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Nowadays, the Colebrook equation is used as amostly accepted relation for the calculation of fluid flow friction factor. However, the
Colebrook equation is implicit with respect to the friction factor (𝜆). In the present study, a noniterative approach using Artificial
Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the
Reynolds Number (Re) and the relative roughness of pipe (𝜀/𝐷) were transformed to logarithmic scales. The 90,000 sets of data
were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This
configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds
number (Re) and the relative roughness (𝜀/𝐷) ranging between 5000 and 108 and between 10−7 and 0.1, respectively. The proposed
ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise
explicit approximations of the Colebrook equation.

1. Introduction

To date, the Colebrook equation (1) is used as a mostly
accepted standard for the calculation of fluid flow friction
factor in pipes
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where 𝜆 is the Darcy friction factor (dimensionless); Re
is Reynolds number (dimensionless), and 𝜀/𝐷 is relative
roughness of inner pipe surface (dimensionless).

The Colebrook equation is also somewhere known as
the Colebrook-White equation or simply the CW equation
[1]. Classifying the available data and those from experiment
conducted in 1937 by himself and his professor White
[2], Colebrook developed a curve fit which was describing
transitional roughness, between the smooth and the rough
turbulent zone [3].TheColebrook equation is also considered
as a proper base for the widely usedMoody diagram with the
exception of its laminar zone [4]. In other words, drawing his
present famous diagram, Moody used Colebrook’s equation
for the whole turbulent zone and for the laminar zone

defined by 𝜆 = 64/Re. The Moody chart or Moody diagram
is a graph in nondimensional form that relates the Darcy
friction factor (𝜆), the Reynolds number (Re), and the relative
roughness (𝜀/𝐷) for fully developed flow in a circular pipe.
It can be used to determine pressure drop or flow rate in
such pipes. Although the accuracy of empirical equation
of Colebrook can be disputable, it is sometimes essential
to produce a fast, accurate, and robust resolution of this
equation, which is particularly necessary for the scientific
intensive computations and very often for comparisons [5].
Unfortunately, the Colebrook equation suffers from being
implicit with respect to the friction factor (𝜆). It cannot
be rearranged to derive the friction factor directly with no
approximate calculation.Many different strategies are used to
calculate or to estimate the friction factor accurately [1, 6–8].

There are a group of studies investigating the use of
Artificial Neural Network (ANN) to estimate the friction
factor. For instance, the intelligent estimation of hydraulic
resistance for Newtonian fluids has been investigated in some
of recent studies [9–13]. For the other types of fluids used
in agriculture, food engineering, petroleum engineering, and
so forth, such as power-law, Bingham, Herschel-Bulkley,
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and other types of non-Newtonian fluids, the shown ANN
cannot be used in the most cases. However, the developed
methodology for training can be used with appropriate
dataset or appropriate equations to produce relevant solution
in such cases where the aforementioned ANN cannot be used
[14–16]. Application of ANN for simulation of other types
of friction factor rather than Colebrook, namely, Hazen–
Williams friction coefficient for small-diameter polyethylene
pipes, can also be found in the literature [17], while more
recently other attempts of ANN usage for modeling friction
factors in pipes have been reported [18, 19].

Nowadays, not only can the ANN approach be used in
hydraulics and for simulation of fluid flow, but also it can
be widely applied in the various branches of engineering,
such as for the control systems [19, 20], as an auxiliary tool
in medicine [21–25], a flow pattern indicator for gas-liquid
flow in a microchannel [26], and an extension of structural
mechanics tools for fast determination of structural response
[27]. Also combined neurofuzzy systems (NFS) approach
can be used for different purposes such as student modeling
system,medical system, economic system, electrical and elec-
tronics system, traffic control, image processing and feature
extraction, manufacturing and system modeling, forecasting
and predictions, and social sciences [28].

2. Definition of the Problem

In the present study, in order to produce an efficient and
accurate procedure for estimation of the flow friction factor
(𝜆), an approach based on the computationally intelligent
system was used. The Artificial Neural Network (ANN) for
the solution of the problem is developed. The ANN models
like the one shown here can be easily generated in the
MATLAB software.

First, the raw datasets calculated using the Colebrook
equation were used to train the ANN model and then the
unknown friction factors (𝜆) were predicted by obtaining
the ANN structure with a low relative error. In this paper,
the empirical Colebrook equation (1) and its accurate iter-
ative solution will be treated as “accurate by the default”
or “absolutely accurate” (sign “=” is used, while for the
approximations listed in Appendix sign “≈” is used).

Hydraulic resistance depends on the flow rate which is
considered as the main problem in determination of the
hydraulic flow friction factor (𝜆). For a pipe, the hydraulic
resistance usually is expressed through the Darcy friction
factor (𝜆) which is not a constant quantity. Friction factor (𝜆)
is related to the flow rate or more precisely to the Reynolds
number (Re) and the relative roughness (𝜀/𝐷). In addition,
both of them, the Reynolds number (Re) and the relative
roughness (𝜀/𝐷), are dependent on the flow rate. In fact,
the Reynolds number (Re) is affected by flow velocity while
the relative roughness (𝜀/𝐷) depends on the thickness of a
region of flow inside pipes, termed as boundary layer, which
occurs closely to the inner surface of pipewall [29, 30]. On the
contrary, in this paper the relative roughness (𝜀/𝐷) retains its
classical definition, which implies it should not vary with the
flow rate (it will be treated effectively as a geometric quantity
and thus should be constant regardless of flow rate with the

caveat that the flow is turbulent). Furthermore, it is obvious
that changes of the hydraulic resistance in the turbulent zone
are governed by the nonlinear law. In general, these hydraulic
resistances in turbulent zone can be modeled as logarithmic-
law or power-law [31].TheColebrook equation belongs to the
logarithmic-law.

As it was mentioned, the main problem of the Colebrook
equation is related to its implicit form with respect to the
friction factor (𝜆) which cannot be evaluated without the
approximate calculation (the Colebrook equation is a tran-
scendent function). Therefore, different strategies are used
to find adequate solution for Colebrook equation: iterative
solution (in the present study, it was assumed that values
calculated by this method are highly accurate) [6, 7], use of
plenty of available explicit approximations of the Colebrook
equation derived by numerous mathematical or numerical
approaches [6, 8, 32, 33], using some graphical interpretations
such as the Moody diagram [4], and so forth.

It should be taken into account that the Moody diagram
cannot be used as a reliable and accurate replacement for the
Colebrook equation as its reading error can be even more
than few percent [10, 34, 35]. Using iterativemethods, namely,
theNewton-Raphson, the friction factor (𝜆) can be calculated
from the Colebrook equation with high accuracy where the
convergence of 0.01% requires less than 7 iterations. This
accuracy (0.01%) should not be confusedwith the accuracy of
the explicit approximations of the Colebrook equation [36].
Reviewing the relevant literature, one can realize that the vast
majority of these approximations are extremely accurate and
they can be used instead of implicit Colebrook equation to
calculate the friction factor (𝜆). However, the final maximal
error caused by approximation should be estimated as the
sum of the real maximal error of certain approximation and
the error caused by iterative procedure.

The two most accurate explicit approximations with the
relative errors up to 0.0026% and 0.0083% are those implied
by Ćojbašić and Brkić [37]. Moreover, there are plenty of
other approximations with the relative errors above 0.13%
[6]. Indeed, use of the highly accurate approximations could
complicate the fluid flow calculations. However, use of the
advanced and powerful computers and codes can partially
solve this problemand reduce the computational burden [38].

In this study, the implied ANN structure led to a low
relative error compared to the accurate iterative solution. In
addition, the computational burden used to run the applied
ANN structure was equal or lower than that of explicit
approximations, and it, especially, was less than that of the
iterative solution of the original Colebrook equation, while
the accuracy of theANNapproach remains significantly high.

3. Methodology

3.1. Preparation of the Dataset. In order to generate the
training set for the ANN model, the Colebrook equation
was solved iteratively. The iterative solution is used because
the highly accurate solution of the friction factor (𝜆) was
required, while in the meantime the computational burden
was irrelevant since it was a onetime effort to prepare the
training data. The training dataset can be efficiently prepared
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using the spreadsheet solvers, such asMS Excel which is used
in the particular case presented here [6, 7]. In order to obtain
the highest accuracy in the calculation using MS Excel, the
iterative calculation should be enabled and the maximum
number of iterations (it is set to 32,767 iterations which was
the maximum number of cycles allowed by the software with
the highest precision) has to be set [7].

In order to train the presented ANNmodel, input dataset
(Electronic Appendix A: MS Excel spreadsheet with the set
of 90 thousand combinations used for training of the Arti-
ficial Neural Network (ANN) (see Supplementary Material
available online at http://dx.doi.org/10.1155/2016/5242596)
involving 90,000 triplets was used in which the values of
the Darcy friction factor (𝜆) were generated using values of
the Reynolds number (Re) and the relative roughness (𝜀/𝐷)
ranged 5000–108 and 10−7–0.1, respectively. In order to use
input datasets, the values of the Reynolds number (Re) and
the relative roughness (𝜀/𝐷) had to be normalized. The used
approachwill be comprehensively explained in the next parts.

3.2. Structure and Training of the ANN. The feedforward
neural network structurewhich consists of three layers is used
(Figure 1). The first, input layer has two neurons, the second,
hidden layer has fifty neurons, and the third, output layer has
one neuron, with a sigmoid transfer function in the hidden
layer and a linear transfer function in the output layer.

In general, an ANN should be trained, or adapted, either
before or during its use.The used ANNnetwork was properly
trained and validated by supervised offline training prior
to network application in which the data obtained by the
iterative solution of the Colebrook equation were applied.

Almost every neural network consists of a large number
of simple processing elements that are variously called neu-
rons, nodes, cells, or units, connected to other neurons by
means of direct communication links, eachwith an associated
weight and bias. The weights represent information being
used by the net to produce output for given inputs. The
most common feedforward net has two or more layers of
processing units in the adjacent layers. Generally speaking,
ANN is able to efficiently imitate functions and recognize
patterns. They can be trained to solve a problem (ability to
learn). The quality of this solution heavily depends on the
quantity of available data for training and the structure of a
network.

It should be underlined that the developed ANN (the
generated ANN is attached as Electronic Appendix B to this
paper; file ColebrookANN.mat) does not use the Colebrook
equation for the calculation. It uses only the results produced
by the Colebrook equation to establish its inner patterns.
Every neural network is considered as a “Black box” system;
therefore, it can be viewed in terms of its inputs and outputs
without any knowledge about its internal working and inner
components.

However, the main issue of the present network is related
to the ranges of input parameter in which the relative
roughness (𝜀/𝐷) is extremely small as it ranged from 10−7 to
0.1, while another parameter, the Reynolds number (Re), is
considerably large in the range of 2320 to 108. This problem
can prevent the ANN from being properly trained and it

will lead to the less accurate results in application phase.
Therefore, the raw input dataset should be normalized to
provide the input data for the ANN with the approximately
same order of magnitude.

In order to address this issue, the logarithmic transfor-
mation can be done where the Reynolds number (Re) and
the relative roughness (𝜀/𝐷) were replaced by log(Re) and
− log(𝜀/𝐷), respectively. These transformations translated
(copied) input values into the new domain where log(Re) is
in range between 3.7 and 8 and− log(𝜀/𝐷) is in range between
1 and 6.5. Dataset set with the 90,000 combinations of the
Reynolds number (Re), the relative roughness (𝜀/𝐷), and
related friction factor (𝜆) was prepared inMS Excel as already
explained. Full prepared dataset was divided into training,
validation, and testing subsets:

(i) The training sample (70%, 63,000 triplets) was pre-
sented to the ANN during the training,

(ii) the validation sample (15%, 10,500 triplets) was used
to measure generalization of the ANN, that is, to
stop the training when the generalization does not
improve anymore (i.e., this prevents the so-called
“overfitting”),

(iii) the testing sample (15%, 10,500 triplets) had no effect
on the training and so it provided an independent
measure of performance of the ANN during and after
training.

Inputs were normalized and used for the training of the ANN
which is indicated in Figure 1. The concept of the training
process is shown in Figure 2.The Neural Network Toolbox of
MATLAB software was used to simulate the proposed ANN
for the shown flow friction problem.

3.3. Use of the ANN. When the training process with 90,000
inputs/output combinations of data was finalized, the gener-
ated ANN was saved under the name of “ColebrookANN”
for later uses. In such a way, the ANN can be further used
for the accurate estimation of the flow friction factor (𝜆).
The Colebrook equation was used for the training process of
the ANN model. Then, the generated ANN will use inputs
and produce results that follow this pattern from the learning
phase for any unknown combination of inputs. The phase of
exploitation of network is shown in Figure 3.

For the presented ANN, the process of training lasted few
hours. Afterwards, the ANN can be used to estimate flow
friction factor (𝜆), accurately. This can be carried out using
MATLAB software by loading network previously saved with
the name “ColebrookANN” using command:

load ColebrookANN.mat

Thehydraulic friction factor (𝜆) can be evaluated using single
line in MATLAB:

lambda=sim(ColebrookANN, [log10(Re); −log10(RPR)]),

where Re denotes the values for the Reynolds number (Re)
while RPR denotes relative roughness (𝜀/𝐷), that is, Relative
Pipe Roughness (RPR), in order to avoid Greek letters
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in the code. Due to MATLAB exquisite matrix handling
capabilities, the sets of pairs of input data can be prepared in
one row by multiple columns vector variables of the Re and
the RPR. In this case the MATLAB produces vector lambda
involving the calculated friction factors (𝜆) for each input
data pair in fraction of time, even for the large datasets.

In order to determine the hydraulic friction factor (𝜆)
using ANN, the sufficiently large training dataset was used
which was in contrast to other published results in this field
[9–13]. The proposed network can outperform even the most
accurate approximations to the Colebrook equation.
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Figure 3: Exploitation of the ANN.

4. Results and Discussion

4.1. Model Performance. In order to examine the perfor-
mance of a model, approximation quality, model complexity,
and model interpretability should be addressed. In fact, the
approximation/prediction error is often used as an assess-
ment criterion. There are different criteria in the literature
to assess the model performance. It is possible that the worst
case or the average deviation is crucial [39, 40].

For training of the presented ANN, the back propagation
Levenberg-Marquardt algorithm was used, while the Mean
Squared Error (MSE) was used as performance measure
during the training phase. The values of MSE for this ANN
structure were calculated to be 10−12 after 5,000 epochs of
training (Figure 4). The main goal was to minimize the
performance function, in this case MSE function, which is
defined as

MSE = 1
𝑛

𝑛

∑
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𝑒
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2
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where 𝑛 denotes number of samples, 𝑒
𝑘
denotes neural

network error, and 𝑡
𝑘
denotes target values, while 𝑦

𝑘
are

network output values. The training algorithm used in all
cases was Levenberg-Marquardt algorithm [41], where net-
work weights 𝑤 are updated by the equation w

𝑘+1
= w
𝑘
−

(J𝑇
𝑘
J
𝑘
+ 𝜇I)−1J

𝑘
𝑒
𝑘
and which is based on the approximation

of Hessian matrix H = JJ𝑇 + 𝜇I, where J denotes Jacobian
matrix, I denotes identity matrix, and 𝜇 is always positive
so-called combination coefficient.The Levenberg-Marquardt
algorithm was selected as being stable, fast, and reliable.

The training of the proposed ANN structure was done
through 5,000 epochs.TheMean Squared Error (MSE) of this
ANN structure was calculated to be 10−12 after which there
was no further tendency to decrease. In addition, the same
results were obtained with the tested ANN structures involv-
ing 100 neurons in a hidden layer and with the two hidden
layers containing 50 neurons in each of them. However, the
tested ANN structure with 30 neurons in one hidden layer
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Table 1: Relative error of friction factor produced by the shown ANN over the practical domain of the relative roughness (𝜀/𝐷) and the
Reynolds number (Re).

Relative error (%) Relative roughness (𝜀/𝐷)
Reynolds number (Re) 10−6 5 ⋅ 10−6 10−5 5 ⋅ 10−5 10−4 5 ⋅ 10−4 10−3 5 ⋅ 10−3 10−2 5 ⋅ 10−2

104 0.00134 0.00088 0.00031 0.00017 0.00123 0.00141 0.00041 0.00099 0.00096 0.00069
5 ⋅ 104 0.00102 0.00174 0.00080 0.00096 0.00220 0.00163 0.00247 0.00063 0.00224 0.00124
105 0.00114 0.00145 0.00125 0.00356 0.00099 0.00384 0.00097 0.00117 0.00104 0.00076
5 ⋅ 105 0.00181 0.00032 0.00287 0.00084 0.00047 0.00090 0.00028 0.00011 0.00055 0.00064
106 0.00163 0.00246 0.00126 0.00073 0.00419 0.00440 0.00176 0.00190 0.00023 0.00053
5 ⋅ 106 0.00449 0.00672 0.00207 0.00377 0.00012 0.00077 0.00071 0.00031 0.00038 0.00074
107 0.00126 0.00054 0.00417 0.00527 0.00005 0.00089 0.00015 0.00033 0.00063 0.00186
5 ⋅ 107 0.01946 0.00382 0.00490 0.00835 0.00260 0.00174 0.00011 0.00071 0.00038 0.00022
108 0.06060 0.05266 0.03614 0.02413 0.01682 0.00410 0.00165 0.00544 0.00579 0.00068
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Figure 4: The Mean Squared Error (MSE) during the process of
training of the proposed ANN.

resulted in a lower accuracy in comparison with the former
tested structures, even after 10,000 epochs of training.

4.2. Accuracy of the Estimated Results. For the purpose of
comparison, it is better to use the relative error than theMean
Squared Error (MSE) which was used during the training
process of the proposedANN.Themaximum relative error of
the proposed feedforward ANN structure, with one hidden
layer containing 50 neurons, compared with the iterative
solution of theColebrook equation, was up to 0.07% (Table 1).

It should be taken into account that there are three levels
of the accuracy [36, 41]:

(1) The first level is related to the nature of the Colebrook
equation which is an empirical relation (in fact, there
is a possibility of using other equations with higher
accuracy, and accordingly the showed methodology
can be used in order to develop the appropriate ANN
for such a case).

(2) The second level explains the accuracy related to the
solution of the Colebrook equation; the Colebrook
equation can be solved precisely using the iterative
procedure (in this paper, the term “accurate by
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Figure 5: Distribution of the estimated error produced by the
ANNcomparedwith the Colebrook equation in normalized domain
which is suitable for training of the ANN (verification inMATLAB).

default” or “absolutely accurate” and the related error
can be neglected in many cases).

(3) The third one is related to the proposed ANN
structures and relevant approximations which can
be used to avoid iterative procedure; their errors
can be estimated and compared with the error of
iterative solution (obtained error of the suggested
ANN structure belongs to the third category).

The relative error of friction factor estimated through the
proposed ANN structure in this is up to 0.07% (Figures 5
and 6). This means that proposed ANN approach can be
used not only as extremely accurate approach, but also as a
computationally effective one.

Furthermore, to some extent, an increase in the com-
plexity of the ANN structure would augment its potential to
produce even more accurate results. Hence, the right balance
of accuracy and complexity is necessary during the network
design phase. Additionally, accuracy depends on the quantity
of terms in the training set. The complexity of network in the
phase of exploitation is relatively unimportant since the ANN
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is a sort of “black box.” It can produce outputs for inputs and
its inner complexity is not crucial [47, 48].

Users would easily apply the ANN without any difficulty
due to its structure complexity, in contrast to use of the ap-
proximate formulas [38].The same circumstances of comfort
can be experienced by users applying the prepared computer
codes for the approximate formulas.Userswill be able to enter
input data into a program and a computer should be able
further to produce outputs without any inconvenience.

According to Figures 5 and 6, the relative error is not
equally distributed over the entire practical range of the
Reynolds number (Re) and the relative roughness (𝜀/𝐷). The
same situation with this distribution of the error would occur
for the explicit approximations as shown by Brkić [6, 7] and
Winning and Coole [33]. The relative error produced by the
ANN is accumulated in the zone with small values of the
relative roughness (𝜀/𝐷) and the high values of the Reynolds
number (Re). The distribution of the relative error is also
shown in Table 1. According to Table 1 the maximum relative
error was calculated to be 0.0606% for Re = 108 and 𝜀/𝐷 =
10
−6.

4.3. Comparative Analysis. Having looked at the existing
approximations of Colebrook equation [6, 7], one can
obviously realize that the available explicit approximations
of the Colebrook equation are either inaccurately simple
or intricately accurate. In fact, the complexity of explicit
approximations (e.g., approachwith the LambertW-function
[8, 49]) was considered as a serious issue few decades ago
when pocket calculators were widely used [38]. Nowadays,
even the very complex approximations can be easily used
in computer codes. In the study conducted by Brkić [6], it
was concluded that the five most available approximations
from the literature had the maximum relative error up to
0.15%. These approximations were suggested by Zigrang and
Sylvester [46], Serghides [42], Romeo et al. [43], Buzzelli [45],
and Vatankhah and Kouchakzadeh [44] (even more accurate
approximations are shown in Vatankhah [50] where their
accuracy is comparable with accuracy of approximations
shown in Ćojbašić and Brkić [37]). Furthermore, Ćojbašić

Zigrang and Sylvester (1982)
Serghides (1984)
Romeo et al. (2002)
Buzzelli (2008)
Vatankhah and Kouchakzadeh (2008)
Ćojbašić and Brkić (2013)—improved Romeo et al.
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Figure 7: Maximal relative error produced by ANN compared
with the seven most accurate explicit approximations of Colebrook
equation where 𝜀/𝐷 is used for 𝑥-axis.

and Brkić [37] applied genetic algorithm optimization tech-
nique (also genetic technique are used in [51, 52]). This
technique improved two of these accurate approximations
suggested by Serghides [42] and Romeo et al. [43] to reach
even extreme level of accuracy with the relative error up to
0.0026% and 0.0083%, respectively. All mentioned explicit
approximations are listed in Appendix of this paper (they
are also attached to this paper as Electronic Appendix C
(PDF file with all approximations of the Colebrook equation
mentioned through text with their MATLAB codes and
MS Excel codes)). The accuracy of the proposed ANN in
the present work was compared with accuracy of these
approximations which is shown in Figure 7 where relative
roughness (𝜀/𝐷) is used as the base for the 𝑥-axis of the
diagram. Moreover, in Table 2, the Reynolds number (Re) is
used as the base. This means that, in the case of using relative
error of the presented ANN from Figure 7, the maximum
value of the relative error can be chosen from each column
of Table 1, while, in the case of using of Table 2, the maximum
value of the relative error can be chosen from each row of
Table 1.

The results of comparative analysis which were reported
in Figure 7 revealed that the implied ANN structure could
outperform the vast majority of the most accurate approx-
imations in the large area of data domain. In addition,
the suggested ANN structure in this study might be used
with the most accurate explicit approximations of the
Colebrook equation implied by Ćojbašić and Brkić [37],
Romeo et al. [43], Buzzelli [45], Serghides [42], Zigrang and
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Table 2:Maximal relative error produced by theANNcomparedwith the sevenmost accurate explicit approximations of Colebrook equation;
the Reynolds number (Re) is used as the base.

Maximal relative error (%)
Reynolds number (Re) (a) (b) (c) (d) (e) (f) (g) (h)
104 0.00141 0.00074 0.00569 0.12272 0.13563 0.13453 0.13301 0.13313
5 ⋅ 104 0.00247 0.00219 0.00574 0.14112 0.13784 0.11047 0.13736 0.13736
105 0.00384 0.00246 0.00698 0.14467 0.13812 0.10281 0.13793 0.13793
5 ⋅ 105 0.00287 0.00250 0.00802 0.14712 0.13841 0.08915 0.13839 0.13839
106 0.00440 0.00235 0.00816 0.14727 0.13846 0.08426 0.13845 0.13845
5 ⋅ 106 0.00672 0.00167 0.00826 0.14725 0.13850 0.07315 0.13850 0.13850
107 0.00527 0.00122 0.00828 0.14722 0.13851 0.06754 0.13850 0.13850
5 ⋅ 107 0.01946 0.00022 0.00829 0.14718 0.13851 0.04876 0.13851 0.13851
108 0.06060 0.00005 0.00829 0.14718 0.13851 0.04841 0.13851 0.13851
(a)-Artificial Neural Network (ANN).
(b)-Ćojbašić and Brkić [37]-Improved Serghides [42]; (A.7).
(c)-Ćojbašić and Brkić [37]-Improved Romeo et al. [43]; (A.6).
(d)-Vatankhah and Kouchakzadeh [44]; (A.2).
(e)-Buzzelli [45]; (A.1).
(f)-Romeo et al. [43]; (A.3).
(g)-Serghides [42]; (A.4).
(h)-Zigrang and Sylvester [46]; (A.5).

Sylvester [46], and Vatankhah and Kouchakzadeh [44]. The
maximum relative errors for these approximations were
evaluated to be 0.0026%, 0.13%, 0.14%, 0.14%, 0.14%, and
0.15%, respectively.

5. Conclusion

In order to evaluate the friction factor, the sophisticatedANN
model was developed. The model includes three layers of
input, hidden, and output neurons with 2, 50, and 1 neurons,
respectively. The trained ANN is able to predict friction
factor (𝜆) with the relative error of less than 0.07%. Based
on the performed comparative analysis, the developed ANN
produces the lowest relative error in comparisonwithmost of
accurate explicit approximations of the Colebrook equation.
Furthermore, to deal with the low accuracy of the Colebrook
equation or to facilitate for specific needs, the suggested
ANN structure could be trained using some of the other
available precise approximations or experimental data [53,
54] (although each new training will produce different inner
pattern among neurons [55], the final estimation of friction
factor will remainwith almost the same level of accuracy) and
even using combination of these for different parts of input
domains which could be considered as significant advantage
[56]. For these reasons, this suggested ANN structure in the
present study would be worthwhile to solve flow problems
involving repetitive calculations of the friction factor (𝜆).
An important disadvantage might be the fact that significant
number of training patterns is required to obtain accuracy
level presented in this paper, but this would be with limited
impact since the problem can be overwhelmed with onetime
effort.

In our approach we tried to keep the solution simple and
provide single neural network that covers the whole range
of inputs, but further interesting research direction would
be to design several networks covering parts of input spaces

and working in conjunction possibly providing improved
accuracy and sacrificing simplicity of the solution. Also,
following our own results and results of others regarding
application of other techniques of computational intelligence
for the same problem, the ANN presented here could poten-
tially be cross-fertilized with them in an attempt to improve
results, where primarily genetic optimization of the network
structure might be promising.

Appendix

Approximations of the Colebrook equation for flow friction
used in this paper are as follows (MATLAB and MS Excel
codes for the shown approximations are listed in Electronic
Appendix C of this paper) [𝜆, Re, 𝜀/𝐷 are with the same
meaning as in (1) of this paper while 𝐴

1–16 are auxiliary
terms]:

(i) Buzzelli approximation [45]:
1

√𝜆
≈ 𝐴
1
− (
𝐴
1
+ 2 ⋅ log

10
(𝐴
2
/Re)

1 + 2.18/𝐴
2

) ,

𝐴
1
≈
(0.774 ⋅ ln (Re)) − 1.41
(1 + 1.32 ⋅ √𝜀/𝐷)

,

𝐴
2
≈
1

3.7
⋅
𝜀

𝐷
⋅ Re + 2.51 ⋅ 𝐴

1
.

(A.1)

(ii) Vatankhah and Kouchakzadeh [44, 50, 57]:

1

√𝜆
≈ 0.8686 ⋅ ln( 0.4587 ⋅ Re

(𝐴
3
− 0.31)

𝐴
4

) ,

𝐴
3
≈ 0.124 ⋅ Re ⋅ 𝜀

𝐷
+ ln (0.4587 ⋅ Re) ,

𝐴
4
≈
𝐴
3

𝐴
3
+ 0.9633

.

(A.2)
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(iii) Romeo et al. approximation [43]:
1

√𝜆
≈ −2 ⋅ log

10
(
1

3.7065
⋅
𝜀

𝐷
−
5.0272

Re
⋅ 𝐴
5
) ,

𝐴
5
≈ log
10
(
1

3.827
⋅
𝜀

𝐷
−
4.567

Re
⋅ 𝐴
6
) ,

𝐴
6
≈ log
10
((
1

7.7918
⋅
𝜀

𝐷
)

0.9924

+ (
5.3326

208.815 + Re
)

0.9345

) .

(A.3)

(iv) Serghides approximation [42]:

1

√𝜆
≈ 𝐴
7
−
(𝐴
8
− 𝐴
7
)
2

𝐴
9
− 2 ⋅ 𝐴

8
+ 𝐴
7

,

𝐴
7
≈ −2 ⋅ log

10
(
1

3.7
⋅
𝜀

𝐷
+
12

Re
) ,

𝐴
8
≈ −2 ⋅ log

10
(
1

3.7
⋅
𝜀

𝐷
+
2.51 ⋅ 𝐴

7

Re
) ,

𝐴
9
≈ −2 ⋅ log

10
(
1

3.7
⋅
𝜀

𝐷
+
2.51 ⋅ 𝐴

8

Re
) .

(A.4)

(v) Zigrang and Sylvester approximation [46, 58]:
1

√𝜆
≈ −2 ⋅ log

10
(
1

3.7
⋅
𝜀

𝐷
−
5.02

Re
⋅ 𝐴
10
) ,

𝐴
10
≈ log
10
(
1

3.7
⋅
𝜀

𝐷
−
5.02

Re
⋅ 𝐴
11
) ,

𝐴
11
≈ log
10
(
1

3.7
⋅
𝜀

𝐷
+
13

Re
) .

(A.5)

(vi) Ćojbašić and Brkić approximation [37, 43]:
1

√𝜆
≈ −2 ⋅ log

10
(
1

3.7106
⋅
𝜀

𝐷
−
5

Re
⋅ 𝐴
12
) ,

𝐴
12
≈ log
10
(
1

3.8597
⋅
𝜀

𝐷
−
4.795

Re
⋅ 𝐴
13
) ,

𝐴
13
≈ log
10
((
1

7.646
⋅
𝜀

𝐷
)

0.9685

+ (
4.9755

206.2795 + Re
)

0.8759

) .

(A.6)

(vii) Ćojbašić and Brkić approximation [37, 42]:

1

√𝜆
≈ 𝐴
14
−
(𝐴
15
− 𝐴
14
)
2

𝐴
16
− 2 ⋅ 𝐴

15
+ 𝐴
14

,

𝐴
14
≈ −2 ⋅ log

10
(
1

3.71
⋅
𝜀

𝐷
+
12.585

Re
) ,

𝐴
15
≈ −2 ⋅ log

10
(
1

3.71
⋅
𝜀

𝐷
+
2.51 ⋅ 𝐴

14

Re
) ,

𝐴
16
≈ −2 ⋅ log

10
(
1

3.71
⋅
𝜀

𝐷
+
2.51 ⋅ 𝐴

15

Re
) .

(A.7)

Additional Points

Software packages used for this research are MS Excel ver.
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“Adaptive neuro fuzzy estimation of underactuated robotic
gripper contact forces,” Expert Systems with Applications, vol.
40, no. 1, pp. 281–286, 2013.

[25] D. Petković, Ž. Ćojbašić, and S. Lukić, “Adaptive neuro fuzzy
selection of heart rate variability parameters affected by auto-
nomic nervous system,” Expert Systems with Applications, vol.
40, no. 11, pp. 4490–4495, 2013.

[26] S. Timung and T. K.Mandal, “Prediction of flow pattern of gas–
liquid flow through circular microchannel using probabilistic
neural network,”Applied SoftComputing, vol. 13, no. 4, pp. 1674–
1685, 2013.
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