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ABSTRACT  

This paper reviews some recent advancements that address the challenges faced by the broad application area of data-

driven site characterization (DDSC). The challenges include the ugly-data challenge, site-recognition challenge, and 

stratification challenge. The ugly-data challenge is about the MUSIC-3X attributes of the site investigation data, where 

MUSIC-3X stands for multivariate, uncertain and unique, sparse, incomplete, possibly corrupted, and 3D spatial 

variability (3X). The site-recognition challenge is about the site-uniqueness feature of the site investigation data. The 

stratification challenge is about the task of layer delineation in soil profiling. In recent years, some studies have been 
conducted to address these challenges with an encouraging degree of success, which are briefly reviewed in this paper. 

However, there are still unresolved issues yet to be addressed, which are briefly summarized in this paper as well. 
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1. Introduction 

Phoon et al. (2022a) published a paper entitled 

“Challenges in data-driven site characterization 
(DDSC)”. In this paper, three challenges are stated: 

• Ugly-data challenge: The geotechnical site 

investigation data are “ugly” in the sense that they 

have some realistic attributes that are not “ideal” for 

geotechnical analysis.  Ideal data are abundant, 

complete, certain, free of outliers, and statistically 

independent. However, realistic site investigation 

data are not ideal but rather “ugly”. They are 

MUSIC-3X, which stands for multivariate (multiple 

types of tests are conducted), uncertain and unique 

(quantification of site-specificity in the face of 

uncertainties), sparse (only limited boreholes and 
soundings are conducted), incomplete (not all 

multivariate soil parameters are observed at each 

location), possibly corrupted (presence of outliers), 

and spatially variable in the three-dimensional space 

(3X). DDSC methods need to address this ugly-data 

challenge. 

• Site-recognition challenge: Site-uniqueness is a 

well-known feature in geotechnical engineering, 

which means that the site investigation data from site 

A cannot be directly adopted by site B. This is the 

“U” aspect in MUSIC-3X. This leads to a difficulty 
in practice: the site-specific data are sparse (the “S” 

aspect in MUSIC-3X), and these sparse site-specific 

data alone are typically insufficient to support 

reliable decision making. Conceptually, it is possible 

to find sites or data “similar to” the target site to 

support decision making or to transfer the 

knowledge learned from other sites to the target site 

(transfer learning). However, what are these “similar” 

sites or data? How to define the similarity? How to 

do the transfer learning? 

• Stratification challenge: One important step in site 

characterization is to delineate soil layers based on 

the site-specific data. The core of the challenge lies 

in two aspects: (a) the significant complexity of the 
geological formation of the ground; (b) the MUSIC-

3X nature of the site-specific data, especially the 

multivariate, sparse, and incomplete attributes. 

The purpose of the current paper is two-fold: (a) 

review recent advancements that address these 

challenges; (b) outline unresolved issues related to these 

challenges and discuss possible future directions.  

2. Ugly-data challenge 

2.1. MUSIC-3X site-specific data 

To showcase the ugly-data challenge, the MUSIC-3X 

attributes of typical site-specific data are illustrated by a 
real case history of a test site at Baytown, Texas, USA 

(Stuedlein et al. 2012). Figure 1 shows the site 

investigation plan: it consists of 5 boreholes (B-1 to B-5) 

and 9 cone penetration tests (CPTs). At B-1 and B-2, 

Atterberg limits (LL and PL) and water content (w) are 

available (Figures 2a and 2b). At B-3 to B-5, 

preconsolidation stress (p) (Figure 2c) and undrained 

shear strength (su) (Figure 2d) data are available at some 

depths. Figure 3 shows the CPT data. This site is mainly 

a clay site, with a thin silty-sand layer from the depth of 

3.4 to 4.7 m. It is clear that the site investigation data are 

multivariate (Atterberg limits, water content, 

preconsolidation stress, undrained shear strength, CPT 
data, etc.) and sparse (limited boreholes and CPTs). The 

incomplete attribute can be seen more clearly from Table 

1, the data at borehole B-1. It is clear that at B-1 locations, 
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only LL, PL, and w are known, but p, su, and CPT 

parameters are missing (incompleteness). 

2.2. Cross-correlation and auto-correlation 

In the opinion of the authors, the data-driven site 

characterization can be achieved if the soil parameters at 

locations unexplored by the boreholes and CPTs can be 

simulated by conditioning on the site-specific borehole 

and CPT data. This requires the following items: 

• Estimation of the site-specific cross-correlation 

based on the MUSIC-3X data (cross-correlation 

denotes the correlation relationship between soil 

parameters).  

• Estimation of the site-specific auto-correlation based 

on the MUSIC-3X data (auto-correlation denotes the 

spatial correlation between different locations in 

space). 

• Ability to simulate conditional random fields (CRFs) 

conditioning on the site-specific MUSIC-3X data 

based on the site-specific cross-correlation and auto-

correlation. 

 

 
Figure 1.  Site investigation plan for Baytown site (from 

Stuedlein et al. 2012). 

 

     

       
Figure 2.  Borehole data for Baytown site (source: Stuedlein et 

al. 2012). 
 

 
Figure 3. CPTs for Baytown site (source: Stuedlein et al. 2012). 
 

Table 1. Data at B-1 (source: Stuedlein et al. 2012). 
Depth 

(m) 

LL 

(%) 

PL 

(%) 

w 

(%) 
p 

(kPa) 

su 

(kPa) 

qt 

(MPa) 

1.06 34 18 23.4 - - - 
1.68 34 17 17.8 - - - 
2.28 36 18 16.6 - - - 
2.90 44 17 19.7 - - - 
4.72 47 19 29.9 - - - 
5.34 62 28 29.5 - - - 
5.94 81 30 29.3 - - - 
7.46 62 24 30.5 - - - 
8.68 65 - 31.5 - - - 

10.52 72 27 33.9 - - - 
11.72 74 - 31.5 - - - 
13.56 77 30 29.5 - - - 
15.08 81 30 26.7 - - - 

 Estimation of site-specific cross-correlation 

In the literature, the term “transformation model” is 

adopted (Phoon and Kulhawy 1999) to denote the cross-

correlation. Kulhawy and Mayne (1990) compiled many 

transformation models (or cross-correlations) between 

different soil parameters. However, the cross-

correlations compiled in Kulhawy and Mayne (1990) are 
“generic” ones. Generic cross-correlation has a different 

meaning from site-specific cross-correlation, as 

discussed below. Consider an example where there are 

many sites whose soil parameters (X1, X2) exhibit zero 

site-specific cross-correlation (each local X1-X2 

correlation forms a circle, as shown in Figure 4). Suppose 

that the circles have different centers due to site-

uniqueness, and suppose that the centers lie on a line with 

a positive gradient. As seen in Figure 4, the generic X1-

X2 data exhibit positive generic cross-correlation, 

although the X1-X2 data of each site exhibit a zero site-
specific cross-correlation. Therefore, it is inappropriate 

to adopt generic cross-correlation in Kulhawy and Mayne 

(1990) as a replacement of site-specific cross-correlation. 

 

 
Figure 4. Generic vs. site-specific cross-correlations. 

 

In principle, the estimation of site-specific cross-

correlation requires site-specific data, not generic data. If 
the site-specific data are “ideal” (e.g., abundant, 
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complete, and independent), standard statistical methods 

can be readily adopted to estimate the site-specific cross-

correlation (e.g., the Matlab command “cov” that 

computes the sample covariance matrix based on a set of 

multivariate data can be adopted). For the data in Table 

1, abundance, completeness, and independence mean that 

there are numerous investigated depths (abundance) that 

are far apart so that there is no spatial correlation 
(independence) and that at each depth all soil parameters 

are measured (completeness, i.e., no empty entries in 

Table 1). However, realistic site investigation data are 

never ideal: they are MUSIC-3X (sparse, incomplete, and 

spatially correlated). 

To our best knowledge, Ching and Phoon (2020a) is 

the first study that addresses the estimation of site-

specific cross-correlations based on MUSIC-3X data. 

The spatial variation is limited to 1D (the depth direction) 

in Ching and Phoon (2020a), but this limitation is relaxed 

by Ching et al. (2022) by considering spatial variation in 

3D. To address the “M” aspect (multivariate), these two 
studies are fully compatible to multivariate data because 

they adopt multivariate models. To address the 3X aspect, 

the spatial correlation in the site-specific data is modelled 

by a stationary random field model whose site-specific 

auto-correlation is estimated beforehand (the estimation 

of site-specific auto-correlation is discussed in Section 

2.2.2). To address the “I” aspect (incompleteness), the 

Gibbs sampler (GS) algorithm (Geman and Geman 1984), 

a special instance of the Markov chain Monte Carlo 

(MCMC) methods in Bayesian analysis (Gilk et al. 1986), 

is adopted to deal the incomplete data: the GS can 
simulate the missing soil parameters while estimating the 

cross-correlation matrix at the same time. The “U” aspect 

(uncertainty) is also addressed because the two studies 

adopted the Bayesian analysis, which quantifies 

uncertainties with a probabilistic manner. Moreover, 

these two studies can further simulate conditional 

random fields (CRFs) for all soil parameters at 

unexplored locations. To make the Bayesian derivations 

and 3D computation/simulation tractable, two crucial 

assumptions are made in the two studies: 

• (Assumption #1) Ching and Phoon (2020a) assumed 
that the cross-correlation and auto-correlation are 

separable, meaning that all soil parameters share the 

same auto-correlation parameters (such as the scale 

of fluctuation). 

• (Assumption #2) Ching et al (2022) further assumed 

that the horizontal and vertical auto-correlations are 

separable, meaning that the 3D auto-correlation can 

be expressed as the product between the horizontal 

and vertical auto-correlations.  

The above method of estimating site-specific cross-

correlation and simulating CRFs was named as the 

“MUSIC-3X method” by Ching et al. (2022). In Ching et 
al. (2022), the Baytown site was analyzed by the MUSIC-

3X method. The CRF simulation results for the B-3 

borehole location of the Baytown site are shown in 

Figure 5. Note that the CRF can be simulated at other 

unexplored locations, but Figure 5 deliberately shows the 

CRF simulation results at the B-3 location to showcase 

the significance of CRF. The dark solid and dashed lines 

in Figure 5 show the median and 95% confidence interval 

(CI) profiles of the CRF, respectively, whereas the 

yellow dots show the observed data at B-3. It is 

reassuring that all simulated CRFs pass through the 

observed data. 

Now consider a scenario where site-specific data are 

sparse by leaving B-3 data out of the analysis. By leaving 

B-3 data out, the number of (p, su) data points reduces 

from 7 to 4 (see the right-hand-side two plots in Figure 

2). The CRF simulation results for this scenario of sparse 

data are shown in Figure 5 as the magenta lines. It is clear 

that now the 95% CIs for (p, su) are wide, suggesting 

that the uncertainty is high when the site-specific data are 
sparse. Note that in practice, it is common to have 4 or 

less (p, su) data points for a construction project of small 

to medium size. The magenta lines illustrate the severity 

of the challenge in the “S” aspect (data sparsity). The 

challenge for data sparsity will be addressed in Section 3 

(site-recognition challenge). 

 

 
Figure 5. CRF simulation results for the B-3 borehole location 
of the Baytown site (magenta lines are the CRF results by 

leaving B-3 data out; the grey-out depth from 3.4 to 4.7 m is for 
the silty-sand layer) (source: Ching et al. 2022). 

 Estimation of site-specific auto-correlation 

In the literature, the spatial variation of a soil 

parameter profile is usually modelled by two components: 
trend and spatial variability. The spatial variability is 

defined as the residual of the soil parameter profile with 

respect to its trend. The stationary random field model 

(Vanmarcke 1977) is the common way of modelling the 

spatial variability. A stationary random field is 

characterized by its auto-correlation. Classical auto-

correlation models [such as the single-exponential (SExp) 

and squared-exponential (QExp) models] are governed 

by a single auto-correlation parameter called the scale of 

fluctuation (SOF). The SOF can be regarded as the 

correlation distance within which the detrended soil 

parameters of two locations are noticeably correlated. 
Besides the SOF, a non-classical auto-correlation model 

called the Whittle-Matérn (WM) auto-correlation model 

(Guttorp and Gneiting 2006; Liu et al. 2017; Ching and 

Phoon 2018) considers the smoothness as another 

important auto-correlation parameter. The smoothness 

parameter () characterizes the degree of differentiability 

of the sample path of a random field. Ching and Phoon 

(2018) showed that  has a significant impact on the 

failure probability of a geotechnical structure constructed 

in a spatially variable soil modelled by the stationary 

random field. The WM model is considered as a more 

general auto-correlation model because many classical 

models are special instances of the WM model (e.g., WM 

reduces to SExp and QExp, respectively, when  = 0.5 

and ). 



 

In order to estimate site-specific SOF and smoothness, 

it is required to have a sufficiently small sampling 

interval and also sufficiently long total data length. For 

instance, if the actual SOF is 0.2 m, Ching and Phoon 

(2016) showed that the sampling interval has to be less 

than 0.2m/4 = 0.05m and the total data length has to be 

greater than 0.2m5 = 1m in order to consistently identify 

the SOF. Among common site investigation tests, 

probably only CPT has sufficiently small vertical 

sampling interval. The vertical sampling interval for 
other tests such as borehole and vane shear tests may be 

too large to identify the vertical SOF and smoothness. For 

non-CPT soil parameters (e.g., Atterberg limits, water 

content, undrained shear strength, friction angle, 

modulus, etc.), a common assumption is that their auto-

correlation parameters are the same as those of the CPT 

parameters. Note that this assumption is identical to 

Assumption #1 in Section 2.2.1. This assumption is based 

on the argument that the spatial correlation of a soil is 

governed largely by the spatial variability in its source 

materials, weathering patterns, stress, and formation 
history, etc. so that one would expect that all the soil 

parameters will vary similarly between the two points 

(Fenton and Griffiths 2003; Fenton et al. 2005). There is 

no evidence in the literature thus far to support or reject 

this assumption. Many studies in the literature have 

adopted Assumption #1 to model the auto-correlation 

parameters of non-CPT parameters. With Assumption #1, 

the estimation of site-specific auto-correlation can be 

conducted by analyzing site-specific CPT data. 

The method of moments (MM) (e.g., Uzielli et al. 

2005; Firouzianbandpey et al. 2014; Lloret-Cabot et al. 
2014) is probably the most popular method of estimating 

the site-specific vertical auto-correlation parameters 

based on detrended CPT data, although the maximum 

likelihood (ML) method (DeGroot and Baecher 1993; 

Liu et al. 2016; Xiao et al. 2018) is more rigorous. Ching 

et al. (2019) investigated various estimation methods for 

vertical auto-correlation parameters, and they obtained 

the following conclusions (if the sampling interval is 

sufficiently small and if the total data length is 

sufficiently long): 

• Regardless of the estimation method (MM or ML), 

classical auto-correlation models such as SExp and 
QExp cannot identify vertical smoothness because 

their smoothness parameter is fixed ( = 0.5 for 

SExp and =  for QExp). 

• The MM method is effective in identifying vertical 

SOF, but it is ineffective in identifying vertical 

smoothness (even if the WM model is adopted). 

• The ML method with the WM model can effectively 

identify vertical SOF and smoothness. 

The above conclusions are for the estimation of site-

specific vertical auto-correlation parameters. For the 

estimation of site-specific horizontal ones, our recent 

investigations (not published yet) showed that site-

specific horizontal SOF and smoothness can be identified 

only if there are several pairs of closely spacing CPTs 
(the horizontal distance between the CPTs need to be at 

least less than the actual horizontal SOF). In practice, this 

condition (several pairs of closely spacing CPTs) may be 

hard to achieve because CPTs spread far apart to 

maximize the explored region. In our opinion, a reliable 

and practical method of estimating site-specific 

horizontal auto-correlation parameters is still lacking. 

For the scenario where site-specific horizontal auto-

correlation parameters cannot be estimated, the concept 

of “worst-case” values may be useful. For instance, the 

worst-case horizontal SOF for a footing can be defined 

as the conservative horizontal SOF value that maximizes 
its bearing capacity failure probability. Such worse-case 

auto-correlation parameters can be found by numerical 

simulation. In the literature, the worst-case SOFs for 

various design problems have been investigated using 

random finite element analyses (e.g., Fenton and 

Griffiths 2003; Jaksa et al. 2005; Fenton et al. 2005; 

Breysse et al. 2005; Griffiths et al. 2006; Soubra et al. 

2008; Vessia et al. 2009; Ahmed and Soubra 2014; Ching 

et al. 2017). A state-of-the-art review of works related to 

worst-case SOFs has been conducted by Chapter 7 of 

ISSMGE-TC304 (2021). 

As mentioned earlier, the spatial variation of a soil 
parameter profile consists of trend and spatial variability. 

Detrending is a standard pre-processing procedure for 

spatial data (e.g., Fenton 1999; Jaksa et al. 1999; Uzielli 

et al. 2005). In the past, the site-specific trend is usually 

determined using regression based on the spatial profile, 

and the site-specific SOF and smoothness are then 

estimated based on the detrended profile. A polynomial 

trend with a prescribed order (e.g., a linear or quadratic 

trend) is frequently adopted in the literature. Nonetheless, 

recent investigations showed that the modelling of the 

site-specific trend has profound impacts. Ching et al. 
(2020) showed that the assumption in the trend order 

(constant, linear, quadratic, etc.) has significant impacts. 

They analyzed the CPT data at a test site in Hollywood, 

South Carolina, USA (Stuedlein et al. 2016). This test site 

consists of 25 CPTs of 5 clusters, as shown in Figure 6. 

It is assumed that the trend follows a (k-1)-th order 

polynomial (e.g., k = 1 means that a constant trend is 

adopted). Figure 7 shows the site-specific auto-

correlation parameters estimated based on the detrended 

CPT data for different assumed trend orders (k = 1, 2, …, 

5). Figure 8 shows the median and 95% CI of the CRF 
simulation results at the central CPT location of Cluster 

#1 (this central CPT data are left out of the analysis and 

serve as validation data; see the red lines in Figure 8). It 

is evident that the assumed trend order has significant 

impacts on the estimated site-specific auto-correlation 

parameters and CRF simulation results. 

Due to its significant impact, the modelling of the 

site-specific trend deserves further attention. Two recent 

developments have addressed the modelling of the trend 

with acceptable computations: 

• Ching and Phoon (2017) and Ching et al. (2020) 

adopted the Sparse Bayesian Learning (SBL) 
method (Tipping 2001) to model the trend. Unlike 

the traditional way of modelling the trend as a 

polynomial with a prescribed order, the SBL method 

selects an optimal set of basis functions (BFs) such 

that the trend can be represented as the weighted sum 

of the BFs. The BF selection is adaptive: a simple 

trend requires very few BFs, and a complicated trend 

requires more BFs. For real CPT data, the optimal 

set of BFs is usually sparse: a small set of BFs can 



 

usually well represent the trend. For the Hollywood 

site, the grey dots in Figure 7 show the estimation 

results (posterior samples) of the site-specific SOF 

and smoothness for the SBL method. 

• Yoshida et al. (2021) adopted the Gaussian Process 

Regression (GPR) method (Rasmussen and 

Williams 2006) to model the trend. For the GPR 

method, the trend is modelled as a zero-mean 
stationary random field. This random field for trend 

is independent of the random field for spatial 

variability. The zero-mean random field for trend is 

the prior model, and this prior model is updated into 

the posterior model by the site-specific CPT data. 

The posterior random field for the trend is no longer 

zero-mean; instead, its mean follows the general 

trend of the CPT data. 

More recently, Ching et al. (2023) compared these 

two methods and found that the SBL method usually 

prevails for 1D real cases (data from a single CPT) but 
the GPR method usually prevails for 2D or 3D real cases 

(data from multiple CPTs). 

 

 
Figure 6. CPT data (con tip resistance) in the 3D underground 
space of the Hollywood test site (source: Stuedlein et al. 2016). 

 

 
Figure 7. Estimated site-specific SOF and smoothness for 
different order of trend (k = annotated number): (a) vertical 
SOF and smoothness; (b) horizontal SOF and smoothness (from 
Ching et al. 2020). The grey dots are the SBL results. 

 
Figure 8. CRF simulation results at the central CPT of Cluster 
#1 (from Ching et al. 2020). 

 Bayesian compressive sensing 

Besides the aforementioned works, there are works 

conducted by other scholars that can address the 

estimation of the site-specific cross-correlation and 

spatial correlation. In particular, the series of works 

related to Bayesian compressive sensing (BCS) are 

herein reviewed. Compressive sensing (Donoho 2006; 

Candès and Plan 2010; Davenport 2013) is an efficient 
method of reconstructing a signal if the signal can be 

represented by sparse BFs, and Bayesian compressive 

sensing (BCS) (Ji et al. 2008) is its Bayesian version. 

Zhao and Wang (2018), Xu et al. (2021), Guan & Wang 

(2021), and Li et al. (2023) implemented BCS to model 

the site-specific cross-correlation and spatial correlation 

simultaneously: the site-specific cross-correlation is 

modelled by a cross-correlation matrix, whereas the 

spatial correlation is modelled by a sparse set of BFs and 

their weights, not by the stationary random field model. 

Given the site-specific data, both site-specific cross-

correlation and spatial correlation can be estimated, then 
cross-correlated CRFs can be subsequently simulated. 

These BCS studies address the “M” (multivariate), “U” 

(uncertain), “S” (sparse), and “3X” (spatial correlation) 

aspects. Although these BCS methods seem to have the 

potential to handle incomplete data, the “I” aspect is not 

yet addressed in these BCS works. 

With BCS, the spatial variation of soil parameters is 

directly represented by BFs, hence there is no need to 

decompose the spatial variation into trend and spatial 

variability. The spatial variation is completely governed 

by the chosen BFs. There are cons and pros. The pros are 
that there is no need to detrend the profile and no need to 

estimate the auto-correlation parameters. The cons are 

that if the characteristics of the chosen BFs do not fit well 

with the actual spatial variation, important features in the 

actual spatial variation may not be captured. For instance, 

a spatial variation with non-smooth sample path cannot 

be represented by smooth BFs. It is fair to say that in BCS, 

the BFs are responsible for modelling both the trend and 

auto-correlation structure (such as SOF and smoothness). 

For BCS to effectively model all these characteristics, the 

effect of the BF type on the trend and auto-correlation 
structure should be investigated. Whether or not realistic 

geotechnical data with a wide range of trend and auto-

correlation structure can be represented by a small 

number of BFs is an open research question that should 

be pursued further given the obvious attractiveness of 

BCS. 

3. Site-recognition challenge 

As discussed earlier, site-specific data are sparse. The 

data sparsity makes the estimation of site-specific cross-
correlation and auto-correlation challenging. This issue is 

worsened by site-uniqueness, which means that the data 

from other sites cannot be directly adopted without 

exercising judgment in current practice to assist the 

estimation of cross-correlation and auto-correlation for 

the target site. The site-recognition challenge is to 

address “site-uniqueness”, directly or indirectly, so that 

databases can be combined with sparse site-specific data 

in a manner sensitive to site differences to assist the 

estimation of site-specific cross-correlation and auto-



 

correlation. It departs from current practice in the 

application of data-driven methods rather than judgment 

that is limited to data familiar to engineers only. There 

are methods in the literature that address the site-

recognition challenge: 

• Similarity-based methods: find generic sites or 

records from a database similar to the target site and 

augment the site-specific data with these similar data. 

• Transfer learning: transfer the knowledge learned 

from sites in a database to the target site. 

3.1. Similarity-based methods 

 Similarity in cross-correlation 

The definition of “similarity” can be either in cross-

correlation or in auto-correlation. For the similarity in 

cross-correlation, Ching and Phoon (2020b) proposed a 

method that can extract “records” from a database that 

are similar to the target site in terms of the cross-

correlation behaviors. Here, a record refers to a row of 

data in Table 1. More specifically, Ching and Phoon 

(2020b) proposed an index that measures the similarity 

between a record in a soil database and the target site, i.e., 
it is a “record-to-site” similarity index. Figure 9 shows 

the records from an Onsøy site (Lacasse and Lunne 1982), 

Norway (red dots) and the records from a database named 

CLAY/10/7490 (Ching and Phoon 2014). The database 

records are shown as grey and dark dots, where the dark 

dots are the records whose similarity indices (S) with 

respect to the Onsøy site are significant (S > 1). The 

database records with high similarity can be augmented 

to the Onsøy-site data for form a larger dataset to estimate 

the quasi-site-specific cross-correlation. 

 

 
Figure 9. Cross-correlation plots for the Onsøy site and 

database records [qt1 = (qt-v)/v] (from Ching and Phoon 
2020b). 

 

In contrast, Sharma et al. (2022) proposed a method 

that can extract “sites” from a database that are similar to 

the target site in terms of the cross-correlation behaviors. 

The main difference here is that it is a “site-to-site” 

similarity index. The database sites highly similar to the 

target site are first identified. Then, their data are 

augmented to the site-specific data for form a larger 

dataset to estimate the quasi-site-specific cross-

correlation. More recently, Cai et al. (2024) also 
proposed a site-to-site similarity index between a 

database site and the target site, and it is even faster than 

Sharma et al. (2022). All methods reviewed herein 

(Ching and Phoon 2020b; Sharma et al. 2022; Cai et al. 

2024) can handle multivariate, uncertain, sparse, and 

incomplete data. 

 Similarity in auto-correlation 

To the best knowledge of the authors, there were no 

previous studies to address how to quantify the similarity 

in auto-correlation between two sites until recently. Hu et 

al. (2024) adopted the Bayesian compressive sensing 

(BCS) as the basis of quantifying the similarity between 
the auto-correlation structures of two 2D cross-sections 

with sparse CPTs. The CPT data on each cross-section 

are expressed by a discrete-cosine transform (DCT) 

spectrum using BCS. The similarity between two sites is 

then quantified as the similarity between the two DCT 

spectra. In view of the importance of similarity in auto-

correlation, more investigations into are needed in this 

research direction. To the knowledge of the authors, there 

are no methods that can address similarity in both cross-

correlation and auto-correlation. 

3.2. Transfer learning 

Transfer learning is a technique where knowledge 

learned from a task is re-used to boost performance on a 

related task. In the context of the site-recognition 
challenge, the knowledge learned from site(s) in a 

database may be transferred to the target site to enhance 

the estimation of site-specific cross-correlation and auto-

correlation. 

 Transfer-learning for cross-correlation 

In the past, the transfer learning of cross-correlation 

has been conducted in a generic (non-site-specific) 

manner in the form of a “transformation model” (Phoon 

and Kulhawy 1999). Figure 10 shows the (generic) cross-

correlation for the normalized CPT cone tip resistance 

(qt-v)/v vs. normalized undrained shear strength su/v. 

The data points in the figure are from the CLAY/10/7490 

database. The knowledge learned from the data points is 
the generic cross-correlation (transformation model), 

shown as the dark line in the figure. The dashed lines are 

the 95% CI, which quantifies the “transformation 

uncertainty” (Phoon and Kulhawy 1999). 

In the case where site-specific cross-correlation is not 

available due to insufficient site-specific data, generic 

cross-correlation learned from a database (such as that in 

Figure 10) can be transferred to the target site. There are 

two drawbacks for generic cross-correlation: 

• Generic cross-correlation usually has significant 

transformation uncertainty (i.e., the 95% CI is wide). 
This means that the prediction made by transferring 

the cross-correlation knowledge learned from a 

generic database to the target site is imprecise. 

• As illustrated in Figure 4 earlier, generic cross-

correlation has different meanings from site-specific 

cross-correlation. In fact, site-specific cross-

correlation is usually less uncertain. This is 

illustrated by the data from a site in CLAY/10/7490 

in Figure 11a. Figure 11a plots the (qt-v)/v vs. 

su/v data with site labels (data from the same site 

have the same label). If we focus on the site labelled 

as yellow circles in Figure 11a, its site-specific 

cross-correlation is shown as the red line and 95% 



 

CI shown as the red dashed lines. It is clear that the 

site-specific uncertainty for this site is much less 

than the generic uncertainty in Figure 10. This 

suggests that the prediction made by transferring the 

cross-correlation knowledge learned from 

“individual sites” in a database to the target site may 

be more precise. 

 

 
Figure 10. Generic cross-correlation between (qt-v)/v vs. 

normalized undrained shear strength su/v (data from 
CLAY/10/7490 database). 

 

 
Figure 11. (a) (qt-v)/v vs. su/v data with site labels (data 
from the same site have the same label); (b) learning and 
inference outcomes of the HBM. 

 

Transferring the cross-correlation knowledge learned 

from sites in a database to the target site can be achieved 

via the hierarchical Bayesian model (HBM) (Gelman and 

Hill 2006; Zhang et al. 2016; Lu et al. 2018; Bozorgzadeh 

et al. 2019; Bozorgzadeh and Bathurst 2022). Ching et al. 

(2021) proposed the HBM shown in Figure 12 to model 

the cross-correlations of individual sites in a database. 

The site-uniqueness of the individual sites is explicitly 

modelled by the HBM. To be more specific, the 

(transformed) soil parameters for the j-th record at the i-
th site in a database are denoted by the vector Xij, and Xij 

is assumed to follow a multivariate normal distribution 

with site-specific cross-correlation mean vector = i and 

site-specific cross-correlation covariance matrix = Ci, 

denoted by N(i,Ci). The parameters (i,Ci) quantify the 

site-specific cross-correlation of the i-th site. Because of 

site-uniqueness, i  k and Ci  Ck if i  k. Nonetheless, 

{i: i = 1, …, ns} (ns is the number of database sites) are 

assumed to follow the same multivariate normal 

distribution N(0,C0), where 0 is the (hyper) mean 

vector and C0 is the (hyper) covariance matrix. Similarly, 

{Ci: i = 1, …, ns} are assumed to follow the same inverse-

Wishart (IW) distribution (James 1964), denoted by 

IW(0,0), where 0 is the (hyper) scale matrix and 0 is 

the (hyper) degree of freedom. The hyper-parameters 

(0,C0,0,0) govern the site-unique cross-correlations of 

the individual sites in the database. The target site has 

site-specific cross-correlation mean = s and site-specific 

cross-correlation covariance matrix = Cs. It is assumed 

that (s,Cs) are governed by the same hyper-parameters 

(see Figure 12). 

The procedure of the HBM proposed by Ching et al. 

(2021) consists of two stages: learning stage and 

inference stage. In the learning stage, the hyper-

parameters (0,C0,0,0) are calibrated to learn the site-

unique cross-correlations of the individual sites in the 

database. The calibrated hyper-parameters can produce a 

“prior model” for (s,Cs) of the target site. The behaviors 

of this prior model can be illustrated by simulating the 

site-specific mean vector and covariance matrix (h,Ch) 

of a “hypothetical site” based on the calibrated hyper-

parameters: h ~ N(0,C0) and Ch ~ IW(0,0). Each 

(h,Ch) simulation is represented as a (skewed) grey 

ellipse in Figure 11b. The grey ellipses in Figure 11b can 

be compared to the site data in Figure 11a. 
 

 
Figure 12. Model structure of the HBM (from Ching et al. 

2021). 
 

In the inference stage, the prior model for (s,Cs) is 

updated into the posterior model through Bayesian 
analysis by further conditioning on the site-specific data 

of the target site, which are usually sparse (illustrated as 

the red circles in Figure 11b). It is clear from Figure 11b 

that most (grey) ellipses in Figure 11b are incompatible 

to the site-specific data, and those compatible to the site-

specific data are shown in colors. The colored 

(compatible) ellipses illustrate the posterior model for 

(s,Cs) after the Bayesian analysis. This posterior model 

is quasi-site-specific because not only the target-site data 

are used to construct the model but also the database is 

used to develop its prior. The uncertainty of this quasi-

site-specific model can be visualized as the vertical size 

of the region occupied by the colored ellipses. It is 
remarkable that the uncertainty of the posterior (quasi-

site-specific) model is much less than the uncertainty of 

the generic model in Figure 10. 

The HBM proposed by Ching et al. (2021) can work 

with the MUSIC-3X method proposed by Ching et al. 

(2022) to form the HBM-MUSIC-3X method. The role 

of the HBM is to construct the prior model for (s,Cs) of 

the target site (i.e., the learning stage). The prior model is 

updated by the site-specific data into the posterior (quasi-

site-specific) model. The MUSIC-3X method has a 

certain role during this Bayesian updating because it 



 

provides the cross-correlation and auto-correlation 

models for the site-specific data. Finally, the MUSIC-3X 

further conducts CRF simulations based on the posterior 

model. The CRF simulation results of the HBM-MUSIC-

3X method at the borehole B-3 for the Baytown site are 

illustrated in Figure 13. The borehole B-3 data are left out 

of the analysis to emulate a scenario with sparse site-

specific data. The dark lines are the CRF results by the 
HBM-MUSIC-3X method, whereas the magenta lines 

are the CRF results by the MUSIC-3X method. Recall 

that by leaving out the B-3 data, the number of (p, su) 

data points reduces from 7 to 4. With only 4 (p, su) data 

points and without transfer learning (i.e., the MUSIC-3X 

method), the site-specific cross-correlations related to p 

and su are highly uncertain, so the 95% CIs for the OCR 

and su CRF simulation results are wide (the dashed 

magenta lines in the OCR and su profile plots). 

Nonetheless, with transfer learning from the database 

(i.e., the HBM-MUSIC-3X method), the 95% CIs for the 

OCR and su CRF simulation results become much 

narrower. This shows that the HBM transfer learning can 

significantly reduce the uncertainty in cross-correlation 

due to sparse site-specific data. 

 

 
Figure 13. CRF simulation results at the B-3 borehole location 
of the Baytown site (B-3 data are left out of the analysis; the 
yellow dots show the observed data at B-3). Dark lines are for 
HBM-MUSIC-3X, and magenta lines are for MUSIC-3X (from 
Ching et al. 2022). 
 

It is also possible to adopt the similarity-based 

method (Section 3.1) to further boost the performance of 

the HBM. Cai et al. (2024) found that if a small sub-

database can be formed from a big database such that this 

small sub-database only contains sites with cross-

correlations similar to the target site, the HBM trained by 

this smaller sub-database can be more effective than the 

HBM trained by the big database (more effective in the 
sense that the uncertainty of the quasi-site-specific 

prediction is further reduced). This sub-database is called 

quasi-regional database (Phoon and Ching 2022). 

 Transfer-learning for auto-correlation 

It is also possible to transfer the knowledge learned 

from the spatial variations of other sites to the target site. 

As discussed earlier, spatial variation consists of trend 

and spatial variability, and spatial variability is usually 

characterized by auto-correlation parameters. As a result, 

there are two types of knowledge that can be transferred: 

transfer learning for trend and transfer learning for auto-

correlation parameters. To the best knowledge of the 
authors, transfer learning for trend has not yet been 

pursued in the literature. Also, site-specific trends of soil 

parameters may be extremely complex and strongly 

dependent on local geology. It is an open research 

question whether it is possible to transfer the trend 

knowledge from other sites to the target site. Before this 

question is addressed, probably the only viable way to 

understand the spatial trend of the target site is through 

site-specific measurements (e.g., lots of CPTs).  

Nonetheless, it is possible to transfer the auto-
correlation knowledge from other sites to the target site 

because the auto-correlation parameters of various sites 

may vary in relatively narrow ranges. Cami et al. (2020) 

summarized the ranges of the site-specific horizontal 

SOF (SOFh) and vertical SOF (SOFz) reported in the 

literature for various soils, shown in Table 2. There are 

cases in the literature with simultaneous knowledge of 

site-specific SOFh and SOFz. Chapter 3 of ISSMGE-

TC304 (2021) summarized the ranges for the site-

specific SOFs of these cases as Figure 14. 

 
Table 2. Ranges of site-specific SOFh and SOFz for various 

soil types (from Cami et al. 2020) 

Soil type 
SOFh (m) SOFz (m) 

# 

studies 
Range Mean 

# 

studies 
Range Mean 

Alluvial 9 1.07-49 14.2 13 0.07-1.1 0.36 
Ankara clay - - - 4 1-6.2 3.63 

Chicago clay - - - 2 0.8-1.3 0.91 
Clay 9 0.1-164 31.9 16 0.05-3.6 1.29 

Clay, sand, silt 

mix 
13 1.2-1000 201.5 28 0.06-21 1.58 

Hangzhou clay 2 40.4-45.4 42.9 4 0.5-0.8 0.63 
Marine clay 8 8.4-66 30.9 9 0.11-6.1 1.55 
Marine sand 1 15 15 5 0.07-7.2 1.43 
Offshore soil 1 24.6-66.5 45.6 2 0.5-1.6 1.04 

OC clay 1 0.14 0.14 2 0.06-0.3 0.15 
Sand 9 1.7-80 24.5 14 0.1-4 1.17 

Sensitive clay - - - 2 1.1-2.0 1.55 
Silt 3 12.7-45.5 33.2 5 0.1-7.2 2.08 

Silty clay 7 9.65-45.4 29.8 14 0.1-6.5 1.40 
Soft clay 3 22.2-80 47.6 8 0.14-6.2 1.70 

Undrained 

engineered soil 
- - - 22 0.3-2.7 1.42 

Water content 9 2.8-22.2 12.9 8 0.05-6.2 1.70 

 

More recently, Ching et al. (2023) conducted a 

comprehensive analysis of a large CPT database. From 

the database, they extracted hundreds of homogeneous 

soil units from 42 sites to identify SOFz and vertical 

smoothness (z) of the detrended CPT data based on the 

WM model. Table 3 shows the statistics of the site-

specific SOFz for soil units of various soil behavior types 

(SBTs) (Robertson 2016). It is evident that SOFz varies 

in a relatively narrow range. The site-specific z also 

varies in a relatively narrow range of 0.1-2.0 for all SBTs. 

Ching et al. (2023) did not investigate the horizontal 

auto-correlation parameters. 

 

 
Figure 14. Ranges of SOFh and SOFz for various soil conditions 

(from ISSMGE-TC304 2021). 



 

Table 3. Statistics for site-specific vertical auto-correlation 
parameters identified from CPT data (from Ching et al. 2023) 

SBT 
# 

sites 

Site-specific SOFz 

(m) 

Site-

specific z 

Range Mean Range 

2 (organic) 1 0.30  0.30  

0.1-2.0 

3 (clay) 7 0.10-0.46  0.26  

4 (silt mixtures) 8 0.13-0.42  0.27  

5 (sand mixtures) 13 0.084-0.58  0.32  

6 (sand) 13 0.31-0.89  0.49  

2, 3, 4 (clay-like) 16 0.10-0.46  0.27  

5, 6 (sand-like) 26 0.084-0.89  0.41  

All 42 0.084-0.89  0.35  

 

It is noteworthy that the SOFz ranges in Table 3 

(reported in Ching et al. 2023) are significantly narrower 

than those in Table 2 (reported in Cami et al. 2020) 

probably due to the following reasons: 

• Ching et al. (2023) analyzed their CPT data using a 

uniform framework (detrend with a quadratic trend; 
adopt the WM model; adopt the maximum 

likelihood estimation method). In contrast, Cami et 

al. (2020) simply compiled the SOFz results from the 

literature. The trend functions, auto-correlation 

models, and estimation methods adopted in the 

literature are not uniform. This non-uniformity may 

result in the wider ranges in Table 2. 

• Ching et al. (2023) focused on CPT data, which 

usually have sufficiently small sampling intervals to 

consistently identify SOFz and z. In contrast, the 

cases compiled by Cami et al. (2020) are not entirely 

from CPT data: some cases are borehole and vane 
shear data that have relatively large sampling 

intervals. For a large sampling interval, not only 

SOFz cannot be consistently identified but some 

fluctuations in the trend may also be incorrectly 

treated as residuals. If this happens, the identified 

SOFz may tend to be large because trend has a large 

scale of fluctuation. 

For a target site with sufficient CPTs, it is 

recommended that its auto-correlation parameters can be 

estimated by analyzing the site-specific CPT data 

(transfer learning of auto-correlation is not necessary). 

For a target site without sufficient CPTs, it is 
recommended that the transfer learning of auto-

correlation can be conducted: SOFz and z of the target 

site may be chosen based on the ranges in Table 3, 

whereas the ratio SOFh/SOFz can be chosen based on the 

ranges in Figure 14. The most updated reference for soil 

statistics is Phoon et al. (2024a). 

4. Stratification challenge 

The purpose of stratification is to delineate soil layers 

based on limited site-specific data. In the literature, the 

soil-layer delineation has been addressed by two types of 
methods: 

• Domain-based methods: For these methods, the soil 

types at unexplored locations (domain) are simulated 

based on limited site-specific data. The coupled 

Markov chain (CMC) methods (e.g., Qi et al. 2016; 

Li et al. 2019; Varkey et al. 2023) and Markov 

random field (MRF) methods (e.g., Li et al. 2016; 

Zhao et al. 2021; Wei and Wang 2022) are two 

examples. Figure 15 shows the locations and soil-

type data of the boreholes at a site in Perth city, 

Australia. There are only 6 boreholes within an area 

of 40 m  70 m, and the task is to delineate the soil 

layers at unexplored locations. This site was 

analyzed by Qi et al. (2016) using the CMC method 

(Elfeki and Dekking 2001). Based on the observed 

soil-type data at the boreholes, the CMC method can 

simulate the soil types at unexplored locations using 

the Markov chain theory. Figure 16 shows one 

realization of the simulated soil types. More recently, 
machine learning methods are also adopted to learn 

the patterns in a “training image“ of geological 

formation and subsequently to simulate soil types at 

unexplored locations based on the learned image 

patterns. This can be achieved by multiple-point 

geostatistics (MPG) method (e.g., Caers and Zhang 

2004; Hu and Chugunova 2008; Shi and Wang 

2021a) or by other methods such as convolutional 

neural network (CNN) (e.g., Shi and Wang 2021b). 

Figure 17a shows a training image from a training 

site, and Figure 17b shows the borehole data at a 
target site. It is assumed that the geological 

formation patterns of the training and target sites are 

similar. The MPG or CNN method can learn the 

patterns in the training image (e.g., Figure 17a) and 

then simulate soil types at unexplored locations (e.g., 

Figure 17b). The simulation result (the most 

probable stratum) based on the CNN method (Shi 

and Wang 2021b) is shown in Figure 17c. 

 

  
(a) Borehole locations 

  
(b) Soil-type data at boreholes 

Figure 15. Soil-type data of the boreholes at a site in Perth city, 
Australia (from Qi et al. 2016). 
 

• Boundary methods: These methods assume that the 

depth of the boundary between two soil layers is a 

continuous function (e.g., Figure 18a), and the 

purpose is to simulate the depths of the boundary at 

unexplored locations. Boundary methods are ideal 

for a boundary whose depth is a continuous function. 

For instance, Zhang and Dasaka (2010) modelled the 

depth of the soil-bedrock boundary as a 2D random 

field. Boundary methods can also handle problems 



 

with multiple boundaries (e.g., Cao and Wang 2013; 

Xiao et al. 2017), e.g., there are two boundaries in 

Figure 18a. However, boundary methods can only 

deal with regular continuous soil-layer boundaries 

such as those in Figure 18a. It is not clear how to deal 

with diminishing boundaries and lenses in Figure 

18b. Possibly due to this reason, boundary methods 

are not as popular as domain methods. Most recent 
advancements for stratification are for domain 

methods. 

 
Figure 16. Realization of soil types at unexplored locations 
using the CMC method (from Qi et al. 2016). 

 

 
(a) Training image 

 
(b) Borehole data 

 
(c) Most probable stratum 

Figure 17. Illustrations for the CNN method using the training 

image (source: Shi and Wang 2021b). 

 

Most soil-layer delineation methods (e.g., CMC, 
MRF, and training-image methods) can only adopt soil-

type data at boreholes (sand, silt, clay, etc.) as input. 

However, a routine geotechnical site investigation 

program usually consists of multiple information (the “M” 

aspect in MUSIC-3X). These soil-layer delineation 

methods cannot consider other types of site-specific data 

such as CPT data, Atterberg limits, water content, SPT N, 

VST (vane shear test), PMT (pressuremeter test), DMT 

(dilatometer test), and SASW (surface wave 

measurements) as inputs. The multivariate data obtained 

from these tests may be correlated to the soil types (e.g., 

SPT N values for clays are typically less than those for 

sands). It is desirable to develop new soil-layer 
delineation methods that can combine all available 

multivariate site investigation data from various types of 

tests to conduct soil-type simulation. 

 

       
 (a) Regular boundaries    (b) Diminishing boundary & lenses 

Figure 18. Illustration of soil-layer boundaries (from Xiao et al. 
2017) 

5. Concluding remarks 

This paper reviews some recent advancements that 

address the challenges faced by the area of data-driven 

site characterization (DDSC), including the ugly-data 

challenge, site-recognition challenge, and stratification 
challenge. These challenges have been addressed to a 

certain amount of success, but there are still unresolved 

issues yet to be addressed. Some unresolved issues haven 

been discussed above, but there are some important 

issues that are not yet discussed: 

• The need for databases: DDSC requires learning 

from real data, so it is necessary to compile large 

databases for cross-correlation, auto-correlation, and 

stratification. ISSMGE TC304 has initiated the 

effort of compiling databases (named 304dB, 

http://140.112.12.21/issmge/tc304.htm?=6) for 

cross-correlations and auto-correlations. For auto-
correlation databases, besides 304dB providing 

some CPT data for some sites, the New Zealand 

Geotechnical Database (https://www.nzgd.org.nz/) 

contains a large number of CPTs conducted in New 

Zealand. For stratification, there are not a lot of 

databases around. In the opinion of the authors, the 

current compilation of databases is far from enough. 

For cross-correlation databases, there is a need to 

cover more common soil/rock parameters. For auto-

correlation databases, there is a need to cover more 

regions. For stratification databases, there is a need 
to initiate the compilation. 

• Computational cost: Realistic DDSC problems are 

3D. For 3D problems, the computational cost can 

become a major challenge. Assumptions (such as 

Assumptions #1 and #2 in Section 2.2.1), advanced 

algorithms, and advanced computing methods may 

be needed to accelerate the computation. Currently, 

http://140.112.12.21/issmge/tc304.htm?=6
https://www.nzgd.org.nz/


 

these assumptions are “plausibly assumed” without 

supporting evidences. There is a need to verify these 

assumptions. 

• Software: All research efforts taken in DDSC may 

not propagate to geotechnical engineering practice if 

they are not converted into useful and reliable 

software. There is a need to initiate/accelerate this 

conversion. 

• In machine learning, benchmarking is used to 

compare tools and identify the best-performing ML 

solutions in the industry. This competition is 

expected to expedite development of real-world 

solutions. Phoon et al. (2022b) established the first 

set of benchmark examples for Project DeepGeo. 

The purpose of Project DeepGeo is to produce a 3D 

stratigraphic map of the subsurface volume below a 

full-scale project site and to estimate the governing 

engineering properties and soil type at each spatial 

point based on actual site investigation data and 
other relevant Big Indirect Data (BID) (Phoon and 

Ching 2021). However, the first set of benchmark 

examples only provides site-specific data for 

training; it does not provide data from “similar” sites 

in BID (Phoon et al. 2022b). It does not include the 

responses of geotechnical structures (monitoring 

data) as well. That is, it is not a benchmark example 

for machine learning guided observational method 

(MLOM) (Phoon and Shuku 2024). 

• Other challenges: Phoon et al. (2024b) proposed a 

new taxonomy of site data under “4S” to expand the 

agenda for future research beyond site 
characterization. The “4S” are site generalizations, 

spatial features, sampling characteristics, and smart 

data. For first “S”, the concept of a “site” is 

fundamental in geotechnical engineering, but the full 

extent of its complexity is still unfolding. Current 

research is already pointing to the concept of a “data 

discovered site”, rather than a conventional 

definition based on a project site boundary. For the 

second “S”, the most analysed spatial feature in 

geotechnical engineering is spatial variability. But 

spatial features can encompass geotechnical 
properties, geological features, ground improvement 

structures, and environmental processes (hydro, 

thermal, transport, etc.). They are basically 3D 

functions of space (or 4D when time is included) that 

influence the behaviour of a geotechnical structure 

constructed on or in a spatial domain. For the third 

“S”, MUSIC-3X is an initial attempt to describe the 

attributes of geotechnical data found in a typical site 

investigation report. However, it does not cover 

other data attributes such as categorical data. The 

diverse sampling characteristics associated with 

different data sources pose challenges to data fusion 
methods. For the fourth “S”, smart data is defined as 

actionable data at the point of collection. In contrast, 

conventional data are compiled and analysed in 

batches. Clearly, timely decisions cannot be made in 

the batch processing mode. The strategy to 

maximize the value of data in the presence of 

Internet of Things (IoT) is not likely the same as 

conventional monitoring instruments. The contours 

of a possible Value of Smart Information (VoSI) 

framework are not defined at this point, but a good 

start is to imagine how to extract more value from 

conventional monitoring instruments that can talk to 

each other by building intelligence into every stage 

of the data processing chain. VoSI is expected to be 

an integral part of machine learning guided 

observational method (MLOM) (Phoon and Shuku 

2024). 
Machine learning in geotechnics should be approached 

with an appropriate balance of three elements: (1) data 

centricity, (2) fit for (and transform) practice, and (3) 

geotechnical context. This agenda underpins a new 

interdisciplinary field termed “data-centric geotechnics” 

(Phoon and Ching 2021; Phoon et al. 2022c). An 

algorithm is not an end in itself. It is a means to actualize 

data-centric geotechnics, in which data-driven site 

characterization is one important application area. The 

explosive rise of digital technologies presents many 

opportunities to transform geotechnical practice at the 

Type 3 level (disruptive) (Phoon and Zhang 2023). More 
research in collaboration with the industry and 

government agencies is urgently needed. 
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