
previous equation leads to

Vi(w) & Vg, (s,w) = 0] (w)D(s) (21)

depending on its parameters and time such that, 0;(w) : Qg x T — R*. For non-stationary MDP,
or any other time series dependency, where parameter updates depend on time, one can account
for changes in the structure of the value function apriori. One way to formulate this is using an
additive process, assuming that n;(w) is independent of 6;_1(w):

01(w) = b1 (w) + 11 (w). (22)
Substituting Eq. and Eq. to Eq. one obtains
0%(w) =6(w) + K(r(s) = Vo(s,w) + V(s w) — &) (23)
in which
K = Chiu)r(sw)(Crsw) +Ce,) (24)

4 Discretization - Ensemble filter

The previously derived rule of updating the value function is continuous w.r.t. the prior
probability measure. Thus, a discretization is required. For this purpose we employ the Monte
Carlo method. In other words, Eq. is sampled such that

0%(w;j) = 0(w;) + K(r(s) — Va(s,w;) +7Vo(s',wj) — &) (25)

where w; indicates one sample out of the ensemble. The ensemble is denoted by © = [#(w1), ..., f(w)].
From the ensemble, the Kalman gain is computed by

K =Co,(Cr+C.)? (26)
where the covariances can be computed directly from the ensemble [26]. Given 1? is a row of

vector of 1s of same length as the ensemble, the mean and its variance for the parameters ©,
and respectively rg(s), can be computed by

E)=6 = =3 6) (21)
J

Co=E[f20 — —E[©—617)0— 6177 (28)
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5 Mean Temporal Difference

By now, it should be clear that the formulation of GMKF-TD is an approximate Bayesian
representation of classical temporal difference reinforcement learning. This can be proven di-
rectly from Eq. by taking the expectation of V'(s), which would result in a scalar value i.e.,
the mean value that reads

Ve(s)=V(s) +k(R(s) = V(s) + 7V (s)) (29)

where the gain £ cannot be computed through the covariance anymore, assuming that we are
dealing only with first order moments. In the simplest case and for linear parameterization, k
can be set as a small value multiplied by the kernel basis function such that k = a;®(s), where
ap << 1 is called the learning rate. Literature introduced a variety of heuristic approaches to
set up the learning rate [27], however analysing this goes beyong the scope of the paper. For
the implementation of the example, an adaptive learning rate is chosen where the learning rate
is determined by

Jj+1

ag(t) = ak(O)j N

(30)

where a4 (0) is the initial learning rate, N is the current iteration (often defined by episodes)
and j is an arbitrary number.

6 Numerical Results

The implementation of the escape room is based on the ”simple maze” environment presented
by [] to showcase the utilization of the algorithm. The escape room describes a 2D room of
dimensions (z,y) € [0,1]® through which the agent is required to navigate. The behavioral
policy of the agent is described through four actions (up, down, left, right) moving the agent 0.05
distance in the respective direction with probability of occurrence P(up) = 0.9 and P(down) =
P(left) = P(right) = 0.1/3. The agent’s position is initialized at position (zg,yo) with z¢ ~
N (L, 1) and yo ~ U(0,0.05). The reward is constructed such that

278
+1 ify=1andx €[22
R=¢-1 ify=1andz€[[0,2]U[3,1]] (31)

0 otherwise

The simulation is run indefinitely until either a reward of +1 or —1 is observed, after which
it is terminated and reset. If the agent reaches the environment bounds, the new agent position
is clipped within the bound dimensions.

The problem is further expressed through some expert knowledge to facilitate temporal differ-
ence training. For this, the space is discretized over a radial basis function kernel ®(s) centered
at points {0,0.5,1} x {0,0.5,1} and with standard deviation of 1. For Eq. , the model error
is set to C,. = 1 and prior is assumed (wide sense) stationary such that 6,11 = 60; (i.e, n(w) =0
from Eq. (22)) . The discount factor was set to v = 0.9.

The ensemble is constructed from 1000 samples. The value function approximation parame-
ters are a matrix © in R™" where n; are the number of features in the vector ®(s) and n; the
number of samples. The ensemble prior is set at E[f] = 0 and E[ ® 6] = 101.
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Ensemble: variance
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Figure 1: Plot of variance of value function for escape room environment using Ens-GMKF-TD

The variance of the value function for the escape room, computed by the ensemble GMKEF-
TD is shown in Figure [1} after 100 episodes. From this, one can see that the variance expresses
confidence over the learned mean values, that approaches zero after each visitation.

7 Conclusion

A reformulation of reinforcement learning is presented in a Bayesian framework of probability
density functions, based on conditional expectation. An affine representation of the reward
function is shown where in the linear case is a formulation of Kalman filter temporal difference,
namely GMKF-TD. In the mean sense, this is simplified to the classical temporal difference
learning. A discretization choice is made for representing the RV of the value function through
an ensemble, from which covariances can be computed directly. The algorithm implemented is
in a toy example, for which the importance of computing higher moments is showcased.
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