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Summary. Pentamodes mechanical metamaterials are lattice structures that are applied in 

many engineering applications. Buckling of pentamodes lattice structures is a phenomenon 

that may be occurred when high compressive loadings are considered. Due to the lattice 

structure of pentamodes, buckling analysis may be a complicated phenomenon. In our study, a 

numerical investigation of pentamodes under compressive loading conditions has taken place. 

Several pentamodes structures have been analyzed. Von Misses stresses have been calculated 

and maximum stresses are determined. Finally, a buckling analyses considering material non 

linearity has also taken place.   
 

1 INTRODUCTION 

Buckling is a significant nonlinear deformation that can occur to beams under high 

compressive loading. Pentamodes mechanical metamaterials are lattice structures, composed 

of bi-cone beams and are designed to have high bulk modulus [1-3]. They can confront 

different high compressive loading conditions and consequently buckling phenomena may 

occur. In addition, due to the non-homogeneous nature of pentamodes, the response of 

pentamodes under different loading conditions is significantly affected.  Their wide 

applications field, from aerospace structure to vibrations isolation structure (antiseismic 

design) [2,4,5]] contribute to further investigation of buckling characteristic of pentamode 

structures. 

In addition, pentamodes with increased height have also been used in order to confront 

different loading conditions [5-10]. For this reason, buckling analyses should be taken place, 

in order to analyse the buckling characteristics of pentamodes structures.  

The present paper deals with the buckling response of pentamodes structures. More 

specifically, the main objective of this study is the investigation of failure mechanism of 

pentamodes structures under high compressive forces, which results buckling phenomena, 

using the Finite Element Method (FEM). The aforementioned procedure is implemented using 

FEM package ANSYS [11] which incorporates nonlinear FEM analyses and buckling 
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analysis. The elastoplastic material behaviour of Clear V4 polymer [10] is modelled using a 

bilinear stress-strain relationship. In addition, large displacement analyses have taken place. 

The convergence of the numerical solution is also tested for different pentamode structures.  

Load displacement curves have been created using the results from the FEM analyses. In 

addition, Von Misseses stresses contours have been developed to determine the maximum 

stress fields and their amplitude taking into consideration material and geometric non 

linearity. It is also found that pentamodes appear to rotate under compressive loading, due to 

their non-homogenous nature. 

2 THEORETICAL CONSIDERATION 

2.1 Pentamode structure 

In our study, a typical pentamode unit cell (Figure 1) is used, 

 
Figure 1: Unit cell pentamode structure [4,5] 

where d is the small diameter, D is the wide diameter and  is the main dimension of 

pentamode structure. In Table 1, the dimensions of pentamodes are presented.  
 

Table 1: Pentamoded dimensions 

α [mm]
 

d [mm]
 

D [mm]
 

30 2.4 5.4 

 

The pentamodes structures considered in this study have unit cells towards x-axis ( xn ) and 

respectively for y- and z-axis ( ,y zn n ), as presented in Table 2. 

Table 2: Pentamoded Structures 

Case Unit Cell 

1 2, 1x y zn n n    

3 6, 1x y zn n n    

5 10, 1x y zn n n    
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2.2 Materials 

In our analyses, pentamodes are considered to be made from the polymer resin Clear V4 

[12]. The materials stress strain curves are given in Figure 2. 

 
Figure 2: Material properties [12] 

From Figure 2, Clear V4 [12] is considered to be the standard resin that has been used in 

our analyses. The Young modulus of the material is 2.8[GPa], the ultimate tensile strength is 

65[MPa] while the elongation at failure is 6% [12]. 

 

3 COMPUTATIONAL ANALYSIS 

In this finite element analyses, pentamodes have been modeled using the finite element 

program ANSYS[11]. The element that has been used is the BEAM189 [11] which is a 3 

nodes beam element, with 6 degrees of freedom each node. In order to confront the beam bi-

cone geometry, TAPER [11] elements have also been used. At first in order to study the 

convergence of our results, a pentamode with 5D mm , 1.4d mm , 30mm  and with

2x y zn n n    is considered. A compressive load of 1.5kN is applied to nodes at the upper 

side of the pentamodes, whereas the nodes at the bottom side are fully constrained. The 

displacements of the upper side of the pentamodes is plotted in the following Figure 3. 
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Figure 3: Convergence of the displacement 

In Figure 3, the results for the displacements of the upper side nodes are presented. It is 

observed that the results convergence after 16 elements in each beam. In our study 20 

elements in each beam are considered. 

The buckling finite element analyses is divided in two parts. At the first part, a static finite 

element analyses is take place, with a compressive load of 1N. Then, with the results from the 

static analyses, an eigenbuckling analyses is considered. The eigenbuckling analyses extract 3 

eigenfrequencies each case. 

4 RESULTS AND DISCUSSION 

In this section, the results of the finite element analyses are presented. In our study two 

cases for the boundary conditions are considered. At first, pentamodes bottom side nodes are 

considered fully constrained, and secondly the bottom side nodes are considered to have only 

the displacements constrained. Then the eigenvalue forces are calculated, and for the first 

eigenvalue each case, the Von Misses stresses are extracted. 

3.1 Eigenvalue Forces  

For the 1
st
 case, the eigenvalue forces are given in the Table 3, 
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Table 3: Eigenvalue forces 

Eigenvalue 

force 

Fully Constrained 

[N] 

Only Displacements 

Constrained [N] 

1
st
 156.38 133.38 

2
nd

 452.86 444.33 

3
rd

 653.73 653.20 

 

 According to Table 3, it is observed that the 1
st
 eigenvalue force in the case of the fully 

constrained bottom side nodes has higher value than in the case of only displacements 

constrained at the bottom side nodes. It should be noted that the 1
st
 eigenvalue force is the 

most useful during the design process.  

For the 2
nd

 case, the eigenvalue forces are presented in the Table 4, 

Table 4: Eigenvalue forces 

Eigenvalue 

force 

Fully Constrained 

[N] 

Only Displacements 

Constrained [N] 

1
st
 67.12 65.80 

2
nd

 566.00 555.06 

3
rd

 718.79 718.17 

 

 As it is also noted from the results of Table 4, the 1
st
 eigenvalue force in the case of fully 

constrained bottom side nodes has higher value than in the case of only displacements 

constrained at the bottom side nodes.  

Finally for the 3
rd

 case, the eigenvalue forces are given in Table 5, 

Table 5: Eigenvalue forces 

Eigenvalue 

force 

Fully Constrained 

[N] 

Only Displacements 

Constrained [N] 

1
st
 42.14 41.72 

2
nd

 371.42 367.90 

3
rd

 566.42 565.96 

 

 From the results of Table 5, it is also observed that the 1
st
 eigenvalue force for the case of 

fully constrained bottom side nodes has higher value than the case of only displacements 

constrained at the bottom side nodes.  

In the sequel, for the case of 6x yn n   and 1zn  , a comparison of the 1
st
 eigenvalue 

force among  different beams dimensions has taken place (Table 6).  

Table 6: Pentamoded dimensions 

 d [mm]
 

D [mm]
 

Eigenvalue force 

[N] 

1 4.8 10.8 907.16 

2 1.2 5.7 4.43 

It is observed that pentamode with wider beam dimensions present higher eigenvalue force 
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than that with the pentamode with thinner beam dimensions.  

3.2 Von Misses Stress 

In order to determine where the maximum stresses will be appeared, the Von Misses 

stresses are calculated. For the 1
st
 case (Table 3), and for both boundary conditions, the Von 

Misses stresses are given in Figure 4. 

 

 
 

(a) Fully constrained bottom side nodes 

 

 
(b) Only displacements constrained bottom side nodes 
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Figure 4: Von Misses stress in the 1
st
 case (Table 3) 

 

It is observed that the maximum Von Misses stresses, are near the beam connections. The 

maximum Von Misses stresses are between 15.02[MPA] and 19.25[MPA] for both cases 

respectively, which is below the ultimate strength of the material (Section 2.2).  

In the sequel for the 2
nd

 case (Table 4), and for both boundary conditions, the Von Misses 

are presented in Figure 5. 

 
 

 
(a) Fully constrained bottom side nodes 
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(b) Only displacements constrained bottom side nodes 

 

Figure 5: Von Misses stress in the 2
nd

 case (Table 4) 
From Figure 5 it is should be noted that the maximum Von Misses stresses, are near beam 

connections. In addition, according to Figures 4, 5, the maximum Von Misses stresses 

appeared lower value in the 2
nd

 case than in the 1
st
 case. The maximum Von Misses stresses 

are between 2.29[MPA] and 2.24[MPA] for both cases respectively, which is below the 

ultimate strength of the material (Section 2.2). 

For the 3
rd

 case (Table 5), and for both boundary conditions, the Von Misses are given in 

Figure 6. 
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(a) Fully constrained bottom side nodes 

 

 
(b) Only displacements constrained bottom side nodes 
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Figure 6: Von Misses stress in the 3
rd

 case (Table 5) 
 

From Figure 6 it also is observed that the maximum Von Misses stresses are between 

0.89[MPA] and 0.90[MPA] for both cases respectively, which is below the ultimate strength 

of the material (Section 2.2).  

3.3 Non linear buckling 

For the case of 6x yn n   and 1zn  , a non linear buckling analyses has taken place. The 

material is considered to be bi-linear (Figure 2), and the corresponding eigenvalue forces are 

presented in the Table 7. 

Table 7: Eigenvalue forces 

Eigenvalue 

force 

Fully Constrained 

[N] 

1
st
 67.12 

2
nd

 566.00 

3
rd

 718.79 

 

It is observed from Tables 5 and 9 that the eigenvalue forces almost coincide for the linear 

and non linear buckling analyses. 

4 CONCLUSIONS 

In this study, a buckling analyses of pentamodes has taken place. Linear buckling 

characteristics were considered for several pentamodes structures under different boundary 

conditions. According to our study, pentamodes with fully constrained bottom side nodes, 

appeared higher 1
st
 eigenvalue force than pentamodes with only displacements constrained at 

the bottom side nodes. In addition, Von Misses stresses appeared to have decreased maximum 

values in the case of pentamodes only displacements constrained at the bottom side nodes. 

Furthermore, as pentamodes increased their dimensions, the 1
st
 eigenvalue force appeared to 

decrease. In addition, the non linear buckling analyses presented results for the eigenvalue 

forces that almost coincided with those from the linear analyses.  

Finally, for future work, large displacement analyses should take place in more materials 

options. Furthermore, a new fillet type for the beam connections [13] should also be 

considered. 
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