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Summary. This contribution provides a detailed analysis of the differences related to moving 

mass problems regarding the comparison of one and two moving masses. It has been proven 

that instability of one moving mass can only occur in the supercritical velocity range 

irrespectively of the type of the supporting structure. Additionally, damping in the supporting 

structure always shifts the onset of instability to higher velocity values. However, when two 

moving masses are under consideration, the situation can be completely different regarding the 

onset of instability and damping influence. For shorter distances between masses, the dynamic 

interaction between moving inertial objects can reverse the damping influence and instability 

can occur in the subcritical velocity range. Some preliminary results are presented in the 

previous author’s works; however, more analyses are still required, specifically for the three-

layer model. 
 

1 INTRODUCTION 

Moving load problems belong still to very active fields of research. Applications related to 

rail transport which is nowadays a preferential mode of transport due to its ability to reduce the 

CO2 footprint have recently received more attention. Increasing the speed of today's trains to 

meet demands on rail network capacity, as well as passenger expectations on reduced travel 

times without compromising their comfort, challenges the stability conditions. The instability 

of moving inertial objects as the anomalous Doppler effect is a physical phenomenon known 

for years. Several works of the author of this article show that the instability of one moving 

mass can only occur in the supercritical velocity range. The critical velocity in this context, also 

known as the critical velocity for resonance, corresponds to the critical velocity of a moving 

force which is equal to the lowest phase wave propagation velocity in the foundation. When the 

force moves at this velocity, then in the absence of damping the deflection tends to infinity. The 
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possibility of instability of a moving vehicle was somehow overlooked because it was proven 

that a single moving mass or an oscillator can only achieve unstable behaviour in the 

supercritical velocity region, and because this region is a priori excluded from track design, the 

question of instability has not been found important. However, the instability of two moving 

masses does not respect such condition, [1-4].  

This contribution concerns layered railway track models, which are very popular for their 

simplicity and computational efficiency. The results obtained by their use have an acceptable 

agreement with complex 3D models [5].  

The present paper summarizes conditions under which instability of moving proximate 

masses occur in subcritical velocity range and what the influences of model parameters, within 

their allowable ranges which are detailed in [6], are. It is necessary to highlight that there are 

two important facts: first, the fact that the instability can occurs in subcritical velocity range is 

very dangerous, because the track design usually consider the limits in form of the critical 

velocity; second, the fact that the foundation damping can worsen the situation is also 

dangerous, because intuitively, one would increase the damping to stabilize the moving object. 

2 PROBLEM DEFINITION 

One of the models considered in the present paper is depicted in Figure 1. This is a three-

layer model consisting of a beam and supporting layers. The layers contributing to the overall 

behavior by their inertia are the sleeper and ballast layer. Their mass is represented in Figure 1 

as point mass, but for the sake of simplicity it is introduced into the governing equations in its 

distributed form. The model also has three viscoelastic layers representing from the top the 

railpads, ballast and foundation layers. Also, here the parameters are introduced in their 

distributed version. The shear stiffness is attributed to the ballast layer.  

 

Figure 1: Thee-layer model traversed by two moving masses. 

All results are presented using dimensionless parameters, which admissible ranges are 

detailed in [6]. Instability is analyzed with the help of so-called instability lines which are traced 

directly in the plane of velocity-moving mass ratios by identifying the real-valued induced 

frequencies, which in a damped case obligatorily alter by one the number of unstable induced 
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frequencies, so that stable and unstable velocity intervals are clearly visible for any specific 

moving mass ratio. The usage of the D-decomposition method commonly implemented by other 

researchers is avoided. 

In order to clearly state if the tested velocity is sub- or supercritical, the critical velocity must 

be uniquely determined. In a one-layer model, there is an analytical formula for one unique 

always valid value of the critical velocity. In the two-layer model, there are generally three 

resonances, two of which indicate critical velocities and one the so-called false critical velocity, 

[2-4]. Cases where there is only one resonance can be delimited by the range of dimensionless 

parameters of the model. If the shear resistance of the model is neglected and the action of the 

axial force is not considered, then the critical velocities can be determined analytically. In the 

three-layer model the situation is more complicated. There should be generally five resonances, 

three of which should indicate critical velocities and two the so-called false critical velocities. 

Cases with irregular behavior are generally difficult to predict, [6]. Sometimes it is possible to 

replace a critical velocity by a so-called pseudocritical velocity, however, sometimes there is 

no indication that the number of critical velocities could be completed. 

3 ONE-LAYER MODEL 

In a one-layer model, the situation is quite simple. This model does not have all layers as the 

one in Figure 1. In fact, there is only a foundation layer, so the model is just a beam on 

viscoelastic foundation. It can contain a shear layer, or equivalently the Pasternak modulus. 

Neglecting the shear stiffness and effect of the axial force, the critical velocity in dimensionless 

form equals unity. Then, there are almost no parameters to vary and analyze. It is only the 

foundation damping and the distance between masses. Conclusions are therefore simple to 

draw. In Figure 2 the case of one moving mass is plotted as a reference. It can be concluded 

that by decreasing the damping the instability curves are monotonically decreasing so that lower 

moving mass rations are affected by unstable behavior. No unstable case can be detected in the 

subcritical velocity range. Increased damping has positive influence, very low damping has a 

vertical asymptote that is approaching the critical velocity. This behavior was already reported 

by other researchers, [7], it is not a new finding. 

 

Figure 2: Instability lines for one moving mass traversing a one-layer model: different curves correspond to a 

different damping ratio f  with values as indicated in the legend.  
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Nevertheless, when two moving masses are considered, then there are several distances that 

induce instability in subcritical velocity range. These situations are plotted in Figure 3. Different 

parts of Figure 3 correspond to different damping levels. It is seen that with increased damping 

the instability lines are getting lower, which is exactly the opposite effect as for one moving 

mass. 

Graphs in Figure 3 are limited to the moving mass ratio 200M =  because higher values are 

not realistic. Velocity ratio   is extended slightly further into supercritical velocity range for 

better clarity. It is seen that until 0.25f =  the dimensionless distance 2.25d =  and higher does 

not induce any danger. Instability lines branches do exist, but 
M  values are unrealistic. From 

higher distances these branches do not exist anymore.  
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Figure 3: Instability lines for two moving masses traversing a one-layer model: different curves correspond to a 

different dimensionless distance d  with values as indicated in the legend. CV indicates the critical velocity; a)-f) 

are related to 0.05 : 0.05 : 0.3f = . 

It can be concluded that when the masses are quite apart, then instability can occur only in 

the supercritical range as for one moving mass. However, the instability lines have generally 

more branches and sometimes their behavior is quite strange. On the other hand, it was 

demonstrated that the lowest distance does not correspond to the worst-case scenario. 

4 TWO-LAYER MODEL 
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Figure 4: Instability lines for two moving masses traversing a two-layer model: different curves correspond to a 

different dimensionless distance d  with values as indicated in the legend. CV indicates the critical velocity; a)-

e) are related to 0.1: 0.05 : 0.3f = . 

The general tendencies exemplified in the previous section are preserved on the two-layer 

model as well. Nevertheless, now there are more parameters to vary. It has been verified that 

the worst situation is related to the lowest sleeper layer mass ratio 1s = . Foundation damping 

ratio f  has more influence than the rail pad layer damping ratio p  and the rail pad layer 

stiffness ratio p  is not very important. This is exemplified in Figure 4. 

Regarding the critical velocity, there should be three resonances, two identifying the critical 

velocity and one the false critical velocity. When the shear stiffness and axial force are 
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neglected, critical velocities can be solved analytically. Then it is easy to identify the region 

with only one resonance where it is necessary to add the pseudocritical value. More details are 

given in [4]. It is of note that the region of irregular situations is located close to the boundary 

of admissible values, namely for low rail pad layer stiffness ratio p . 

5 THREE-LAYER MODEL 

In the three-layer model, as indicated in [6], the question regarding the critical velocity itself 

is not sufficiently clarified, and this problem has not been analyzed by other researchers either. 

The expected five resonances, which should clearly indicate three critical velocities and two 

false critical values, occur in a limited number of regions of the entire range of admissible 

parameters. Moreover, it is not easy to analytically determine the separations between these 

regions. There are several cases where the role of the lowest critical velocity must be played by 

a pseudocritical value that can be determined by parametric analysis but also cases with three 

resonances where the pseudocritical velocity does not exist, and these cases are difficult to 

distinguish a priori. Parametric analysis does not always solve the problem of pseudocritical 

velocities because extreme displacements may not be very well pronounced and then the 

determination of the pseudocritical value can be ambiguous, as demonstrated in [6]. This 

usually happens further from the region of five resonances. Several examples of such behavior 

are shown in [6]. The way proposed in the present paper is connected to the fact that instability 

of one moving mass cannot occur in subcritical velocity range, therefore it is possible to 

implement negligible damping and search for the lowest vertical asymptote of the 

corresponding instability line.  

Having settled the problem of the critical velocity, it is now possible to analyze the 

combination of parameters for which instability occurs in the subcritical velocity range. As for 

the two-layer model, mass ratios are kept at their lowest admissible values: 1s = , 2b = . An 

illustrative case is selected, and the corresponding graphs are plotted in Figure 5. Moving mass 

ratio is again limited by 200M = . 
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Figure 5: Instability lines two moving masses traversing a three-layer model: 1s = , 2b = , 3p = , 

0.15p b f  = = = . Each curve corresponds to different b  starting from bottom with 0.04b =  and following 

the logarithmic scale 
( )1 0.05

0.04 10
j

b
−

=  ; parts a)-j) correspond to 1.25 : 0.25 : 3.5d = .  

For better clarity, instability lines are plotted only in the subcritical region, however, it is of 

note that these values are different for different combination of stiffness parameters p  and b . 

The scale is maintained in all subfigures for better comparison. It can be concluded from Figure 

5 that only for larger distances between the masses the instability lines occupy some region in 

the subcritical velocity range, while for shorter distances they are more vertical and thus 

reaching unrealistic values very close to the critical velocity. On the other hand, the number of 

curves is decreasing with increasing distance and thus only low values of b  are contributing. 

It is also possible to study the influence of other parameters and confirm the negative effect of 

increased damping, but these cases are omitted here due to the restrictions on paper length. 

6 CONCLUSIONS 

This contribution presents a detailed analysis of the combinations of parameters that induce 

instability of two moving proximate masses in the subcritical range of velocities when masses 

are traversing a layered model of the railway track. One- two- and three-layer models are 
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considered. Several illustrative graphs of instability lines show the influence of parameters in 

the selected tested scenarios. Due to the large number of parameters, it is quite difficult to draw 

general conclusions on the three-layer model, because instability lines are not monotonic and 

can have several branches. Nevertheless, it was demonstrated that in order to instability occur 

in subcritical velocity range, all ratios, masses and stiffnesses, should be low. As far as the 

distance between masses, it should also be low, but here the relation is not monotonic, the 

lowest does not necessarily mean the worst. As far as damping is concerned, contrary to one 

moving mass, foundation damping always worsens the situation in the subcritical velocity 

range.  

ACKNOWLEDGEMENTS 

The author acknowledges Fundação para a Ciência e a Tecnologia (FCT) for its financial 

support via the project LAETA Base Funding (DOI: 10.54499/UIDB/50022/2020). 

REFERENCES 

[1]  Dimitrovová, Z. 2021. “Dynamic interaction and instability of two moving proximate 

masses on a beam on a Pasternak viscoelastic foundation”. Applied Mathematical 

Modelling 100:192-217. https://doi.org/10.1016/j.apm.2021.07.022  

 

[2]  Dimitrovová, Z. 2022. “Two-layer model of the railway track: analysis of the critical 

velocity and instability of two moving proximate masses”. International Journal of 

Mechanical Sciences 217:107042. https://doi.org/10.1016/j.ijmecsci.2021.107042  

 

[3]  Dimitrovová, Z. 2023. “On the Critical Velocity of Moving Force and Instability of Moving 

Mass in Layered Railway Track Models by Semianalytical Approaches”. Vibration 

6(1):113-146. https://doi.org/10.3390/vibration6010009 

 

[4]  Dimitrovová, Z. 2023. “Instability of Vibrations of Mass(es) Moving Uniformly on a Two-

Layer Track Model: Parameters Leading to Irregular Cases and Associated Implications 

for Railway Design”. Applied Sciences 13(22):12356. 

https://doi.org/10.3390/app132212356. 

 

[5]  Rodrigues, A. F. S., Dimitrovová, Z. 2021. “Applicability of a Three-Layer Model for the 

Dynamic Analysis of Ballasted Railway Tracks”. Vibration 4(1):151-174. 

https://doi.org/10.3390/vibration4010013  

 

[6]  Dimitrovová, Z., Mazilu, T. 2024. “Semi-analytical approach and Green's function method: 

a comparison in the analysis of the interaction of a moving mass on an infinite beam on a 

three-layer viscoelastic foundation at the stability limit - the effect of damping of 

foundation materials”. Materials 17(2):279. https://doi.org/10.3390/ma17020279  

 

[7] Metrikine, A. V., Dieterman, H. A. 1997. “Instability of vibrations of a mass moving 

uniformly along an axially compressed beam on a visco‐elastic foundation”. Journal of 

Sound and Vibration 201:567–576. https://doi.org/10.1006/jsvi.1996.0783  

https://doi.org/10.1016/j.apm.2021.07.022
https://doi.org/10.1016/j.ijmecsci.2021.107042
https://doi.org/10.3390/vibration6010009
https://doi.org/10.3390/app132212356
https://doi.org/10.3390/vibration4010013
https://doi.org/10.3390/ma17020279
https://doi.org/10.1006/jsvi.1996.0783

