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Summary. Functionally graded materials are renowned for minimizing abrupt stress transi-
tions typical of laminated composites. They are highly suitable for operation in adverse high-
temperature environments and can act as thermal barriers, especially when considering a proper
selection of constituent materials. While these materials have been the subject of intense re-
search by the scientific community, existing studies have predominantly focused on rectangular
cross-section beams or plates. Beams with different cross-section profiles can also benefit from
the continuous smooth material transition of functionally graded materials. Therefore, this study
explores the influence of functionally graded materials on the harmonic behavior of symmetri-
cal I-beams, with emphasis on the damping behavior. The investigation involves a parametric
analysis using the thermoelastic model. The beams undergo harmonic loading variations, with
subsequent study of the resulting spectra and damping behavior. As anticipated, the material
mixtures and shapes influence harmonic behaviors and damping profiles.

1 INTRODUCTION

Thermoelastic damping is inherent in all structures and constitutes a source of structural
damping [7, 6]. The thermoelastic model is derived from fundamental principles, fully inte-
grating the elastic wave equation with the heat equation. Although the origins of this model
date back to the 1950s [3, 5], its complexity necessitated the development of modern computa-
tional resources to enable thorough analysis [19, 4, 22, 14, 5, 6]. The damping mechanism in
thermoelasticity comes from the irreversible Entropy generation due to deformation created by
internal heat fluxes. Energy loss due to the thermoelastic effect is more pronounced in smaller
or larger structures at low frequencies [6, 12, 10, 9]. In microscale mechanisms, the impact of
temperature on vibration is significant and cannot be disregarded [23, 24], leading to a need
for a comprehensive understanding of this effect, which is crucial for the engineering of opti-
mized solutions. Depending on the type of mechanism, damping may be undesirable, as in
microresonators [23, 24, 21], or desirable, as in microscale damper mechanisms [13, 8, 11].

The engineering of tailored damping mechanisms can also use more advanced materials.
Functionally Graded Materials (FGM) are composite materials characterized by a continuous
variation in composition without distinct phase boundaries [16, 15, 18]. This continuous grada-
tion enables the engineering of single-component structures with varying mechanical properties
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across their geometry. FGMs also exhibit enhanced thermal properties and improved fracture re-
sistance [16]. Applying FGMs to microstructures introduces an additional level of customization
of mechanical properties [1, 20].

Since I-beams are standard structural members, a thorough understanding of the dynamic
behavior of these elements, particularly regarding damping, is essential for designing structures
capable of withstanding dynamic loads. Numerous studies have explored thermoelasticity in
beams or plates, both at regular and micro/nano scales, predominantly focusing on elements
with rectangular cross-sections [5, 9, 12, 10, 23, 26, 17, 19, 4, 22]. An analysis of thermoelastic
effects in steel I-beams can be found in [6]. Therefore, the primary objective of this study is
to investigate thermoelastic damping and its dependence on frequency, geometry, and material
composition.

The case studies presented in this work examine beams subjected to bending loads, employing
Finite Element Analysis (FEA) based on solid elements rather than conventional beam or plate
elements [22, 4, 5, 23, 24]. Solid elements are computationally more demanding due to the
requirement for finer meshes to capture bending phenomena accurately. However, they offer
greater versatility and insight into local phenomena, such as detailed temperature variation
across the thickness [6]. Additionally, when applied to FGMs, solid elements provide more
precise control over material distribution [16].

This article is structured into four sections: Introduction, Materials and Methods, Results
and Discussion, and Conclusions. The Materials and Methods section elaborates on the formu-
lation of the thermoelastic model and the 3D quadratic hexahedral solid elements. The Results
and Discussion section covers the mesh generation process, convergence studies, and simulation
results. The Conclusions section provides a summary of the study’s findings.

2 MATERIALS AND METHODS

2.1 The Thermoelastic Model

The thermoelastic model results from the full coupling of the elastic wave equation with the
heat equation and is given by (1):{

ρü− µ∇2u− (λ+ µ)∇(∇ ·u) + γ∇θ = f

ρCpθ̇ − κ∇2θ + γT0(∇ · u̇) = q,
(1)

where u is the displacement vector (u = [ux, uy, uz]
T ), θ is the temperature variation, f is the

body load and q is the body heat flux. All function quantities are functions of the Euclidean
coordinates and time. The constants in the model are the material properties: density (ρ), Lamé
constants (µ and λ), specific heat capacity (Cp), and thermal conductivity (κ).

Equation (1) is linearized around the base temperature T0, and, as such, it is only valid for
small deformations and small temperature variations: θ

T0
≪ 1. Finally, the coefficient γ is the

coupling term and is given by:
γ = (3λ+ 2µ)α, (2)

where α is the linear thermal expansion coefficient.
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2.2 Finite Element model

The thermoelastic model was implemented on an in-house Finite Element Analysis software
in 2D quadrilateral and 3D hexahedral solid elements (linear and quadratic ), [6]. The software
was written in C++ and Intel® Math Kernel Library performs the linear algebra routines.

For this study, a solid standard 27 nodes quadratic hexahedral 3D element was defined
according to the Fig. 1.
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Figure 1: Twenty seven node 3D quadratic solid element.

The full discretized version of (1) is given by (3)
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where ux, uy and uz are the displacements in the x, y and z directions, respectively, M, C and
K, are the mass, velocity1 and stiffness matrices. For more details on the matrices, please refer
to [6].

The damping coefficient can be extracted from the work made by a load (or from the dissi-
pated energy) using the maximum elastic potential energy:

η(ω) =
WScycle

πkℜ(X)2
, (4)

where k is the stiffness of the spring, and X is the complex amplitude of the displacement, and
WScycle

is the dissipated work, [6]. The denominator of (4) is the maximum potential energy in
a cycle.

2.3 Geometries and materials

Functionally graded materials change material properties by progressively mixing two (or
more) materials in a given direction. For this study, the function that provides volume fraction
is based on the function shown in [16]. The function in (5) is an exponential law-based function

1The term damping matrix should be avoided because the damping in the thermoelastic model is not completely
contained in this matrix.
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that is flexible to ensure a more controlled material distribution.

VA 0 ≤ z
H < zmin

(VA−Q1)(cosh(Q2A(
z
H
−zcutA))−1)

cosh(Q2A
(zmin−zcutA))−1 +Q1 zmin ≤ z

H < zcutA

Q1 zcutA ≤ z
H < zcutB

(VB−Q1)(cosh(Q2B (
z
H
−zcutB))−1)

cosh(Q2B
(zmax−zcutB))−1 +Q1 zcutB ≤ z

H ≤ zmax

VB zmax < z
H ≤ 1

, (5)

where VA and VB are the fractions of the material at the end-points, zmin and zmax are the
size of the saturation region at the end-points, Q1 is the minimum fraction of the material at
the center, zcutA and zcutB control the position and length of the middle plateau, and Q2A and
Q2B control the slope of the exponential for the left and right sides.

In this study, the parameters used result in a symmetrical material distribution with a con-
stant material distribution in the flanges of the I-beams. Also, to reduce the numerical complex-
ity of the model, the material distribution was discretized according to the number of elements
heigh-wise (keeping the material constant at the flanges of the I-beams), Fig. 2. The parameters
are shown in Table 1.
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Figure 2: Volume fraction function used to con-
trol the material mixing in the z direction and
its discretized version.

Q1 0

Q2A 10

Q2B 10

zmin 6.44%

zmax 93.56%

zcutA 45%

zcutB 55%

VA 1

VB 1

Table 1: Parameters for the volume
fraction function.

The materials used in the study were a standard generic steel and Alumina (Al2O3). The
mechanical and thermal properties of the materials can be seen in Table 2. All properties are
given for a base temperature of 293.15K

Property Unit Steel Alumina (Al2O3)

Young Modulus GPa 200 380

Poisson coefficient - 0.3 0.3

Density kg/m3 7800 3800

Thermal expansion coefficient K−1 12× 10−6 8× 10−6

Thermal conductivity W/(m ·K) 45 31.5*

Specific heat capacity J/(kg ·K) 470 703*

Table 2: Material properties (properties of the Alumina marked with an “*” mean the average
value of the range was used).
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In this work, two geometries are studied: a symmetrical ASTM A6 wide flange I-beam
(W150x100x24.0, Fig. 3 and Table 3) and a square 160mm thick beam.
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Figure 3: I-beam dimensions

Dimension Value (mm)

tw 6.6

hw 139.4

wb 102

hb 10.3

wt 102

ht 10.3

h 160

Table 3: Dimensions of the section of a
W150x100x24.0 wide flange beam.

The aspect ratio (height vs. length) of all beams is 20 (corresponding to a 3.2m beam for
160mm height). Different beams with different uniform scales were also used to study how
thermoelastic damping changes with size.

3 RESULTS AND DISCUSSION

3.1 Mesh convergence

The software and models used in this study were validated against other models and works.
Full details on the validation studies can be consulted in [16] and [6].

Only two geometries were used in this study: the I-beam and the square-section beam, and,
as such, only two meshes were used. Since by scaling uniformly the beams, the relations between
the dimensions do not change, the same number and distribution of elements can be used. To
determine the mesh parameters, a mesh convergence study was done for both meshes. Since this
article uses only harmonic simulations, the convergence of the first two natural vertical bending
frequencies was chosen as the convergence criterion. The mesh convergence for the I-beam can
be seen graphically in Fig. 4a. The selected mesh was the second last, with 160 elements across
the length. A similar process was followed for the rectangular-section beam, reaching a stabilized
mesh of 160 by 5 by 9 elements (length/width/height).
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Figure 4: (a) Convergence of the first two natural frequencies for the W150x100x24.0 beam
(1.6m length), (b) Amplitude and position of the applied distributed load.
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3.2 Case studies

For this work, 24 case studies were used. All case studies use beams with a 20:1 ratio to
the total height (20H), and all cases use a harmonic 1N amplitude distributed load applied at a
quarter length of the beam, Fig. 4b.

3.3 Simulation results - square beam

Making a frequency sweep from 0 to 200rad/s and using (4) (more specifically, the version
for the finite element model in [6]), the evolution of the equivalent damping coefficient with
frequency for the rectangular beams with only a single material can be seen in Fig. 5
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Figure 5: Damping vs. frequency for Steel and Alumina square-section beams (full scale and
1/10).

Fig. 5 shows the typical behavior of the thermoelastic damping for rectangular beams, with
a maximum value and decreasing to zero as the frequency increases (and decreases because
it is 0 at a frequency of 0), has reported by [25, 14, 2, 7]. The shift in the frequency of the
maximum point between the two scales is also in line with expectations, where the frequency
of the maximum increases with the reduction in the beam size. Because the beams were scaled
uniformly, the relation between the maxima is the squared scale. Regarding the two materials,
it can be seen that Alumina has an overall higher damping than the steel beams. To better
compare different beams, Zener in [25] proposed a frequency scaling time constant that removes
the effect of the geometry of the beam, (3.3):

τZ =
ρCP t

2

π2κ
, (6)

where t is the thickness of the beam and τZ is Zener’s time constant or the “characteristic
relaxation time” [25].

Applying the scaling term to the beams, the effect of the geometry in the frequency is removed,
with the resulting curves depending only on the material properties, Fig. 6a.
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Figure 6: Damping vs. frequency for: (a) Steel and Alumina square-section beams with scaled
frequencies, (b) square-section beams with unmodified scaled frequencies.

Adding the results for the FGM beams (both Steel-alumina and Alumina-steel beams), it can
be seen that even by applying the frequency scaling with (3.3), the damping curves do not align
with the others, Fig. 6b. The average properties of the FGM beams were obtained by computing
the highest time constant for the heat equation, and since the first time constant for prismatic
bodies is given by (7a), Zener’s time constant can be obtained by the relation in (7b).

τ1 =
ρCPL

2

π2κ
, (7a)

τZ = τ1

(
t

L

)2

(7b)

where τ1 is the highest time constant of the heat equation (the inverse of the first pole) and L
is the length of the beam.

This happens because Zener’s time constant is the inverse of the first pole of the differential
equation in (8):

κ

ρCP
∇2U + τ−1

Z U = 0, (8)

where U is the “orthogonal thermodynamic potential” [25]. Since the material distribution is
not constant, the first pole of (8) will be different than .

Using the first time constants of the heat equation of both FMG distributions, an equivalent
beam thickness can be found to align all damping curves, and (7b) can be adapted into (9):

τZ = τ1

(
at

L

)2

, (9)

where a is a positive scaling term, which for the square-section beams is given in Table 4.
Applying (9) with the values in Table 4, Fig. 6b becomes Fig. 7a.

At the maximum damping point, the FGM distribution with the highest damping damping
value is the one with alumina at the center. This happens because the irreversible entropy
generation is higher where the heat flux is higher (in absolute). Plotting the heat flux for all
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Material A Material B Scaling term a

Steel Steel 1

Alumina Alumina 1

Alumina Steel 0.916

Steel Alumina 1.086

Table 4: Case studies used in the work.
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Figure 7: (a) Damping vs. frequency for square-section beams with modified scaled frequencies,
(b) Vertical heat flux (zz axis direction) across the beam thickness.

beams about the beam thickness, Fig. 7b shows that the heat flux has a behavior similar in shape
to the shear stress distribution. Although it is not visible, the maximum values of the curves in
Fig. 7b are not in the middle of the beam. Because they were taken at the point where the load
was applied, there is a small compression of the thickness, and consequently, the temperature
is slightly biased to the positive variation. The discontinuity in the heat flux can also be seen
every time there is a variation in the material composition on the FGM distributions.

3.4 Simulation results - I-beam

Moving to the I-beams simulations, the tests show a new type of behavior for the damping.
In the simulations for the I-beams made from steel and alumina, the damping behavior with
frequency is displayed on Fig. 8a. The deformated beam (with a high scaling factor) can be seen
in Fig. 8b.

The first observation is that instead of the familiar shape of the thermoelastic damping curve
for I-beams, the damping curve now has two maxima. The reason for the second maximum will
be discussed later.

Since the beam section is no longer rectangular, the solution to (8) is different. Using the
same method as before, the scaling term a in (9) can be found for the W150 I-beam:

τZ = τ1

(
0.11t

L

)2

, (10)

where a = 0.11. This means that the maximum damping frequency of a W150 I-beam is
equivalent to a rectangular beam with 11% thickness.
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Figure 8: (a) Damping vs. frequency for I-beams made of steel and alumina, (b) W150 I-beam
at the maximum deformation.

Adding the results for the simulations with the FGM distributions and scaling the frequencies,
the resulting plot can be seen in Fig. 9a. As expected, the solution to (8) is also different due to

10-4 10-2 100 102 10410-7

10-6

10-5

10-4

10-3

Eq
ui

va
le

nt
 

Steel
Ceramic
Ceramic-steel
Steel-ceramic

Z

(a) (b)

Figure 9: (a) Damping vs. frequency for I-beams with modified scaled frequencies, (b) Cross-
section of the W150 I-beam at maximum deformation showing the local flang deformation
(darker regions denote negative temperature variations, and the brighter regions denote pos-
itive temperature variations).

the material distribution being different across the thickness of the beam. However, this time,
there is a slight difference. While the first maxima are misaligned, the second is not, and because
of this, it is impossible to replicate Fig. 7a for I-beams. This happens due to the nature of the
second maxima.

As stated above, the thermoelastic model predicts that the larger the internal heat fluxes,
the larger the damping coefficient. When studying a square-section beam under bending, the
heat flux is vertical. However, this is different for an I-beam. Making a plot of the I-beam
cross-section at the load application point, it can be seen that there is a local deformation of the
flange, Fig. 9b. This local deformation generates a horizontal heat flux that is simultaneous with
the main vertical flux and is responsible for the second maxima. Since the material distribution
for the FGM I-beams is only vertical and the flanges have a constant distribution of material,
the second maxima are aligned in Fig. 9a, while the first is not.

When comparing the influence of the cross-section more directly, Fig. 10, it can be seen
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Figure 10: Damping vs. frequency comparing different cross-sections with the same material
distribution: (a) Steel, (b) Alumina, (c) Alumina-steel, and (d) Steel-alumina.

that the square cross-section has a higher damping coefficient for lower frequencies, and the
I-beam has higher damping in higher frequencies; the overall behavior is similar. The damping
coefficient values are not significantly different. When focusing on the FGM beams (Fig. 10c
and Fig. 10d), because the Steel-alumina has a higher level of alumina closer to the neutral line,
the overall damping is higher (much like the case of the square beams, the behavior of the heat
flux in I-beam is analogous to the shear stress).

4 CONCLUSIONS

This research aimed to study the damping behavior of I-beams composed of functionally
graded materials (FGMs) due to the inherent thermoelastic effect. The results from simulations
using harmonic Finite Element Analysis reveal the following:

� Alumina exhibits a higher damping coefficient (or Q-factor, Q−1) than steel. When com-
paring the damping of an FGM distribution between steel and alumina, the damping value
falls in between.

� Damping is more influenced by the material closest to the neutral axis. For an FGM
beam, damping can be increased by incorporating a higher percentage of steel in the
flanges (maximizing resistance to bending deformations) and a higher rate of alumina in
the web.

� For I-beam cross-sections, the damping curve exhibits a second maximum at higher fre-
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quencies. This second maximum is caused by local bending of the flanges due to the
applied load.
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