
The 9th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2024

3–7 June 2024, Lisboa, Portugal

A HIGH-FIDELITY FRAMEWORK APPROACH ENABLING
HIGH-ORDER IMPLICIT TIME STEPPING FOR MDAO

FLORIAN ROSS1, ADAM BÜCHNER1, SEBASTIAN GOTTFRIED1 AND
ARTHUR STÜCK1

1 Institute of Software Methods for Product Virtualization
German Aerospace Center (DLR)

Zwickauer Straße 46, 01069 Dresden, Germany
e-mail: florian.ross@dlr.de, arthur.stueck@dlr.de

Key words: Unsteady Multidisciplinary Analysis and Optimization (MDAO), Diagonally Im-
plicit Runge–Kutta (DIRK), MDAO Frameworks, Sensitivity Analysis, Solution Algorithms

Summary. In order to allow high-order time integration of multidisciplinary scenarios via
a framework-based approach, we developed RKOpenMDAO. It is an extension to the base-
line version of the OpenMDAO framework – which is primarily designed for steady-state like
MDAO applications – and enables multidisciplinary time integration via diagonally implicit
Runge–Kutta (DIRK) schemes. To yield a robust framework approach capable of time-resolved
high-fidelity MDAO, the approach offers strong, nested solution schemes to solve the coupled
multidisciplinary systems that arise per time step/stage of the implicit time integration. The
implementation is described for the OpenMDAO framework which is used in conjunction with
FlowSimulator HPC environment. The verification and demonstration cases presented in the
paper benefit from a seamless and modular integration of the CFD solver library CODA behind
a unified component/plugin API, which provides access to methods for disciplinary block inver-
sions, residual computations and the calculation of the corresponding derivatives by means of al-
gorithmic differentiation. Numerical experiments are shown for Kaps’ problem, a 2D NACA0012
airfoil coupled with a torsion spring, and the ONERA-M6 wing in fully-turbulent flow executed
in an MPI-parallel way. We demonstrate that the design order of the high-order Runge–Kutta
time integration can be retained for high-fidelity multiphysics problems.

1 INTRODUCTION

Over the last decade, gradient-enabled Multidisciplinary Design Analysis and Optimization
(MDAO) frameworks were developed, some of which are available as open-source software such
as OpenMDAO [3] or GEMSEO [10]. Features like automated forward- and reverse gradi-
ent accumulation over multiple disciplines, nested multidisciplinary solvers and preconditioners,
MPI-parallelism, and (open-source) packages of integrated components are attractive to the com-
munity in academia and industry to be used in combination with different levels of fidelity in
simulation-based analyses. Whereas steady-state MDAO analyses have become state of the art,
we see a gap to bridge in both MDAO capabilities and applications for time-resolved problems.
A naive framework approach would be consider time-dependent problems as one time-layered
coupled problem instantiating the full time-dependency of the model at once in one pseudo-
steady system. This would result in the simultaneous allocation of all time steps (and possibly



Florian Roß, Adam Büchner, Sebastian Gottfried, and Arthur Stück

intermediate data), see e. g. for OpenMDAO [1]. For high-fidelity cases, this leads to prohibitive
memory requirements which are avoidable, since most time stepping methods work in a sequen-
tial manner and only need data from a low number of previous steps at one point in time.
In this paper, a (missing) MDAO framework ingredient is described to pave the way towards
unsteady MDAO: we developed RKOpenMDAO – an open-source extension to OpenMDAO –
that allows multidisciplinary time integration on the framework level. Currently, diagonally
implicit and explicit Runge–Kutta (DIRK and ERK) are supported. The extension only keeps
one time step at a time in memory, storing only the data actually required by the time inte-
gration. RKOpenMDAO is set up such that all OpenMDAO functionalities are systematically
extended to the unsteady domain, among them the forward/reverse computation of sensitivity
derivatives and the monolithic solution capabilities that are required in the context of implicit
time integration for large/stiff coupled, nonlinear problems to be solved per Runge–Kutta stage.
To this end, it becomes possible to ensure time accuracy with the full construction-order of the
Runge–Kutta methods for large-scale, time-accurate MDAO.
In the second section of this paper, the approach and implementation of RKOpenMDAO will be
presented in detail. First, an approach to apply DIRK methods monolithically in multiphysics
scenarios is explored, and afterwards the implementation details will be discussed. In the third
section, numerical experiments conducted with RKOpenMDAO and their results are presented.
This includes a simple mathematical example, for which an analytical solution is available, as
well as more practical examples using the computational fluid dynamics (CFD) software CODA,
developed as part of a collaboration between the French Aerospace Lab ONERA, the German
Aerospace Center (DLR), Airbus, and their European research partners.

2 THE FRAMEWORK EXTENSION RKOPENMDAO

2.1 Diagonally implicit Runge–Kutta (DIRK) methods

For the time integration of multidisciplinary problems, we consider a monolithic approach.
Instead of each discipline having its own time stepping scheme (possibly with its own step size),
one time discretization scheme with one common step size over the full system is applied. There
are multiple reasons for this approach, among them: (a) It allows to achieve strong coupling in
time in a straight-forward way. Using per-discipline time integration could involve repetition
of time steps, interpolation between disciplines due to mismatched integration schemes, and/or
more complications we want to avoid; (b) the resulting stage-wise equation systems of this
approach are very similar to the ones of the respective stationary problem. Hence, in the
transformation from a steady-state MDAO framework approach to an time-accurate one, we can
reuse many existing functionalities and leverage synergies; (c) provided that all multidisciplinary
components or plugins are HPC-ready and implemented in a scalable way, we can afford to apply
the fine time steps – usually dictated by the CFD as the most resource-hungry component – to
the other, smaller components without a major loss of overall efficiency. This avoids a number
of consistency and conservation issues that would be associated with interpolation in time.

DIRK schemes [5], implemented in the so-called time integrator, were chosen to drive the
time integration by the MDAO framework in a monolithic way. These schemes are implicit
and offer superior stability properties compared to explicit Runge–Kutta schemes. Moreover,
they are easier to implement than fully-implicit Runge–Kutta schemes thanks to the diagonal
structure of the Butcher tableau (see Table 1). For a d-dimensional problem with an s-stage

2

https://github.com/dlr-sp/rkopenmdao


Florian Roß, Adam Büchner, Sebastian Gottfried, and Arthur Stück

Table 1: General S-stage Butcher tableau of a DIRK scheme.

c1 a11 0 · · · 0
...

...
. . .

. . .
...

...
...

. . .
. . . 0

cS a1S · · · · · · aSS
b1 · · · · · · bS

scheme, a series of s similarly structured d-dimensional nonlinear systems has to be solved per
time step for DIRK schemes, whereas for fully-implicit ones, a (s × d)-dimensional system has
to be solved instead. Nonetheless, there are disadvantages of DIRK methods compared to fully-
implicit Runge–Kutta. Due to the diagonal structure of the DIRK schemes, they can at most
achieve stage-order two, potentially leading to an order reduction for very stiff problems [6].
For the time integration, one starts with a global multidisciplinary ODE

M(t, x(t))x′(t) = f(t, x(t)), x(0) = x0 . (1)

Here, x = (xDisc 1, xDisc 2, . . . , xDisc m) represents a multidisciplinary state vector, where the
xDisc i are the (possibly multidimensional) disciplinary states. Applying an ERK or DIRK
scheme leads to

xn+1 = xn + ∆t
S∑
i=1

biki n = 0, . . . , N − 1

Mki = f

tn + ∆tci, xn + ∆t
i∑

j=1

aijkj

 i = 1, . . . , s , (2)

where ∆t denotes the time step size and tn is the time at time step n. xn+1 and xn are the
global state vectors and ki is the stage-wise update. Furthermore, aij , bi and ci are coefficients
from the Butcher tableau of a Runge–Kutta scheme. The first equation can easily be applied
on a framework level per step. However, the second equation cannot directly be represented by
an OpenMDAO problem since the number of variables depends on stage of the Runge-Kutta
scheme. To resolve this issue, the variable si :=

∑i−1
j=1 aijkj is introduced:

xn+1 = xn + ∆t
S∑
i=1

biki n = 0, . . . , N − 1

si =

i−1∑
j=1

aijkj i = 1, . . . , s

Mki = f (tn + ∆tci, xn + ∆t(si + aiiki)) i = 1, . . . , s . (3)

In this form, the equations can be centrally implemented in OpenMDAO as they have the same
structure and number of variables regardless of the time step or stage, respectively.

3



Florian Roß, Adam Büchner, Sebastian Gottfried, and Arthur Stück

2.2 Implementation

The Equations (3) are implemented in OpenMDAO by nesting two OpenMDAO problems,
whereas the top-level problem is responsible the upper two equations. To this end, RKOpen-
MDAO offers the OpenMDAO component class RungeKuttaIntegrator, which encapsulates a
loop over all time steps and stages. Framework users need to instantiate such a time integration
component in their instationary model and assign a second, inner OpenMDAO problem for the
remaining Equation (3) to it. The inner problem must be set up such that for given xn and
si, ki can be calculated by running the model. To extract and insert values of xn, si and ki,
RungeKuttaIntegrator identifies the concrete variables in the inner problem from additional
user-defined metadata.
Furthermore, the inner problem can make use of nested multidisciplinary solver stacks – a fea-
ture offered by (the base-line version of) OpenMDAO for stationary problems. A system-wide
nonlinear solver (e.g. a Newton solver) usually embeds multidisciplinary linear solvers (like a
GMRES solver), which, in turn, can have multidisciplinary block-preconditioners (like Block-
Gauß–Seidel). The latter finally call disciplinary linear solvers which may again forward to their
disciplinary linear solver stacks. Time integration is then performed according to Algorithm 1.
For a stationary example, the nested solution approach is described in [2] in conjunction with
the FlowSimulator HPC ecosystem and CODA, both of which are also used in this work with
RKOpenMDAO. The class RungeKuttaIntegrator offers calculation of derivatives over time

Data: x0 = (xDisc 1
0 , xDisc 2

0 , . . . , xDisc m
0 ) global initial state vector

Result: xN = (xDisc 1
N , xDisc 2

N , . . . , xDisc m
N ) global state vector after N time steps

State x← x0;
Initialize Update cache: k ← [0, . . . , 0];
for i = 1, . . . , N do

Update step metadata in coupled inner problem (i, ti, . . .);
Set x into coupled inner problem;
for j = 1, . . . s do

Update stage metadata in coupled inner problem (j, tji , . . .);
if j = 1 then

Clear k;
si ← 0;

else

si ←
∑i−1

j=1 aijkj ;

end
Set si into coupled inner problem;
Solve coupled inner problem;
Copy ki from coupled inner problem;

end
x← x+ ∆t

∑s
i=1 biki;

end
xN ← x

Algorithm 1: Pseudocode for the time integration of the RungeKuttaIntegrator with given
s-stage Butcher tableau (A, b, c) and step size ∆t.

4



Florian Roß, Adam Büchner, Sebastian Gottfried, and Arthur Stück

both in forward and reverse mode via the usual interface of OpenMDAO. In forward mode,
directional derivatives are computed on-the-fly during the time integration. In reverse mode,
the multidisciplinary time trajectory needs to be traversed backwards. (Re)storing the complete
multidisciplinary states to (from) disk in every intermediate time stage/step would lead to ex-
cessive memory requirements. Thus, memory can be traded for CPU-time by checkpointing and
recomputation via PyRevolve. Finally, RKOpenMDAO is fully compatible with MPI-distributed
problems. Provided the inner problem is parallelized via the parallelization features of OpenM-
DAO, namely distributed variables or parallel groups, the RungeKuttaIntegrator picks up the
distribution of data and organizes its own internal data in the same pattern.

3 NUMERICAL EXPERIMENTS

3.1 Kaps’ Problem

The first problem we consider is Kaps’ problem [8, 5], a singularly disturbed problem described
by the following equations

εy′1(t) = −(1 + 2ε)y1(t) + y22(t) ,

y′2(t) = y1(t)− y2(t)− y22(t) , (4)

y1(0) = y2(0) = 1 .

By varying the parameter ε, the stiffness of the equations can be controlled. With the choice

Figure 1: Kaps’ problem with ε = 1.0, a non-stiff case. The theoritical order of all tested time integration
scheme is retained.

of ε = 0, the problem becomes a differential-algebraic equation (DAE). The problem is used

5

https://github.com/devitocodes/pyrevolve


Florian Roß, Adam Büchner, Sebastian Gottfried, and Arthur Stück

to verify that RKOpenMDAO reproduces the design order of different DIRK schemes and pa-
rameter choices found in [5]. In particular, the implicit-Euler method, a second-order two-stage
SDIRK method [5], a third-order three-stage ESDIRK [5], a third-order three-stage SDIRK [5]
and a fourth-order five-stage ESDIRK [5] were used. We used the Butcher tableaux and optimal
parameters described in [5], p. 72–86. SDIRK (singly-diagonal implicit Runge–Kutta) methods
have the property that all their diagonal entries of the matrix A in their Butcher tableau are the
same. The same is true for ESDIRK (explicit singly-diagonal implicit Runge–Kutta) methods,
with the exception of the first diagonal entry, which is 0.
The solution of these equations is always the same, independent of the choice of of ε

y1(t) = exp(−2t) ,

y2(t) = exp(−t) .

In all following cases, step sizes were varied between 10−1 and 10−2, with the end time of t = 1.
The original order of the DIRK methods is retained as expected for non-stiff cases (ε = 1) as
illustrated in Figure 1. For more stiff cases, e. g. ε = 0.001, an order reduction can be observed

Figure 2: Kaps’ problem with ε = 0.001, a stiff case. Here there is observable order reduction in the first
variable when using the third-order SDIRK scheme and the fourth-order ESDIRK scheme. The order
reduces expectedly to 2 respectively 3, since this is the stage order of the method plus one.

for the first variable as shown in Figure 2. Both the order of the third-order SDIRK method
and the fourth-order ESDIRK method is reduced by one. This result is expected, as in stiff
cases, the order of DIRK schemes may be reduced to stage-order plus one [5, p. 16]. In the case
of SDIRK methods the order reduces to 2, since the stage order is limited to 1. For ESDIRK
methods, stage order can also be 2, as is the case with the two methods used here. For the DAE

6



Florian Roß, Adam Büchner, Sebastian Gottfried, and Arthur Stück

Figure 3: Kaps’ problem with ε = 0.0, a DAE case. There is no order reduction for the tested SDIRK
schemes. This is to be expected, since the problem is only a DAE of index 1.

case (ε = 0), no results for ESDIRK schemes are provided, since the current implementation
does not support DAEs while using methods with explicit stages. For the SDIRK schemes, the
implementation still achieves the theoretical order of the tested methods (see Figure 3).

3.2 Multiphysics MDA Problem

We considered the flow around a NACA0012 airfoil coupled to a torsional spring to investigate
the effect of different coupling methods on the order of the Runge–Kutta time integration. The
coupling works in the following way: a torsional spring is attached at the quarter chord of
the airfoil. The pitching moment of the spring acts on the airfoil together with the integral
aerodynamic moment. Starting from an initial angle of attack, it results in an oscillating pitching
movement of the airfoil over time.
After spatial discretization of the Euler equations via the finite volume method, the following
ODE system is obtained

0 =
∂

∂t
W +R(W,α) ,

0 = I
∂2

∂t2
α+ µα−My(W ) ,

wherein W denotes the flow state consisting of the conservative variables for mass, momentum
and energy, and My(W ) is the aerodynamic pitching moment. Transforming the second-order
ODE part to first order and applying a DIRK scheme leads to the following system that needs

7



Florian Roß, Adam Büchner, Sebastian Gottfried, and Arthur Stück

to be solved per Runge–Kutta stage

0 =
W i
n −Wn −∆tsWi

∆taii
+R(W i

n, α
i
n)

0 =
W i
n −Wn −∆tsWi

∆taii
− kWi

0 =
αin − αn −∆tsαi

∆taii
− α̇in

0 =
αin − αn −∆tsαi

∆taii
− kαi

0 = I
α̇in − α̇n −∆tsα̇i

∆taii
+ µαin −My(W

i
n)

0 =
α̇in − α̇n −∆tsα̇i

∆taii
− kα̇i .

The above equations are implemented into an OpenMDAO problem via components for CFD

Table 2: Reference values for nondimensionalization.

Chord length 1 m Farfield Temperature 300 K

Farfield Pressure 105 kg m−1 s−2 Farfield Density 1.3 kg m−3

solver software CODA [4] and for the spring. The CFD component is implemented using the
API methods of the CFD library CODA, while the formulas for the spring component are di-
rectly implemented in a dedicated implicit component as written above. In conjunction with the
quantities listed in Table 2, we used a Mach number of Ma = 0.1 together with the nondimen-
sional values I = 0.7692, and µ = 10−5. For the spring, we used the initial values α0 = 10◦ and
α̇0 = 0. W0 was set to the steady-state solution at the same angle of attack. The dimensional
reference time 0.0036 s is obtained according to the choices listed in Table 2.
For the following numerical experiments, a reference solution to the problem was generated from
the classical explicit fourth-order Runge–Kutta method with the fine nondimensional time step
∆t = 10−4. The unsteady simulation ran until the nondimensional time T = 1 was reached. The
unstructured computational mesh consisted of around 2000 finite volumes in parallel execution
with 8 MPI processes. This reference solution was then compared to similar runs with the same
DIRK schemes introduced in the last example. Step sizes from 10−1 to 10−2 were used to asses
the resulting order of the schemes in a method-of-lines approach – i.e. the spatial mesh was
kept constant while we modified the physical time step. For all cases, the solution per stage
was computed using a system-wide Newton-Krylov-solver with multidisciplinary Block-Jacobi
preconditioning. As seen in in Figure 4, the first- and second-order methods replicate the design
order almost perfectly. For higher-order methods, an order-reduction was observed for larger
step sizes, but as the step size progresses towards 10−2, the theoretical design order is obtained.

These results were gained via a strong coupling approach, i.e. data between the airfoil and
spring is frequently exchanged in every iteration of the nested iteration schemes on the level of

8



Florian Roß, Adam Büchner, Sebastian Gottfried, and Arthur Stück

Figure 4: Error between the base solution and the DIRK solutions in the NACA0012-spring-coupling
problem. All methods can reach their design order if an sufficiently small step size is used.

Figure 5: Error between the base solution and the DIRK solution of a third order DIRK scheme with
both a stronger and weaker coupling approach for the NACA0012-spring-coupling problem, as well as
the error to the modified strong coupling problem with relaxed solver tolerances. The strongly-coupled
solution yields the expected order as the step size are decreases. Meanwhile, the weakly-coupled solution
only achieves order 1. The solution with looser solver tolerances follows the graph of the stricter tolerance
down to a certain step size. From that point on, it only achieves order 1.

9



Florian Roß, Adam Büchner, Sebastian Gottfried, and Arthur Stück

Runge–Kutta stages. In the following, the solver coupling on the stage-level is relaxed to artifi-
cially weaken the solver and analyse its effect on the time integration. In this weaker coupling,
the spring still gets the new moment from the CFD in each time stage, but the CFD will only
use the angle αn from the beginning of the time step. Figure 5 shows that the weak coupling
falls back to order 1, compared to the theoretical design order 3. This highlights the benefit
of strong coupling in order to retain the higher-order and the accuracy of the time integration.
Furthermore, Figure 5 shows the consequences implied by using a weaker solver tolerance for the
nonlinear solver, resulting in a higher iteration error per Runge–Kutta stage. The iteration was
stopped at a relative tolerance of 10−2, while the original strong coupling solution was converged
until machine accuracy was reached. The behaviour is the same as with the strict tolerances
until a certain step size is reached. This indicates that it is necessary to converge the stage-wise
problem sufficiently accurate in order to reach the desired higher-order convergence in time for
the multidisciplinary time integration. Though it is interesting to note that even after that
point, convergence to the time step independent solution still continued with order 1 instead of
breaking down.

3.3 Instationary Hi-Fi CFD

The last example here is the flow around an ONERA M6 wing [7]. This is a single-disciplinary
test case, based on which we want to investigate the scaling behaviour of the framework-driven
time integration and compare it against the performance-optimized time integration imple-
mented in the CFD solver CODA [4]. Note that this exercise is only carried out to quantify the
overhead associated with the framework-driven time integration and does not yield any bene-
fits from a functionality point-of-view in the single-disciplinary case. The simulation includes a
jump of the angle of attack from 1◦ to 2◦ at the start of the simulation. It uses the compressible
RANS equations with negative extension of the Spalart–Allmaras turbulence model (SA-neg),
with Ma = 0.84 and Re = 14.6 · 106. The unsteady simulation was ran with 50 time steps
with a nondimensional step size ∆t = 0.01. The unstructured computational mesh consisted
of around 2.2 · 105 finite volumes. For time integration, a third-order ESDIRK scheme that is
equivalently available in the CFD-solver CODA was used. These settings were applied both for
CODA standalone and for the framework-driven time integration by means of RKOpenMDAO.
It was run on varying numbers of cores to compare the runtimes of the internal time integration
of CODA against the framework-driven approach. Additionally, the simulation results were
compared, and found to only differ by machine accuracy. The runtimes obained are presented
in Figure 6. The runtime of the framework-driven approach shows a systematic overhead rel-
ative to CODA-standalone execution. The scaling behaviour is similar for lower core counts.
This is to be expected, since the framework-driven approach induced additional overhead, as
there are many , process-local copy operations of data between CODA, the inner problem of the
RungeKuttaIntegrator, and the integrator itself. However, with larger core counts, a decrease
of the scaling in the framework approach compared to CODA can be observed. This behaviour is
unexpected and further studies are required to understand its origin. Systematic profiling of the
framework workflow (beyond RKOpenMDAO) will be carried out to pinpoint the mechanism.
For example, different code paths taken by the two approaches could explain the differences in
the observed scaling behaviour.

10



Florian Roß, Adam Büchner, Sebastian Gottfried, and Arthur Stück

Figure 6: Comparison of the runtime over core counts obtained from CFD-standalone time integration
and the framework-driven time integration by RKOpenMDAO. It is observed that the latter introduces
an overhead, e.g. due to data transfer between CODA and RKOpenMDAO.

4 CONCLUSIONS

We developed an extension to OpenMDAO that allows the time integration of instationary
high-fidelity problems. This extension allows strong coupling of multiple disciplines in time to
enable highly-accurate, high-order time integration in MDAO. The approach was verified and
the framework capabilities were demonstrated for academic analytic problems and a CFD case
of different problem sizes.
In future work, further time integration schemes are to be implemented in the multidisciplinary
time integrator, for example in the form of General Linear Methods (GLM) [9, Ch. 5]. This
in turn would grant the ability to integrate with Runge–Kutta, linear multistep, and mixed
methods using one common implementation. Moreover, we want to use the high-order time-
integration to carry over adaptive time stepping, which is well known on the disciplinary level,
to MDAO problems.
As shown in the previous paragraph we are going to investigate the scalability of the framework-
driven time integration, also in combination with larger high-fidelity MDAO cases like aeroelas-
tic aircraft configurations. Along these lines, the spring will be replaced by a state-of-the-art
finite-element CSM solver. Finally, we want to use RKOpenMDAO for unsteady optimization
problems, in which it is used to integrate coupled adjoint problems backwards in time with
checkpointing.

Acknowledgments The authors gratefully acknowledge the scientific support and HPC re-
sources provided by the German Aerospace Center (DLR). The HPC system CARA is partially

11



Florian Roß, Adam Büchner, Sebastian Gottfried, and Arthur Stück

funded by ”Saxon State Ministry for Economic Affairs, Labour and Transport” and ”Federal
Ministry for Economic Affairs and Climate Action”.

REFERENCES

[1] Hwang, J.T., and Munster, D.W. 2018. Solution of differential equations in gradient-based
multidisciplinary design optimization. 2018 AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference. Kissimmee.

[2] Masilamani, K., Büchner, A., Ehrmanntraut, S., Gottfried, S., Reimer, L., and Stueck, A.
2024. A Scalable MDAO Framework Approach Enabling Nested Solution Algorithms for
Static Aeroelastic Coupling Scenarios. AIAA AVIATION FORUM AND ASCEND 2024 (p.
4403).

[3] Gray, J.S, Hwang, J.T, Martins, J.R.R.A., Moore, K.T. and Naylor, B.A. 2019.
”OpenMDAO: An open-source framework for multidisciplinary design, analysis, and
optimization”. In Structural and Multidisciplinary Optimization, vol. 59: 1075–1104.
http://doi.org/10.1007/s00158-019-02211-z

[4] Leicht, T. et al. 2016. DLR-Project DIGITAL-X – Next Generation CFD Solver FLUCS.
DLRK 2016

[5] Kennedy, C. and Carpenter, M. 2016. Diagonally Implicit Runge-Kutta Methods for Ordi-
nary Differential Equations. A Review.

[6] Hairer, E., Lubich, C. and Roche, M. 1988. Error of Runge-Kutta methods for stiff problems
studied via differential algebraic equations. In BIT Numerical Mathematics 28, 678–700.
https://doi.org/10.1007/BF01941143

[7] Rumsey, C. 3D ONERA M6 Wing Validation Case [online]. 2021-11-10. [visited on 2024-07-
30]. NASA, Available from: https://turbmodels.larc.nasa.gov/onerawingnumerics val.html

[8] Dekker, K. and Verwer, J.G. 1984. Stability of Runge-Kutta Methods for Stiff Nonlinear
Differential Equations, North-Holland, Amsterdam, Netherlands

[9] Butcher, J.C. 2016. Numerical Methods for Ordinary Differential Equations. John Wiley &
Sons, Incorporated. https://doi.org/10.1002/9781119121534

[10] Gallard, F., Vanaret, C., Guénot, D, et al. 2018. GEMS: A Python Library for
Automation of Multidisciplinary Design Optimization Process Generation. In : 2018
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. p.
0657.

12


	INTRODUCTION
	THE FRAMEWORK EXTENSION RKOPENMDAO
	Diagonally implicit Runge–Kutta (DIRK) methods
	Implementation

	NUMERICAL EXPERIMENTS
	Kaps' Problem
	Multiphysics MDA Problem
	Instationary Hi-Fi CFD

	CONCLUSIONS

