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ABSTRACT  

Capturing the spatial variability in soil is crucial for ground response analyses in the context of seismic hazard mitigation. 

The lateral variability in thickness and properties of the different soil layers is one of the main factors that determines the 

variability of the ground motion spectrum from one location to another. The absence of such lateral variability information 

in the subsoil in between the locations of Cone Penetration Tests (CPTs) may be compensated by the use of more densely 

sampled seismic data. In this research we aim to derive a shear-wave velocity field through seismic full-waveform 

inversion that yields a model resolution approaching that of high-resolution seismic CPT surveys. Following this, a data-

driven correlation between geophysical and geotechnical information is attempted through the application of new 

machine-learning-based approaches. 
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1. Introduction 

Integrating the knowledge from geophysical and 

geotechnical investigations is beneficial for a detailed 

understanding of the subsurface. Seismic methods have 

been widely used for earthquake seismic site response 

analysis. Multi-channel analysis of surface waves 

(MASW) is a popular method that has been used to obtain 

the shear-wave velocity (Vs) distribution in soil layers 

(Park, Xia and Miller 1999; Foti, Picozzi and Albarelle 

2011). Vs is a crucial parameter in site response analysis, 

together with soil properties that capture the nonlinear 

soil behavior under seismic loading, as obtained from 

dynamic tests in the laboratory. MASW essentially offers 

a one-dimensional Vs structure derived from the surface-

wave dispersion information. Besides being essentially 

one-dimensional, the reliability of the MASW-derived Vs 

rapidly decreases with depth.  

In recent years, seismic full-waveform inversion 

(FWI) has gained the attention of the near-surface 

geophysical community as a powerful tool for imaging 

soil variability. FWI using shear waves is especially 

attractive for geotechnical engineering applications. 

However, successful use of FWI using shear waves is 

generally challenging due to the high cost of forward 

modelling of shear waves propagating in soft, low- 

velocity soil layers. The very small wavelengths of shear 

waves in low-velocity soil layers do contribute to very 

high resolution (Ghose 2003; Ghose and Goudswaard 

2004), though modelling such wave propagation calls for 

a very fine spatial discretization, and therefore significant 

computational costs. Furthermore, factors such as the 

lack of a good starting model, cycle skipping due to the 

absence of very low frequencies in data, and attenuation 

of the high frequencies in soft soil, all make near-surface 

FWI a challenging task. To overcome these challenges, 

significant efforts have been made in recent years to 

improve FWI schemes. 

Additionally, for dynamic site response analyses, one 

needs – in addition to soil stratigraphy – several in-situ 

soil properties, which are typically obtained from cone 

penetration tests (CPTs). Cone-tip resistance (qc) is used 

to obtain the undrained shear strength of saturated 

cohesive soils and the friction angle of sands. CPTs 

provide very detailed soil variability information in the 

vertical direction, which is crucial in designing 

foundations, assessing the risk of soil liquefaction, and 

understanding the bearing capacity of the soil, among 

others (Kruiver et al. 2021). Many past studies have 

shown that Vs and qc exhibit correlation with each other 

in the near-surface soils. Using the available SCPT 

database for the Groningen region of the Netherlands, we 

have also found such a correlation, as illustrated in Fig. 

1. High qc generally corresponds to high Vs values. 

 

 
Figure 1. SCPTs from Groningen, the Netherlands 

(https://www.dinoloket.nl/). The blue lines denote the Vs 

values, and the red lines are the qc values at the same location. 
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The goal of the present study is to design FWI 

workflows in order to retrieve 2D and 3D high-resolution 

Vs fields, overcoming the above-mentioned challenges, 

and to subsequently derive site-specific correlations 

between Vs and qc through novel approaches utilizing 

machine learning (ML).  

2. FWI of shallow pseudo-observed 
seismic data 

FWI is a nonlinear inversion approach used in 

computational geophysics for subsurface imaging and 

elastic parameter estimation. FWI addresses an ill-posed 

problem, causing the inversion to fall into a local 

minimum in the solution space, which may differ 

significantly from the global minimum (Virieux and 

Operto 2009). Substantial research efforts have been 

directed toward mitigating this problem using new misfit 

functions and advanced optimization algorithms. 

Metivier et al. (2016) proposed optimal transport (OT) 

distance as the misfit function. The advantage of OT over 

traditional misfits, such as the Euclidean norm, is the 

convexity of the optimal transport distance with respect 

to the time shift between two oscillatory signals. It is 

known that the phase differences between the calculated 

and observed seismograms are one of the causes of the 

cycle-skipping problem. Performing the optimization 

process using OT generally yields a solution which is 

closer to the global minimum, though at extra 

computational cost.  

We use the spectral element method to generate 

accurate synthetic seismograms employing the advanced 

python toolbox Salvus (Afanasiev et al. 2019). The 

model representing the shallow subsoil (Fig. 2) is derived 

from multiple high-quality SCPTs (depth sampling 25 

centimeter) that were performed earlier up to 30 meter 

depth at a test site (Ghose, 2007). This model is used in 

viscoelastic forward modeling to generate pseudo-

seismic data representing the field data. For the source 

time function, we use the first derivative of a Ricker 

wavelet with a dominant frequency of 40Hz. The 

frequency band in the data is 0-80 Hz, which is realistic 

for shear waves at soft-soil sites. We add random noise 

to the seismic data. For the initial VS model for FWI, we 

use a highly smooth version of an actual (field-measured) 

SCPT-derived VS profile from a central location at the 

test site.  We assume that this single SCPT is available a-

priori; our goal is to extract subsoil lateral variability 

away from this SCPT location. Initial models for density 

and compressional wave velocity (Vp) needed for elastic 

wave propagation simulation are obtained from the initial 

VS model using suitable empirical relations.  

We perform FWI in a multistep manner. We tune the 

FWI workflow to capture both lateral and vertical Vs 

variabilities. As an input hyperparameter, the OT misfit 

requires the maximum expected time shift between the 

modeled seismograms and the observed data. By 

reducing this time shift as the inversion progresses, we 

increase the resolution and accuracy of the inverted 

model. In Fig. 2 the positions of the actual SCPTs 

(separated by 25 meters from each other) are shown. Fig. 

3 shows the initial 1-D velocity model obtained by 

smoothing SCPT #3 (Fig. 2). Figs. 4, 5 and 6 show the 

inversion results in 2-D, the difference ΔVs between the 

true and inverted model, and the result in 1-D, 

respectively. 

The inverted Vs model (Fig. 6) shows that the Vs 

variability in the high-density SCPT data is resolved 

remarkably well by the specially tuned FWI; mainly, the 

low-velocity zones in the upper 20 meters are very well 

captured; these layers are absent in the initial velocity 

model. These low-velocity peat and clay layers would 

significantly influence the ground shaking due to an 

earthquake. At greater depths, the resolution of the 

inverted model decreases partly due to high seismic 

attenuation. Nevertheless, the main geological features at 

these depths are mostly retrieved by FWI. Because Vs is 

three times higher than that at the shallower depths, the 

wavelengths are relatively large at greater depths, which 

adds to the loss of resolution.  

Because the VS in soft soils can be very low and 

highly heterogeneous, fitting seismic waveforms from a 

poor starting model is generally challenging due to cycle-

skipping. Our results show that, with some extra 

computational time and proper tuning, the OT cost 

function in FWI is powerful in solving the cycle-skipping 

problem at the scale of near-surface seismic imaging. 

 

Figure 2. The “true” Vs model obtained by interpolating 

between 5 actual SCPTs. This model is used to derive the 

pseudo-observed seismic data. The horizontal separation 

between the SCPTs is 25 meters. 

Figure 3. Initial 1-D VS model derived by heavily smoothing 

VS profile from SCPT #3. This is the input model for FWI. 

Figure 4. Inverted 2-D velocity model by FWI. 

Figure 5. Difference between the true and inverted model. 

 

  



 

 

Figure 6. Inverted 1-D Vs profiles to check the accuracy and 

resolution of FWI to capture the lateral variability in the soil: 

the black lines denote the true Vs values at the locations of the 

SCPTs, the green lines are the initial Vs values (same at all 

locations), and the red lines are the inverted Vs values, using 

the pseudo-observed seismic data. 

3. Deriving qc from Vs 

In the past, empirical correlations between Vs and qc 

were found in numerous field studies. Such correlations 

also considered the effect of factors such as soil density, 

soil type, overburden pressure, and effective stress. These 

earlier correlations were mostly derived through 

regression analysis. More recently, pattern recognition 

and machine learning techniques have been used in 

determining such correlation. 

Having explored the potential of elastic FWI to 

capture reliably the fine-scale Vs variability in the near 

surface soil layers as discussed above, in the next step we 

make use of the SCPT database from Groningen, in order 

to investigate the feasibility of predicting qc from Vs 

through the special adaptation of machine learning (ML) 

approaches. The utilized database consists of 45 

irregularly distributed SCPTs in Groningen. Using this 

information, we create a new database containing high-

quality Vs profiles, spatial coordinates of the SCPTs, and 

relevant geological information. Geological information 

is obtained from TNO's 3-D GeoTOP model for the 

Dutch subsurface. The information is organized in 

vectors, each one containing the name of the SCPT, Vs, 

X and Y coordinates, the maximum depth to which 

measurements were conducted, and the geology 

expressed as a Boolean vector to indicate at each depth 

which lithology is more likely; e.g., clay, sandy-clay, 

gravel, etc. For each depth level, we define the feature 

vector 𝒗𝑓 as: 

 

𝒗𝑓 = [𝑉𝑠, 𝑋, 𝑌, ℎ, 𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5, 𝐿6, 𝐿7, 𝐿8 ]𝑇 .  (1) 

 

In Equation (1), Vs is the shear-wave velocity at a 

specific depth level, X and Y are the spatial coordinates 

of the SCPT, h is the actual depth level, T denotes 

transpose, and the L features correspond to the most 

likely lithology at that depth level. These features are 

expressed as one-hot vectors. This means that from the 8 

possible values at each depth level, one element takes on 

the value of 1, and the others are set to 0. This applies for 

all the SCPTs at every depth level defined in the data. 

This new dataset serves as the training dataset for 

ML. The target of the prediction is qc. A common pre-

processing step before splitting the data for training, 

validation, and ML tests is to normalize the values so as 

to have the input vectors on a standard scale and to 

facilitate the training of a chosen ML algorithm. 

Moreover, we exclude some SCPTs that are judged as 

outliers. Fig. 7 illustrates the locations of the SCPTs in 

the province of Groningen. The average distance between 

the SCPTs exceeds 200 m.  

We adapt three different ML techniques: Support 

Vector Regressor or SVR (Boser, Guyon, and Vapnik 

1992), Random Forest Regressor or RFR (Breiman 

2001), Extreme Gradient Boosting or XG Boost (Chen 

and Guestrin 2016). These algorithms are tested using the 

Python toolbox Scikit Learn. GroupKfold cross-

validation was used to avoid overfitting in the training 

process. A total of 5 Kfolds were used during the 

validation stage, and 3 SCPTs were set aside for testing. 

We conduct a random search to determine the best 

hyperparameters leading to each technique's highest 

prediction accuracy. For this, we select a sufficiently 

large range of possible hyperparameters for each 

technique. Then we train the data and select the 

hyperparameters that yield the best possible predictions. 

Figs. 8, 9, and 10 show the results of the qc predictions 

at locations that are not used in the training. The label on 

top of each figure denotes the SCPT used for the 

prediction. The locations of the SCPTs used for training 

and prediction are shown in Fig 11. 

 

Figure 7. SCPT database from Groningen. Top: locations of 

SCPTs in the northern tip of the Netherlands. Bottom: 

zoomed-in area in Groningen, marked in the top figure. 

 



 

Figure 8. True and predicted qc using XG Boost algorithm.  

Figure 9.  True and predicted qc using the RFR algorithm. 

  

Figure 10. True and predicted qc using the SVR algorithm. 

Figure 11. SCPT locations for training and prediction in the 

northern Netherlands. Blue dots - SCPTs used for training. 

Red dots - SCPTs used for prediction (Figs. 7-9). 

 

At the locations (red dots) shown in Fig. 10, we have 

successfully predicted qc with reasonable accuracy. The 

coefficient R2 is used as a measure of accuracy. We find 

that XG Boost offers the best results among the three 

tested ML methods. XG Boost requires less computation 

time than SVR. It is important to note that, in spite of the 

considerable distance between the SCPTs, the very large 

size of the region in which the SCPTs are located and the 

ML algorithms are trained, our adaptation of the ML 

techniques offers a good prediction of qc. If such a 

prediction is performed in a site-specific manner, we 

anticipate the accuracy to be higher. 

4. Conclusions 

In this research, we have investigated the possibility 

of adapting advanced FWI and ML approaches to capture 

lateral variability in the near-surface soil layers and in 

soil properties that affect local seismic site response. 

Shear-wave seismic data can be inverted to derive a Vs 

field with a resolution that approaches that of SCPTs. 

This high resolution and accuracy are necessary to 

translate, in the next step, Vs to qc. Special adaptations of 

FWI have addressed the computational and technical 

challenges. Moreover, appropriate ML techniques can be 

designed in order to achieve reasonable qc predictions 

from the Vs. In the next phase of this research, we will 

test the developed methodologies on field-seismic and 

CPT databases from Groningen, where induced 

seismicity is a major concern. 
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