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Summary. An innovative approach, which is based on the combined use of the R-functions the-
ory and the Ritz method, is proposed as an effective mean for studying the postbuckling response
of variable stiffness plates. This formulation allows any complex geometry to be handled in a
meshfree framework. In this context, the potential of the elastic tailoring of VS laminates can be
exploited to obtain a better shaping of the stiffness distribution in a arbitrarily shaped domain,
where load concentrations are of concern. The attracting features of the proposed approach rely
on the reduced modeling time and the faster solution procedure due to the asymptotic approach.
These benefits are illustrated with two exemplary test cases, where comparison in shown against
Abaqus simulations.

1 INTRODUCTION

Over the past years, innovative variable stiffness (VS) laminates, in which the fibers can vary
their orientation as a function of the planar position, have received increasing attention due
to their improved thermo-mechanical response [1]. These VS laminates are associated with an
increased number of degrees of freedom with respect to their straight-fiber counterpart. Fast
formulations based on the Ritz method are nowadays available [1–8]. However, one typical re-
striction regards the shape of the domain.
More advanced formulations are thus needed to explore the potential of the elastic tailoring of
VS laminates in the postbuckling field. In fact, complex domains are typically characterized by
undesired load concentrations, e.g. in correspondence of cut-outs, that can lead to structural
damages. In this context, the potential of VS laminates can be exploited to achieve a better
shaping of the stiffness distribution and to redirect the load path in the presence of these load
concentrations.
In addition, efficient analysis methods are of paramount importance to avoid a high compu-
tational burden: the asymptotic-numerical method (ANM) is a powerful strategy to overcome
this issue. Nonlinear problems are usually solved via predictor-corrector algorithms, such as
the Newton-Raphson routine. The solution process is incremental, meaning that the load is di-
vided in load steps and then an iterative procedure is carried out within each incremental step.
Therefore, at each iteration a linearized equation is solved. Such algorithms are very powerful
and well established, yet the computational time is still large with respect to linear problems.
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The ANM was proposed several years ago by Potier-Ferry and co-workers. In Ref. [11], the
asymptotic-numerical method was developed to compute perturbed bifurcations. In subsequent
works ([12–15]) the method was applied for the postbuckling solution of elastic plates and shells.
A more recent work [16] illustrates a complete bibliography of the ANM algorithm, including
application fields and many variants.
To meet the above mentioned issues, a semi-analytical formulation is presented, based on the
Ritz method, the asymptotic-numerical method and the R-functions theory [9]. R-functions are
here used to represent the panel geometry and to enforce the essential boundary conditions.
Complex domains can be modeled provided they are obtained from the composition of primitive
geometries. In addition, the R-functions are exploited to build the boundary functions for the
Ritz approximation. Any set of boundary and thermo-mechanical loading conditions can be
considered. Starting from the approach developed in [10], this work exploits the R-functions
theory to investigate the potential given by the elastic tailoring of VS laminates in the postbuck-
ling regime. Furthermore, the ANM is here combined with the Ritz strategy to further improve
the computational efficiency, obtaining both an efficient modelling approach and an effective
solution strategy.

2 FORMULATION

A formulation for the analysis of VS plates with complex geometries is presented hereafter.
Firstly, a brief introduction to the R-functions is given. They are used to represent the panel
geometry and enforce the boundary conditions. Furthermore, the plate model and the variable
stiffness distribution are presented. Also, the application of the R-functions in the context of
the Ritz method is discussed. Then, the asymptotic-numerical method is introduced.

2.1 R-functions theory

R-functions are functions whose sign is completely determined by the sign of their arguments.
From a real-valued function f = f(xi), its Boolean companion function F can be defined as:

F (S2(xi)) = S2 (f(xi)) S2(xi) =

{
0 xi < 0

1 xi > 0
(1)

being S2 the binary operator. One has to be able to construct at least one R-function per
branch, which is a group of R-functions sharing the same companion function. In this work, the
following set of functions is selected to have a sufficiently complete set:

x̄ = −x (negation ¬ x)

x ∧0 y = x+ y −
√
x2 + y2 (conjunction x ∧ y)

x ∨0 y = x+ y +
√
x2 + y2 (disjunction x ∨ y)

(2)

Complex domains can be constructed through the composition of primitive domains using the
operators defined in Eq. 2. By defining the i-th primitive domain as:

Σi = S2 (σi(xj)) (3)
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one obtains the function representing the domain as:

Ω = F (S2 (σi(xj))) Boolean

ω = f (σi(xj)) Real-valued

Hereafter, an example of the construction of a complex domain using the R-functions theory is
discussed. The domain is a rectangular plate with dimensions a and b and a circular hole of
radius R centered in (x0, y0). Three primitive domains are defined, see Figs. 1(a) - 1(c), whose
functions read:

σ1 =
a2 − x2

2a
σ2 =

b2 − y2

2b
σ3 =

1

2R

[
R2 − (x− x0)

2 − (y − y0)
2
]

(4)

The final domain, shown in Fig. 1(d), is obtained by combining the three primitive domains
through conjunction and negation operators:

ω = (σ1 ∧0 σ2) ∧0 σ3 (5)

(a) (b) (c) (d)

Figure 1: Complex domain construction: a) vertical strip; b) horizontal strip; c) circular hole; d) final
domain

2.2 Plate model

Variable stiffness laminates are considered in the present work. They are characterized by
variable in-plane properties, with the fiber orientation varying across the domain. The fiber
orientation is defined using Lagrange interpolation. A grid of points is considered, where the
orientation angles are specified at arbitrary positions of the domain. The orientation angle in a
generic point is evaluated as [17]:

θ(x, y) =

M−1∑
m=0

N−1∑
n=0

θmn

∏
m̸=i

(
|x| − xi
xm − xi

)
×

∏
n̸=j

(
|y| − yj
yn − yj

)
(6)

Linear variation along x and y is retrieved as a special case by using two points only. The plate
kinematics is modelled according to the First-order Shear Deformation Theory (FSDT). The
relevant equations are not reported here for the sake of brevity, but can be found in Ref. [18].
The nonlinear strain components are approximated here according to von Kármán theory.
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Figure 2: Fiber path

2.3 Numerical solution via Ritz Method

The numerical approximation refers to the Ritz method, which requires trial functions to be
part of a complete set and satisfy essential boundary conditions. In order to satisfy complete-
ness, Legendre polynomials are used. On the contrary, R-functions, that are null along the
domain boundaries, are exploited to construct boundary functions in order to enforce kinematic
boundary conditions. The generalized displacements are expressed as:

uk(x, y) = ωuk
(x, y)

[
ϕ(x)T ⊗ ψ(y)T

]
cuk

k = x, y, z

φα(x, y) = ωφα(x, y)
[
ϕ(x)T ⊗ ψ(y)T

]
cφα α = x, y

(7)

where cuk
and cφα are the Ritz unknown amplitudes, the vectors ϕ and ψ collect the polynomial

expansion, while ωuk
and ωφα are the boundary functions, whose expression depends on the

boundary condition to be imposed. In case of null displacement component along a portion or
the whole boundary, the boundary functions are obtained through a combination of primitive
geometries. If the edges are fully clamped, the boundary functions are set to be equal to the
function representing the panel domain. In case of free edges, the boundary functions are
taken equal to the unitary function. Differentiation of the boundary functions is carried out by
applying the chain rule.
Due to the arbitrariness of the domains at hand, particular focus is given to the integration
routine. The approach proposed in this work is based on the definition of a background mesh.
First, the domain is divided into smaller elements; then, an iterative procedure is carried out to
determine if the element is inside, partially inside or outside the domain. The element is halved
if it falls outside the domain by an amount larger than a predefined threshold. The procedure
is carried out until convergence is reached. Within each element, Gauss integration rule is used.
The integration domain of the example of Eq. 5 is depicted in Fig. 3.

2.4 Asymptotic-numerical method

The asymptotic-numerical method is applied in conjunction with the Ritz method to determine
the nonlinear solution. As opposed to classical predictor-corrector algorithms, the ANM em-
ploys an asymptotic expansion of the unknowns: the displacement u and the load parameter
λ are expanded through a power series with respect to the arc-length parameter α [12]. These
expansions are then substituted into the nonlinear equilibrium equations, obtaining a sequence
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(a) (b)

Figure 3: Background mesh: a) integration domain; b) zoomed region

of linear problems in the unknowns ui and λi. These problems share the same stiffness matrix,
so just one matrix factorization is required during the solution process. The complete analytical
representation of the nonlinear equilibrium path is obtained, as opposed to the point-by-point
representation of predictor-corrector algorithms. Both a displacement-based and a mixed formu-
lation can be introduced. The method is developed in the context of a continuation approach,
so the validity of the asymptotic solution is not restricted to the neighbourhood of the starting
point [13].
By assuming the existence of a critical point on the equilibrium path, (u1, λ1), the problem
unknown u and the load parameter λ are expanded, in the neighbourhood of a pre-buckling
solution (u0, λ0), in terms of a parameter α [13]:

u(α) = u0 + αu1 + α2u2 + ... (8)

λ(α) = λ0 + αλ1 + α2λ2 + ... (9)

where α is the linearized arc-length parameter. To guarantee consistency of Eqs. 8 - 9, the
following orthogonality conditions are added for p ≥ 2:

< up,u1 >= 0 (10)

where the operator < ·, · > represents the scalar product. By substituting Eqs. 8 - 9 in
the governing equations, a set of linear problems is obtained. The introduction of the Ritz
approximation in the linear problems and in the orthogonality conditions reads [12]:[

Kt(c1) c∗

c∗T 0

] [
cp
k

]
=

[
−
∑p−1

r=1 λrKgcp−r − FNL
p

0

]
(11)

where cp is the vector of unknown amplitudes of up, Kt(c1) is the tangent stiffness matrix at
the bifurcation point, which is singular, Kg is the geometric stiffness matrix, FNL

p is the Ritz
discretization of the right-hand-side, and c∗ = Kc1, where K is the elastic stiffness matrix. The
Lagrange multiplier k is introduced to avoid the singularity and obtain an invertible problem
[12]. By solving Eq. 11 the unknowns cp of the linear problems are found.
The perturbation algorithm detailed in the the previous sections allows one to determine the
nonlinear solution in a neighborhood of the bifurcation point. A continuation procedure is
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applied to obtain the remaining part of the branch. More details can be found in Ref. [14]. For
this purpose, a new starting point is defined inside the radius of convergence and the asymptotic-
numerical approach is reapplied.

3 RESULTS

This section outlines the results obtained using the R-function theory, along with the Ritz
method and the asymptotic-numerical approach, to prove the capabilities of the proposed for-
mulation. Two test cases are presented, in which laminates with different geometries, layups and
fibers’ orientations are analysed. The correctness of the results is checked against finite element
simulations conducted using Abaqus S4R elements. In the following analyses, all the generalized
displacement components are approximated using the same number of trial functions R × S.
The analyses are carried out by considering different numbers of functions to perform conver-
gence studies, while the integration grid and the number of integration points are specific for
each test case. Aim of this section is to illustrate the potential of the developed formulation in
handling complex domains, both from a geometrical perspective and for the enforcement of the
boundary conditions. To do so, different plate configurations, boundary and loading conditions
are investigated.
The material considered in the following analyses is a typical carbon/epoxy used in aerospace
applications, whose elastic properties are summarized in Tab. 1. Two different panel configura-

Table 1: Elastic properties of carbon/epoxy material

E11 E22 G12 G13 G23 ν
[MPa] [MPa] [MPa] [MPa] [MPa] [-]

147000 10300 7000 7000 7000 0.27

tions, C1 and C2, are analysed. All the relevant information are summarized below.
For the Newton-Raphson procedure, 100 load steps are considered; to simulate a geometrically
perfect configuration, the geometric imperfection is taken with an amplitude as small as 0.1%
of the thickness t. The starting point of the asymptotic procedure is the first buckling mode,
which is normalized to have maximum amplitude equal to t.

Configuration C1 The first configuration is a VS square plate with a circular cutout. The
plate has dimensions a = b = 1000 mm, while the circular hole has radius R = 100 mm and is
centered in (x0, y0) = (0, 200)mm. The material is the carbon/epoxy listed in Tab. 1 and 8 plies
with thickness equal to 0.1272 mm each and linearly varying stacking sequence [±69/∓ 5.705]s
are considered. The domain is obtained by combining the three primitive geometries defined in
Eq. 4 according to Eq. 5.
To perform numerical integration, the domain is subdivided in 156 elements, whose size is smaller
in proximity of the cutout; within each element a 4 × 4 Gauss integration rule is used, see Fig.
3.
The plate is subjected to a biaxial compression and is simply supported at the outer edges
and clamped along the hole. The cutout is fixed to illustrate the potential of this approach in
handling complex boundary functions. The rotations are left free in both directions.
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Configuration C2 The second configuration is an I-shape plate with dimensions a = 150 mm
and b = 200 mm; the two square cutouts have dimensions a1 = a2 = 50 mm and b1 = b2 = 100
mm and are located in (xc1, yc1) = (−50, 0) mm and (xc2, yc2) = (+50, 0) mm. The same
material of the previous example is considered with 8 plies with total thickness equal to 1 mm
and layup [45,−45, 0, 90]s. For this configuration, six primitive geometries are defined:

σ1 =
a2 − x2

2a
σ2 =

a21 − (x− xc1))
2

2a1
σ3 =

a22 − (x− xc2))
2

2a2

σ4 =
b2 − y2

2b
σ5 =

b21 − (y − yc1))
2

2b1
σ6 =

b22 − (y − yc2))
2

2b2

(12)

The final domain is obtained as:

ω = ((σ1 ∧0 σ4) ∧0 (σ2 ∧0 σ5)) ∧0 (σ3 ∧0 σ6) (13)

For the numerical integration, 9 elements and a 30 × 30 Gauss integration rule are considered.
A uniaxial loading condition in the y direction is considered, the plate is clamped at the bottom
edge and simply supported elsewhere. A sketch of the two configurations can be found in Fig.
4, along with the boundary and loading conditions considered in the following analyses.

(a) (b)

Figure 4: Loading and boundary conditions: (a) Configuration C1; (b) Configuration C2

3.1 Configuration C1: postbuckling analysis

This first test case deals with the postbuckling response of Configuration C1, see Fig. 4(a).
In order to determine the number of trial functions to guarantee convergence of the results, a
preliminary convergence analysis is carried out. The results are summarized in Tab. 2 where
the buckling multiplier, the load parameter, the maximum out-of-plane deflection and the CPU
time are reported for different number of trial functions. The results obtained with the ANM are
compared against Abaqus simulations. The FEM model is realized with 2667 plate elements.
The mesh size has been selected after a preliminary convergence study. The fiber angle is
evaluated at the center of each element and is then assumed to be constant within the element
domain. The order of the perturbation expansion is set to 20, the parameter ϵ is taken equal
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to 10−5, 14 steps are conducted and a correction is added to the procedure. All the analyses
are stopped when the load parameter λ reaches the value 1.8409, which is almost six times the
critical load. The analyses are conducted with the asymptotic-numerical method, both with

Table 2: Convergence analysis for configuration C1: comparison of linearized buckling parameter, load
parameter, maximum out-of-plane deflection and CPU time between ANM, NR and Abaqus (Pert. exp.
= 20, ϵ = 10−5, Steps = 14)

ANMDISP ANMMIX NR
R=S λcr λ wmax tCPU/tREF wmax tCPU/tREF wmax tCPU/tREF

a

[-] [-] [mm] [-] [mm] [-] [mm] [-]

5 5.9239 1.8409 / / / / / /
10 0.4663 1.8409 5.2413 0.5833 5.2413 0.2021 5.3257 0.6250
15 0.3128 1.8409 7.1749 0.6875 7.1749 0.5459 7.1749 0.7292

Abaqus 0.3098 1.8409 / / / / 7.1750 1
a tREF is the time employed by Abaqus simulations

a displacement and a mixed formulation, with the Newton-Raphson routine and with Abaqus
simulations. As shown in Tab. 2, 5 functions in both directions lead to a buckling multiplier
far from the convergence value, therefore subsequent nonlinear analyses are not carried out. On
the other hand, R = S = 15 functions allow both the buckling multiplier and the maximum
out-of-plane displacement to be captured. The results obtained with the asymptotic-numerical
method closely match the reference ones obtained with Abaqus simulations, while guaranteeing
improved computational times. It is interesting to point out that a mixed formulation leads to
a lower CPU time.
Figure 5 illustrates the logarithm of the error between Ritz and Abaqus in terms of maximum
out-of-plane displacement. The curve is plotted against the number of trial functions. As shown

Figure 5: Maximum error of out-of-plane displacement vs number of trial functions

in Fig. 5, when a correction procedure is added to the asymptotic routine, the rate of convergence
of the results is much faster than the one obtained without a correction procedure. The curve
gets steeper as the number of trial functions increases.
The contour of the out-of-plane displacement at three different load levels is shown in Fig. 6.
All the relevant parameters are the ones used in Tab. 2 and remain unchanged in the subsequent
analyses. At each load level, the contours in Fig. 6 exhibit an excellent degree of agreement both
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(a) λ = 1.96λcr (b) λ = 3.94λcr (c) λ = 5.89λcr

(d) λ = 1.96λcr (e) λ = 3.94λcr (f) λ = 5.89λcr

Figure 6: Out-of-plane deflections at different load levels for configuration C1: (a) - (c) ANM; (d) - (f)
Abaqus

in pattern and magnitude with respect to Abaqus results. The deflected pattern experiences a
progressive change of shape as the load level increases.
Lastly, the equilibrium path obtained with the ANM, NR and Abaqus is illustrated in Fig. 7
in terms of maximum out-of-plane displacement against the load parameter normalized with
respect to the critical parameter. As seen, the curves are very similar, further validating the

Figure 7: Force-displacement curve for configuration C1

accuracy of the predictions of the proposed formulation.

3.2 Configuration C2: postbuckling analysis

The second example regards the postbuckling response of Configuration C2; a sketch of the
structure is shown in Fig. 4(b). The structure is loaded up to three times the critical load and
R = S = 25 functions in both directions are found to be adequate for capturing the postbuckling
response.
The in-plane and out-of-plane displacement components are reported in Fig. 8. Both the
in-plane and out-of-plane displacement components are correctly captured, as revealed by the
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(a) u (b) v (c) w

(d) u (e) v (f) w

Figure 8: In-plane and out-of-plane displacements for configuration C2: (a) - (c) ANM; (e) - (f) Abaqus

comparison with Abaqus simulations. The postbuckling shape exhibits a complex pattern with
five waves in the load direction.
The membrane forces resultants contour is shown in Fig. 9, where Ritz approach is compared
with FEM results. The contours reveal an axial resultant Nxx which is tensile in the central
regions, with negative peaks at the corners; while the transverse resultant Nyy exhibits a redis-
tribution towards the edges. The shear resultant is characterized by a relatively complex shape,
proving the ability of the method to precisely capture the postbuckling response of the structure.

4 CONCLUSIONS

A formulation based on the combined use of the Ritz method, the asymptotic-numerical method
and R-functions is presented for the postbuckling analysis of variable stiffness plates with ar-
bitrary geometries. The proposed approach is promising for its high computational efficiency
combined to its reduced modelling efforts. This is particularly suitable for the analysis of arbi-
trarily shaped domains. The use of R-functions allows a wide variety of domains to be handled,
while a Ritz-based model allows for a much smaller number of degrees of freedom with respect
to finite element models with comparable accuracy. A not negligible computational time is re-
quired when refined Ritz expansions are needed unless proper care is taken. In this regard, the
ANM is a powerful strategy to overcome this issue. In particular, this method offers a number
of interesting features: a lower computational time, a larger range of validity of the solution
with respect to a simple linearization and a complete analytic representation of the nonlinear
equilibrium path. The tool can be exploited in future works to conduct parametric studies
on the fibers’ path to achieve better load redistribution and to perform preliminary studies to
optimize the stiffness tailoring in the postbuckling field. The proposed strategy can be further
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(a) Nxx (b) Nyy (c) Nxy

(d) Nxx (e) Nyy (f) Nxy

Figure 9: Membrane resultants for configuration C2: (a) - (c) ANM; (e) - (f) Abaqus

extended by considering shell-like panels and other thermo-mechanical loading conditions. The
addition of curvilinear stiffeners to the panel is another interesting subject to be addressed in
future works.
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Padé Approximants for Non-linear Elastic Structures”. International Journal for Numerical
Methods in Engineering, 37: 1187- 1213. https://doi.org/10.1002/nme.1620370706

[13] B. Cochelin, N. Damil and M. Potier-Ferry 1994. “The Asymptotic-Numerical Method: An
Efficient Perturbation Technique for Nonlinear Structural Mechanics”. Revue Européenne
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