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Summary. Topology optimization algorithms allow the design of optimized structures un-
der prescribed constraints, loads, and boundary conditions. In this contribution, a structural
optimization framework is proposed to deal with the challenges posed by large-scale additive
manufacturing. The formulation is a volume constrained compliance-based optimization, which
leverages on the selection of suitable non-periodic architectures at the microscale, such as spin-
odal architected materials, by a multi-material and homogenization-based approach. The imple-
mented architectures have unstructured and stochastic features, which are suitable for smooth
transitions between different materials. The wide range of spinodal material classes achievable
is combined with porosity and orientation setting, which provide high design freedom. The
proposed approach is exemplified by exploiting the features of a novel large-scale water jetting
powder-bed 3D printing technology.
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1 INTRODUCTION

Topology optimization is a class of computational design tools that allows optimal distribution
of material in a prescribed domain upon assigned boundary and loads conditions, while dealing
with a target objective under constraints. Since its development, topology optimization has
been mainly focused on theoretical aspects due to practical limitation in fabricating complex
geometries. This shortcoming was overcome with the development of advanced manufacturing
and 3D printing techniques, involving many engineering fields, such as automotive, aerospace,
biomedical. Many manufacturing limits imposed by traditional manufacturing processes have
been overcome by the development of technologies able to deal with scales ranging from nanome-
ters to centimeters. The growth of additive manufacturing has recently become attractive also
to the field of constructions. The need of new solutions is motivated mainly by the negative envi-
ronmental impact of traditional manufacturing processes and the reduction of costs. Therefore,
bridging topology optimization methods and additive manufacturing technology has become
a particularly relevant challenge, in that it allows to minimize energy consumption and the
carbon footprint. Indeed, topology optimization provides the optimal material distribution by
efficiently reducing material usage with structures at “limits of economy” [1] while, on the other
hand, additive manufacturing contributes to the reduction of material waste and CO2 emissions
by allowing the use of alternative and eco-sustainable materials, such as natural and recycled
raw aggregates combined with eco-friendly binders. Additionally, the advances on topology
optimization and additive manufacturing motivated the community to investigate structural op-
timization problems at different scales. The control of microscale designs enables the definition
of lightweight cellular solids with prescribed physical, mechanical and functional features at
the macroscale. Despite the advantages, truss- and plate-based periodic microstructures suffer
from stress concentrations at their members intersection with consequences on strength and
reliability. An alternative is represented by triply periodic minimal surfaces (TPMS) [2], which
avoids stress concentrations due to smooth topologies and leveraging on the benefits of doubly
curved surfaces with an excellent scalability of structural properties. Most recently, stochastic
non-periodic architectures obtained by mimicking spinodal decomposition in phase separation
have attracted noticeable interest. Similarly to TPMS, spinodal architected materials present
smooth and non-intersecting surfaces between different material classes [3]. In this contribu-
tion, we present a volume-constrained multi-material topology optimization formulation that
maximizes the stiffness of the system, while handling optimal distribution of different classes
of spinodal architectures, accounting for varying density and orientation [4]. The formulation
is bridged with large-scale additive manufacturing by a voxel-based post-processing technique.
The technology introduced additional restrictions on the formulation, such as domain definition
and microstructural parameters setting, to take into account the nature and behavior of printed
material, i.e. stone-like materials manufactured with specific aggregates and binders. We con-
sider, in particular, structures that are self-supported, such as arches and vaults, to ensure
prevailing compression stress states at the macroscale throughout the structure. As an exam-
ple to illustrate the proposed approach we present the design of a catenary arch, a well-known
architectural element characterized by the resultants of compression forces, i.e. the thrust line,
entirely contained within the shape of the arch.
The paper is organized as follows: Section 2 details the topology optimization formulation,
non-periodic architected materials and additive manufacturing technology, Section 3 outlines
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numerical results and finally Section 4 provides conclusions and future perspectives.

2 MATERIALS AND METHODS

The proposed topology optimization formulation entails a multi-material approach based on
homogenization, which allows to handle and include different microstructures in the iterative
process. The problem is stated in Eq. 1, in which structural compliance, 𝐽, is minimized under
volume constraints, 𝑔𝑘 .

min
Z,𝜌,𝛼,𝛽,𝛾

𝐽 = F𝑇 U(Z, 𝜌,𝜶, 𝜷, 𝜸),

s.t. 𝑔𝑘 =

∑
𝑚∈G𝑘

∑
ℓ∈E 𝑗

𝐴ℓ𝑚𝑣 (𝑦ℓ𝑚)∑
ℓ∈E𝑘

𝐴ℓ
− 𝑣𝑘 ≤ 0, 𝑘 = 1, ..., 𝑁c,

𝑍ℓ𝑚 ∈ [0, 1], ℓ = 1, ..., 𝑁el, 𝑚 = 1, ..., 𝑁mat,

𝜌ℓ ∈ [𝜌, 𝜌], {𝛼ℓ𝑚, 𝛽ℓ𝑚, 𝛾ℓ𝑚} ∈ [−𝜋, 𝜋],

with K(Z, 𝜌,𝜶, 𝜷, 𝜸)U(Z, 𝜌,𝜶, 𝜷, 𝜸) = F,

(1)

The volume constraint has a flexible definition in order to set global or local material limitations.
Local volume constraints are defined by material selection restriction on subdomains through
index element lists. The material index list, G𝑘 , contains the material available in the opti-
mization associated to element index list, E𝑘 , of the domain, in the case of global constraint,
or sub-domains, in the case of local constraints. It is possible to assign, for design purposes,
passive regions. These regions may be voids or made up of a specific material, which are re-
spectively referred to as passive-void and passive-solid. The design variable space is composed
by material existence, Z, spinodal density, 𝝆 in the manufacturability range (lower 𝜌 and upper
𝜌 bounds), and spinodal orientation angles, {𝜶, 𝜷, 𝜸}. The material design variable field, Z, is
regularized by a linear filter [5] assigning a radius that enforces the well-posedness of the prob-
lem and mesh-dependency of the discretized problem. The operator is coupled with a Heaviside
projection [6] to encourage smooth transitions solid-void. The filtered density, 𝑌 is finally penal-
ized through a SIMP interpolation scheme [7] to remove intermediate densities. The material
penalty 𝑝 and multi-material mixing 𝜏 factors are increased by a continuation scheme after
reaching convergence or the maximum number of iterations. The factors are incremented until
the desired penalty factor and the material mixing are reached. The solid boundaries of the
optimal layout are suitably smoothed. A post-processing procedure is required to visualize and
embed the implemented microstructual design. The domain is discretized into finite elements
and a design variable space is associated to the discretized space. The displacement field, U, is
obtaining by solving the state equation of static elasticity K(Z, 𝝆,𝜶, 𝜷, 𝜸)U(Z, 𝝆,𝜶, 𝜷, 𝜸) = F.
The design-independent nodal loads vector, F, is assigned, while the global stiffness matrix, K,
is computed from the local element stiffness matrices [8] as follows:

Kℓ =
∫
Ωℓ

B𝑇Dℓ (Zℓ , 𝜌ℓ ,𝜶ℓ , 𝜷ℓ , 𝜸ℓ)B𝑑x,, (2)

The element-strain displacement matrix is B and the material matrix, D, is calculated by multi-
material interpolation of the 𝑚-candidate materials material matrix, 𝐷𝐻

𝑚 , according to:
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Dℓ =
𝑁𝑚∑
𝑚=1

𝑤ℓ𝑚

𝑁𝑚∏
𝑞=1
𝑞≠𝑚

(1 − 𝜏𝑤ℓ𝑞)M(𝛼ℓ𝑚, 𝛽ℓ𝑚, 𝛾ℓ𝑚)D
𝐻
𝑚 (𝜌ℓ)M

𝑇 (𝛼ℓ𝑚, 𝛽ℓ𝑚, 𝛾ℓ𝑚). (3)

The optimal orientation of spinodal architectures reference frame is obtained by tensor transfor-
mation laws, M(𝛼ℓ𝑚, 𝛽ℓ𝑚, 𝛾ℓ𝑚), for stress and strains. The angles (𝛼ℓ𝑚, 𝛽ℓ𝑚, 𝛾ℓ𝑚) are updated
by Eq. 6. The 𝑚-candidate materials are included by a homogenized material elasticity tensor,
𝐷𝐻

𝑚 , calculated by classical homogenization theory [9] for assigned densities and topologies. The
stochastic and non-periodic nature of spinodal topology is considered in the implementation by
calculating the elastic tensor by means of 15 spinodal architectures. Each topology is calculated
by applying level-set function to Eq. 11 and the computational homogenization is performed by
discretizing the topology in 150x150x150 elements with Young’s modulus, E = 1, and Poisson’s
ratio, 𝜈 = 0.3 for the bulk material. The problem in Eq. (1) is solved by a gradient-based ap-
proach. The optimal solution is ruled by the sensitivities of objective and constraint functions
with respect to design variables. The augmented lagrangian method [10] is adopted with the
Steepest Descent Method (SDM) [11] to iteratively guide the design toward an optimal solution,
a local minimum. The augmented lagrangian function is minimized in each inner iteration 𝑡 as
the sum of objective function and the penalty term and reads:

L(x) (t) = 𝐽 (x) +
𝐾∑
𝑗=1

[
𝜆 (𝑡 )
𝑗 max

(
𝑔 𝑗 (𝑥),−

𝜆 (𝑡 )
𝑗

𝜇 (𝑡 )

)
+

𝜇 (𝑡 )

2
𝑚𝑎𝑥

(
𝑔 𝑗 (𝑥),−

𝜆 (𝑡 )
𝑗

𝜇 (𝑡 )

)2]
, (4)

The penalization parameters, 𝜆 (𝑘 )
𝑗 and 𝜇 (𝑘 ) , are updated every 5 outer iterations, 𝑘, as:

𝜆 (𝑘+1)
𝑗 = 𝜆 (𝑘 )

𝑗 + 𝜇 (𝑘 ) max
(
𝑔 (𝑘 )
𝑗 (x),−

𝜆 (𝑡 )
𝑗

𝜇 (𝑘 )

)
𝑎𝑛𝑑 𝜇 (𝑘+1) = 1.25𝜇 (𝑘 ) . (5)

At each inner optimization iteration, 𝑡, the variables x are updates following the rule:

x(𝑡+1) = max

[
min

(
x(𝑡 ) − 𝜏 (𝑡 ) 𝜕L

(𝑡 )

𝜕x
, x(𝑡 ) + 𝑚𝑜𝑣𝑒

)
, x(𝑡 ) − 𝑚𝑜𝑣𝑒)

]
, (6)

where 𝑚𝑜𝑣𝑒 is move limit and 𝜏 (𝑡+1) = max (0.99𝜏 (𝑡 ) , 0.01) is the step size with 𝜏 (0) = 1.
The sensitivities involved in the update scheme are the objective and penalty function and they
are computed as follows:

𝜕𝐽

𝜕z𝑚
=

𝜕𝑦ℓ𝑚
𝜕𝑧ℓ𝑚

𝜕𝑦ℓ𝑚
𝜕𝑦ℓ𝑚

𝜕𝐽

𝜕𝑤ℓ𝑚
,

𝜕𝐽

𝜕𝜶𝑚
=

𝜕𝐽

𝜕𝛼ℓ𝑚
,
𝜕𝐽

𝜕𝜌
=

𝜕𝐽

𝜕𝜌ℓ
𝜕𝑔 𝑗

𝜕z𝑚
=

𝜕𝑦ℓ𝑚
𝜕𝑧ℓ𝑚

𝜕𝑦ℓ𝑚
𝜕𝑦ℓ𝑚

𝜕𝑣ℓ𝑚
𝜕𝑦ℓ𝑚

𝜕𝑔 𝑗

𝜕𝑣ℓ𝑚
,

𝜕𝑔 𝑗

𝜕𝝆
=

𝜕𝑣ℓ𝑚
𝜕𝜌ℓ

𝜕𝑔 𝑗

𝜕𝑣ℓ𝑚
,

𝑚 = 1, ..., 𝑁𝑚, 𝑗 = 1, ..., 𝑁𝑐

(7)

where:
𝜕𝑦𝑚
𝜕𝑍𝑚

= P𝑇 ,
𝜕𝑤

𝜕𝑦ℓ𝑚
= 𝑝𝑦𝑝−1ℓ𝑚 ,

𝜕𝑦

𝜕𝑦ℓ𝑚
=

𝜉 (1 − tanh2(𝜉 (𝑦ℓ𝑚 − 𝜂)))

tanh (𝜉𝜂) + tanh (𝜉 (1 − 𝜂))
,

𝜕𝑣ℓ𝑚
𝜕𝑦

= 𝜌ℓ ,
𝜕𝑣ℓ𝑚
𝜕𝜌𝑘

= 𝑦ℓ𝑚,
𝜕𝑔 𝑗

𝜕𝑣ℓ𝑚
=

𝑉ℓ∑
ℓ∈𝐸 𝑗

𝑉ℓ

(8)
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The components of each objective and constraint sensitivities are defined as:

𝜕𝐽

𝜕𝑤ℓ𝑚
= −U𝑇 𝜕K

𝜕𝑤ℓ𝑚
U,

𝜕𝐽

𝜕𝜌ℓ
= −U𝑇 𝜕K

𝜕𝜌ℓ
U,

𝜕𝐽

𝜕𝛼ℓ𝑚
= −U𝑇 𝜕K

𝜕𝛼ℓ𝑚
U (9)

where the stiffness sensitivities are computed from the material elasticity tensor, with respect
to the design variable, w, the spinodal density, 𝜌, and the orientation angle (𝛼):

𝜕Dℓ

𝜕𝑤ℓ𝑚
=

𝑁𝑚∏
𝑞=1
𝑞≠𝑚

(1 − 𝜏𝑤ℓ𝑞)Mℓ𝑚D
𝐻
𝑚 (𝜌ℓ)M

𝑇
ℓ𝑚 −

𝑁𝑚∑
𝑞=1
𝑞≠𝑚

𝛾𝑤ℓ𝑞

𝑁𝑚∏
𝑟=1
𝑟≠𝑞
𝑟≠𝑚

(𝜏ℓ𝑟 )Mℓ𝑚D
𝐻
𝑚 (𝜌ℓ)M

𝑇
ℓ𝑚,

𝜕Dℓ

𝜕𝜌ℓ
=

𝑁𝑚∑
𝑚=1

𝑤ℓ𝑚

𝑚∏
𝑞=1
𝑞≠𝑚

(1 − 𝜏𝑤ℓ𝑞)Mℓ𝑚
𝜕D𝐻

𝑚 (𝜌𝑘)

𝜕𝜌ℓ
M𝑇

ℓ𝑚,

𝜕Dℓ

𝜕𝛼ℓ𝑚
=

𝑁𝑚∑
𝑚=1

𝑤ℓ𝑚

𝑁𝑚∏
𝑞=1
𝑞≠𝑚

(1 − 𝜏𝑤ℓ𝑞)

[
𝜕Mℓ𝑚

𝜕𝛼ℓ𝑚
D𝐻

𝑚M
𝑇
ℓ𝑚 +M𝑘D

𝐻
𝑚

𝜕M𝑇
ℓ𝑚

𝜕𝛼ℓ𝑚

]
(10)

with 𝜕D/𝜕𝛽ℓ𝑚 and 𝜕D/𝜕𝛾ℓ𝑚 and of similar form.
The multi-material topology optimization formulation is bridged with a powder-bed water jetting
additive manufacturing technique by a voxel-based strategy [12] to generate a readable file in
Standard Triangulation Language .stl, as an input to the slicing software. The strategy enables
the visualization of microstructural features and provides smooth continuity by entailing the
optimized layout into homogeneous material regions. The design variables are projected into a
finer grid and a discrete form of Eq. 11 is used to post-process the spinodal architectures.
In this work we employ a powder-bed water jetting technology that enables the production of
large components. The printer is the Desa1 150.150, see Fig. 1, developed by Desamanera S.r.l.
(Rovigo, Italy) [13]. The printer has a Cartesian gantry system allowing the production of a
build volume of 1.5 m3 with a square printing area of 1.5 m × 1.5 m. The system is composed of
a frame of four columns and horizontal beams on the bottom and top. Each column is equipped
with an electric motor that controls the vertical movement of the printer head. The horizontal
beams provide stability. The printer head is composed of 264 nozzles placed in a straight line
and separated according to a voxel dimension of 5.7 mm. The printer head is located on an
intermediate beam crossing the printable area and connected to perpendicular double beams.
The intermediate beam is carried through an electric motor controlling the planar movement.
The layer thickness allowed has a range of 5-10 mm, while the voxel has dimensions spanning
from 3 mm to 5.7 mm. These printer settings are defined by technical features of the system
and design requirements of the object to be printed. The layer thickness and voxel dimensions
in this work are set at 5.7 mm. The 3D model is pre-processed by a commercial 3D computer-
aided design software. The object is imported into a in-house software and sliced into layers.
The information, including opening and closing of nozzles, printing speed, voxel dimension,
and layer thickness, are transmitted to the printer by an instruction code. The manufacturing
process consists of repeated operations of laying and printing. The layer surface, i.e. the powder
bed, is prepared by a recoater and a sand feeder after the material deposition. The flat surface
is leveled according to the set layer thickness. The quality of the powder-bed is influenced by
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the grain size of aggregates. In particular, the powder-bed is composed of natural aggregates
and a magnesium-based binder. The voxel is activated by a water-admixture solution. The
printed material is a magnesium-based cement and the object appears as a layered concrete
structure. The non-activated powder acts as a support for the next layers, while formworks
on the perimeter are employed to avoid movements of lower layers, e.g. horizontal translations
caused by the weight of upper layers. Once the last layer is completed, the manufactured object
is kept resting in the powder-bed to complete the material activation and guarantee an adequate
layer adesion. The period elapsed between the printing and the post-processing is related to
material formulation and object dimensions. The post-processing is structured in excavation
and post-production treatments. The excavation, or extractions, is done by vacuum and tools.
Then, air blowing removes the film of non-activated powders on the surface. Finally, a water
treatment is applied to complete the chemical reaction of deeper parts The water bathing is
repeated according to object size and the manufactured structure is dried at environmental
conditions.
The powder-bed water jetting technology provides advantages in design freedom and materials
flexibility. In addition, different aggregates are potentially implementable in the manufacturing
process, e.g. marbles, stones, minerals, and other stone-like materials from recycled waste from
the construction industry, according to grain size requirements and binder.

Figure 1 Desa1 150.150 printer [13]

3 RESULTS AND DISCUSSION

The optimization problem stated in Eq. 1 is combined with a homogenization approach that
enables the inclusion of microstructures to design hierarchical structures. The microstructural
architectures implemented are spinodal architected materials. Their topologies stand on the
thermodynamic concept of spinodal decomposition [14] where two phases spontaneously sepa-
rate in an unstable phase that lies at maximum free energy. The random fluctuation in the
concentration reduces the free energy of the system causing the spontaneous separation. The
spinodal decomposition has been first modeled by the Cahn–Hilliard equation [15]. The com-
putation is expensive and the control over the spinodal phase separation is limited. So, a phase
field approximation has been proposed by a using a gaussian random field (GRF) [16].
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Figure 2 Lamellar Spinodal Architected Material. a) wave vectors n𝑖 space restricted by angles { (𝜃1, 𝜃2, 𝜃3 ) = (0, 30, 0) },
b) elastic surface with spinodal density 𝜌 = 0.4. The gray volume is the elastic Voigt bound (𝜌𝐸) used as an upper bound.
c) components of the homogenized stiffness elasticity matrix 𝐷𝐻 , d) numerical values of 𝐷𝐻 model. Colors identifies values
of the orthotropic material that are equal. The homogenized properties and the elastic surface are calculated on a Lamellar
Spinodal Architected Material made of an elastic isotropic material with 𝐸 = 1 Mpa and 𝜈 = 0. A generic and planar view
shows the e) numerical model and f) physical sample.

The introduction of a GRF, 𝜔, sets anisotropic features by manipulating the stochastic distri-
bution of a set of wave vectors, n𝑖 , 𝑖 = 1, ...𝑁𝑤 , on a unit sphere n𝑖 ∈ U[S2]. The GRF in the
Cartesian space R

3 with basis {ê1, ê2, ê3} is computed as follows:

𝜔(x) =

√
2

𝑁w

𝑁𝑤∑
𝑗=1

cos 𝛽n 𝑗 · x + 𝜁 𝑗 , (11)

with amplitude, 𝑁𝑤, wavelength, 𝛽 and phase shift 𝜁 𝑗 ∈ U[0, 2𝜋) of the 𝑗-th wave vector sampled
as:

n 𝑗 ∈ U[{m ∈ S
2 : ( |m · ê1 | > cos 𝜃1) ⊕ (|m · ê2 | > cos 𝜃2) ⊕ (|m · ê3 | > cos 𝜃3)}], (12)

where the angle set {𝜃1, 𝜃2, 𝜃3} ∈ [0, 𝜋/2] restricts the wave vectors 12 on an unit sphere [16]
providing the desirable anisotropic features.
The numerical model and the physical sample include the lamellar spinodal architecture. The
lamellar class depicted in Fig, 2 is generated by restricting wave vectors through cone angles
{𝜃1, 𝜃2, 𝜃3} = {0, 30, 0}.
The homogenized properties are included in the optimization formulation by the elastic matrix
𝐷𝐻 . The manufactured sample, see Fig. 2.d, has been post-processed with wavelength 𝛽 = 25,
which fits the architected material with resolution requirements.
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Figure 3 Lamellar Catenary Arch: a) domain, b) numerical model, c) manufactured sample and d) printing and post-
processing process. 1) laying operation, 2) printed object in the powder-bed completing the reaction and 3) excavation and
object extraction.

The presented topology optimization formulation has been employed with a single candidate
material, the lamellar class, with a global volume constraint 𝑣. The optimization aims at op-
timally orienting the microstructure in the 3D space. The selected domain is a catenary arch
with design and boundary conditions depicted in Fig. 3. The geometrical axis is defined by
reversing the catenary equation 𝑧 = 𝑎𝑐𝑜𝑠ℎ(𝑥\𝑎) = 𝑎(𝑒𝑥\𝑎 + 𝑒−𝑥\𝑎)\2. The solid arch volume has
been designed by setting the distance of the lowest point above the x axis, 𝑎 = 1/6, and imposing
constant depth along the axis, ℓ1 = 15 cm, with a span of ℓ0 = 65 cm. The overall length is ℓ
= 95 cm with an height of ℎ = 83 cm and a width set as 𝑤 = 30 cm.
The optimization is performed by initializing the design variable: material density 𝑣𝑙𝑚 = 𝑣/𝜌ℓ , ∀ℓ ,
density 𝜌ℓ = (𝜌 + 𝜌)/2, ∀ℓ and orientation 𝛼ℓ = 0, 𝛽ℓ = 0, 𝛾ℓ = 0, ∀ℓ . The material density is
filtered by a linear filter with a given radius, 𝑅 = 0.4. The design variables are updated with
Eq. 6. The material density is updated at most with a 𝑚𝑜𝑣𝑒z = 0.1, while orientation angles
with 𝑚𝑜𝑣𝑒ang = 0.25. The convergence is reached by evaluating the change in material density,
Z, within a given tolerance, 𝑡𝑜𝑙 and a maximum number of iterations maxiter = 150 is set for
each penalization step. The optimal solution is searched through a continuation penalization
scheme with 5 penalization steps. The material penalty factor in the penalization steps is set
𝑝 = [1, 2, 2, 3, 4], while the multi-material interpolation parameter, 𝜏, is not required due to
single-material optimization presented in this contribution. The iterative process optimizes the
inner material distribution, porosity and orientation. The presented approach is tailored for
a water jetting powder-bed additive manufacturing technology to manufacture self-supported
structures due to printed material features, in which tensile strength properties are practically
nonexistent. The numerical simulation and the physical sample demonstrate the applicability
of a water-jetting powder-bed technology to print large-scale structures made of non-periodic
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architected material.

4 CONCLUSIONS

The framework presented in this contribution outlines the scalability of spinodal architectures
in a large-scale additive manufacturing framework by the manufacturing of a spinodal lamellar
cube. The optimization and manufacturing of an optimally oriented lamellar catenary arch are
presented in detail. The adopted topology optimization does not include any failure criterion.
A formulation addressing practical application is a stress-based formulation [17], but its appli-
cation with multiscale systems is currently challenging. The nature and behavior of stone-like
materials with negligible tensile strength and the adopted topology optimization formulation
have suggested to consider as an input design a self-supported structure, which is characterized
by a prevailing compression stress state. Future challenges and outcomes will regard the inves-
tigation of the multi-material formulation presented with different classes with density ranges,
considering both global and local volume constraints. In addition, the inclusion of a failure
criterion represents a potential future development, i.e. stress-constraints formulation, that will
extend the application of spinodal architected materials with topology optimization for practical
applications in the field of civil engineering.
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