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A B S T R A C T

This work presents a data-driven continuum–discrete multiscale methodology to simulate heat transfer through
granular materials. The two scales are hierarchically coupled, where the effective thermal conductivity tensor
required by the continuous method at the macroscale is obtained from offline microscale analyses. A set of
granular media samples is created through the Discrete Element Method (DEM) to relate microstructure prop-
erties with thermal conductivity. The protocol for generating these Representative Volume Elements (RVEs)
and homogenizing the microscale response is presented and validated by assessing the representativeness of
the granular assemblies. The study found that two local properties, the porosity and the fabric of the material,
are sufficient to accurately estimate a representative thermal conductivity tensor. The created dimensionless
database of microscale results is used for training a surrogate model based on machine learning. In this
way, effective thermal conductivity tensors that accurately reflect the local microstructure can be efficiently
predicted from the surrogate model by taking the microstructural properties as inputs. The proposed multiscale
methodology enables us to solve heat problems in granular media using a continuum approach with accuracy
comparable to a pure discrete computational method but at significantly reduced computational cost.
1. Introduction

Granular media are ubiquitous in nature and are the most processed
material in the industry after water. The thermal behavior of these
materials is relevant in several situations, including static and dynamic
systems. For example, in granular mixing with rotating drums (Rangel
et al., 2023) or bladed stirrers (Kisuka et al., 2023), additive manu-
facturing by selective laser sintering (Kruth et al., 2003), packed and
moving beds of catalytic reactors (Zhou et al., 2009), latent heat storage
systems (Ismail and Henrıquez, 2002), landslides powered by heat-
induced shear failures (Voight and Faust, 1992), among many other
cases. It is therefore of paramount importance to develop effective
and efficient numerical strategies for simulating heat transfer within
granular media.

The particulate nature of granular materials gives them unique
physical properties and makes the numerical modeling of their behavior
a challenging task (Herrmann and Luding, 1998; Campbell, 2006).
Typically, two different approaches are employed for the modeling of
granular media: continuous and discrete methods. On the one hand,
continuum-based methods are more computationally efficient but less
accurate for representing microscale effects from grain interactions,
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which govern the overall behavior of the material. These methods
resort to complex constitutive laws, most often phenomenological,
which are mostly incapable of reproducing the grain-scale interactions
or require several parameters of difficult calibration. On the other
hand, discrete methods, which represent the granular medium as a
collection of individual particles interacting with each other, enable
a more accurate simulation of granular behavior. However, it comes
with a much higher computational cost, mainly due to the substantial
number of particles needed to represent real-world scenarios and the
small time step required by these methods. Therefore, hybrid method-
ologies were developed to mitigate the limitations of continuum and
discrete methods and harness their advantages by combining the two
approaches either in a concurrent or in a hierarchical way (Andrade
and Tu, 2009; Andrade et al., 2011; Yue et al., 2018; Cheng et al.,
2023).

In hierarchical multiscale approaches (Borja and Wren, 1995; Guo
and Zhao, 2014, 2016; Liang and Zhao, 2019; Guo et al., 2021; Liang
et al., 2023), a continuous method is used to model the granular
medium at the macroscale and the constitutive behavior arises from
the homogenization of the discrete response at the microscale based
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on Representative Volume Elements (RVEs). Several researches were
carried out using this methodology, but only a few explored the ther-
mal behavior of granular materials (Zhang et al., 2011; Zhao et al.,
2020, 2022). Additionally, this multiscale strategy still lacks com-
putational efficiency as the discrete response needs to be solved at
several RVEs and, in the case of dynamic systems, at every time
step of the macroscale solution. Therefore, data-driven computations
of the discrete response have recently been employed to reduce the
computational cost (Wang and Sun, 2018, 2019; Ma et al., 2022; Qu
et al., 2023). A worthy strategy, developed in the context of turbulent
flows, is introduced in Idelsohn et al. (2020) and Gimenez et al.
(2021). The key feature of these multi-scale data-driven methods is
that the most expensive stage of the computations, 𝑖.𝑒., the microscale
solution, is performed offline. In particular, a sufficiently large number
of RVE simulations is first performed to create a database of discrete
responses, which is then used to train surrogate models, usually based
on machine learning (ML) tools. Therefore, the online computations
only involve the macroscale continuum solver, which receives the
synthesized microscale discrete information directly from the surrogate
model.

This work presents a methodology that combines the continuum–
discrete hierarchical multiscale concept with a data-driven offline com-
putation of the discrete response to simulate heat conduction across
static granular media. The microscale computations over the RVEs are
performed using the Discrete Element Method (DEM) (Cundall and
Strack, 1979). An easy yet efficient protocol for RVE generation and
homogenization is presented and analyzed. Special attention is devoted
to demonstrating the so-called representativeness of the microscale
response given by the granular assemblies. For this purpose, RVEs
with different numbers of particles are examined in order to find the
best balance between representativeness and computational cost of the
microscale analysis. The identified setup of particles is then simulated
under various conditions by altering its microstructural properties,
such as porosity and fabric. The results of these DEM analyses on the
RVEs are stored in a database that relates the thermal conductivity of
the granular material with its microstructural properties. The thermal
conductivity is expressed in a dimensionless form to allow the reuse
of the database for other granular materials with different properties
but the same particle size distribution and heat transfer model. This
microscale database is then utilized for training an ML-based surrogate
model for the conductivity–porosity–fabric relationship. Finally, the lo-
cal effective thermal conductivity tensors of a granular medium, which
are required for the continuous solution at the macroscale, are obtained
from the ML-based surrogate model by taking the local microstructural
properties as inputs and scaling the output tensors by the material’s
thermal conductivity.

This study demonstrates that the overall data-driven continuum–
discrete multiscale method enables us to solve the heat problem in
granular media with accuracy comparable to a pure discrete com-
putational method but at significantly reduced computational cost.
Furthermore, this study also provides interesting evidence of the effects
of microstructure on macroscale responses. For instance, the presented
numerical results show that thermal conductivity is intrinsically re-
lated to the local porosity and fabric of the material. Therefore, these
properties alone are sufficient to estimate effective thermal conduc-
tivity tensors that accurately reflect the local microstructure. In fact,
obtaining information about local porosity and fabric is necessary for
the methodology to be put into practice. Fortunately, several non-
destructive experimental and theoretical techniques exist for acquiring
these microstructural properties of granular media in their natural
state, including digital image analysis (Yang et al., 2008), X-ray com-
puted tomography (Vlahinić et al., 2014; Wiebicke et al., 2020), and
estimation from macroscopic material parameters, such as the elastic
moduli (La Ragione and Magnanimo, 2012).

The generality of the proposed methodology and the clear separa-
2

tion between online macroscale computations and offline microscale
ones permit a flexible computational structure and facilitate the im-
plementation of the method. For instance, the macroscale analysis can
be carried out using various numerical strategies for solving contin-
uum mechanics problems. In this work, we employ the Finite Volume
Method (FVM) (Versteeg and Malalasekera, 2007), but other numeri-
cal methods, such as the Finite Element Method (FEM) (Zienkiewicz
et al., 2005), can also be used safely. Moreover, due to the decoupling
between online and offline tasks, distinct computational platforms can
be employed for micro and macroscale solutions and for training the
surrogate model. In this work, we utilize two different open-source
platforms for the two scales: Kratos Multiphysics (Dadvand et al., 2010)
for the DEM microscale computations and OpenFOAM (Weller et al.,
1998) for the FVM macroscale analysis.

The overall complexity of the multiscale analysis led us to some
simplifying assumptions. Firstly, this study focuses solely on two-
dimensional analysis. Considering the generality of the proposed ap-
proach, its extension to three-dimensional problems should not pose
significant difficulties, except for the increased computational demand
for database generation and online continuum computations. Further-
more, while we consider different particle sizes (polydisperse size
distribution), we restrict our study to particles with the same shape
(circular) and material properties. Lastly, we do not account for the
effect of air within the RVE.

The remainder of this paper is structured as follows. Section 2 de-
scribes the proposed methodology by presenting the formulations of the
continuous (FVM) and discrete (DEM) methods used at the macroscale
and microscale, respectively. It also explains the protocol for generating
and evaluating RVEs and the process of creating the database of mi-
croscale results and training the ML-based surrogate model. Section 3
presents the results of a convergence study on the number of particles
used in the RVEs. It also shows the database of microscale results
generated for a given granular material and the specific artificial neural
network (ANN) trained. Additionally, the proposed methodology is
validated by comparing the results of a microscale-informed continuous
model with a pure DEM model. Finally, Section 4 provides some
concluding remarks and suggestions for future developments.

2. Methodology

The macroscale solution of the heat transfer problem is achieved
with a continuous numerical method by using, at each integration
point, the effective thermal conductivity tensor derived from the local
microstructure. Based on the knowledge of local porosity, 𝜂, and fabric
ensor, 𝑭 , the effective thermal conductivity tensor, 𝑲 , is obtained
rom a database that relates these three parameters through a ML-based
urrogate model. This database is created by generating several RVEs
ith the DEM. Each RVE is characterized by a different pair of porosity-

abric and the corresponding thermal conductivity tensor is computed
y homogenization of the DEM solution. The thermal conductivity
ensors are stored in a dimensionless form, �̃�, in the database and must
e scaled by the thermal conductivity of the material, 𝑘, before being

assigned to the continuous model (𝑖.𝑒., 𝑲 = 𝑘�̃�). A general scheme of
the methodology is presented in Fig. 1.

2.1. Macroscale formulation

At the macroscale, a transient heat diffusion problem is solved with
a continuous numerical method. Therefore, the thermal behavior in
a domain 𝛺 of boundaries 𝛤 is ruled by the volume-averaged heat
diffusion equation and its boundary conditions, expressed as:

𝜌𝑐𝑝
𝜕𝑇
𝜕𝑡

= ∇ ⋅ (𝑲∇𝑇 ) in 𝛺

𝑇 = 𝑇 in 𝛤D

𝑲∇𝑇 ⋅ 𝒏𝛤 = 𝑞 in 𝛤N

(1)

where 𝑇 is the unknown temperature field. The product 𝜌𝑐𝑝 is the effec-
tive thermal inertia of the granular material, being 𝜌 the density and 𝑐
𝑝
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Fig. 1. General overview of the proposed continuum–discrete hierarchical multiscale method.
the heat capacity. By neglecting the thermal inertia of the air, we can
assume that 𝜌𝑐𝑝 = 𝜌𝑠𝑐𝑝,𝑠(1−𝜂), where the subscript 𝑠 indicates properties
of the solid grains and 𝜂 is the porosity, which is defined as the ratio
of the void volume to the averaging volume. The effective thermal
conductivity tensor, 𝑲 , depends on microstructural properties of the
granular medium, which will be computed from microscale discrete
analyses. On Dirichlet boundaries, 𝛤D, 𝑇 is the imposed temperature,
while on Neumann boundaries, 𝛤N, 𝑞 is the applied heat flux. The unit
vector 𝒏𝛤 denotes the outwards normal to the boundary.

The solution of the transient diffusion problem of Eq. (1) can be
obtained using standard numerical methods. In this work, the spatial
discretization and the solution of the partial differential equation are
done via the cell-centered Finite Volume Method (FVM). For this
purpose, the domain 𝛺 is split into non-overlapped volumes 𝛺𝑗 such
that 𝛺 =

⋃

𝑗 𝛺𝑗 and 0 =
⋂

𝑗 𝛺𝑗 . A cell 𝛺𝑗 is an arbitrary polyhedron
whose boundary 𝛤𝑗 is composed by flat faces 𝑏 of normal 𝒏𝑏 and area
𝛤𝑏, such that 𝛤𝑗 =

⋃

𝑏 𝛤𝑏. The unknown field, 𝑇𝑗 , and the other material
properties are stored in the cell center and linearly interpolated to the
face mid-points when required. Therefore, after discretization and local
balance procedures, the algebraic equation system is expressed as:

∑

𝑗

⎛

⎜

⎜

⎝

(𝜌𝑐𝑝)𝑗
( 𝜕𝑇
𝜕𝑡

)

𝑗
𝛺𝑗 −

∑

𝑏∈𝛤𝑗

(𝑲 ⋅ ∇𝑇 ⋅ 𝐧)𝑏 𝛤𝑏

⎞

⎟

⎟

⎠

= 0. (2)

For the computational implementation, we used the open-source
library OpenFOAM as the basis. Within this framework, we developed
our own solver to tackle the transient diffusion problem considering a
spatially variable diffusion tensor. We employ an implicit first-order
operator for the temporal term and second-order operators for the
spatial approximations.

2.2. Microscale formulation

At the microscale, the DEM is applied to simulate the granular
behavior. For the mechanical behavior, the translational and rota-
tional motions of each particle are solved by explicitly integrating the
following equilibrium equations:

𝑚 d𝒗
d𝑡

= 𝒇 (3)

𝐼 d𝜔
d𝑡

= 𝑀 (4)

where 𝑚, 𝐼 , 𝒗, 𝜔, 𝒇 and 𝑀 are the mass, moment of inertia, transla-
tional velocity, angular velocity, resulting force and resulting torque of
a particle, respectively.

The resulting force acting on a particle is given here by the sum
of the contact forces with each neighbor and a non-viscous damping
force. In this work, simple linear models of contact forces are adopted.
The normal contact force between a particle and a neighbor, 𝒇 𝑐𝑛, is
calculated as:

𝒇 = −𝑠 𝛿 𝒏 (5)
3

𝑐𝑛 𝑛 𝑛
where 𝑠𝑛 is the normal contact stiffness, 𝛿𝑛 is the contact overlap, and
𝒏 is the unit outward normal of the contact.

The tangential contact force, 𝒇 𝑐𝑡, is calculated incrementally and
subjected to Coulomb’s friction condition, as:

𝒇 𝑐𝑡 =
{

𝒇prev
𝑐𝑡 − 𝑠𝑡𝛥𝒖𝑡 if |

|

𝒇 𝑐𝑡
|

|

≤ |

|

𝒇 𝑐𝑛
|

|

tan (𝜑)
|

|

𝒇 𝑐𝑛
|

|

tan (𝜑) 𝒕 otherwise (6)

where 𝒇prev
𝑐𝑡 is the tangential force of the previous time step, 𝑠𝑡 is the

tangential contact stiffness, 𝛥𝒖𝑡 is the increment of relative tangential
displacement at the contact, 𝒕 is the unit vector along the tangential
direction of the contact, and 𝜑 is the contact friction angle.

The normal and tangential stiffnesses are calculated as follows:

𝑠𝑛 = 2𝑒
𝑟1𝑟2

𝑟1 + 𝑟2
(7)

𝑠𝑡 = 𝜈𝑠𝑛 (8)

where 𝑒 and 𝜈 are, respectively, Young’s modulus and tangential-to-
normal stiffness ratio of the contacting elements, and 𝑟1 and 𝑟2 are their
radii. If the neighbor is a wall element, only the radius of the particle
is considered (𝑖.𝑒., 𝑠𝑛 = 2𝑒𝑟1).

The damping force, 𝒇 𝑑 , is added to each particle in the opposite
direction of its velocity to dissipate kinetic energy. It is calculated
with the damping coefficient, 𝜇, and the resulting contact force of the
particle with all its neighbors, 𝒇 𝑐 , as:

𝒇 𝑑 = −𝜇 |

|

𝒇 𝑐
|

|

𝒗
|𝒗|

(9)

Finally, the resulting torque acting on a particle is given by the sum
of the torques caused by each neighbor, which are simply calculated as
the product of the tangential force by its lever arm with respect to the
particle’s longitudinal axis. Rolling resistance is not taken into account.

For the thermal behavior, particles are considered isothermal and
the temperature of each is calculated by explicitly integrating the
following equation:

𝑚𝑐𝑝
d𝑇
d𝑡

= 𝑞 (10)

where 𝑞 is the net heat transfer to the particle from all its neighbors in
the current time step.

In this work, it is assumed that heat flux happens only by thermal
conduction through the contact area. The heat transferred to a particle
from one of its neighbors, 𝑞𝑐 , is calculated with a thermal pipe model
as follows:

𝑞𝑐 = −𝑘𝑎𝑝
𝛥𝑇
𝑙𝑝

(11)

where 𝑘 is the thermal conductivity of both elements in contact, 𝛥𝑇 is
the temperature difference between the particle and its neighbor, and
𝑎𝑝 and 𝑙𝑝 are, respectively, the cross-sectional area and the length of
the thermal pipe.
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Fig. 2. In-plane illustration of the thermal pipe model used to calculate the heat flux
between particles (the thermal pipe is shaded).

In this work, for simplicity, we focus on two-dimensional (2D)
problems only. Consequently, we represent the grains with cylindrical
particles (rods) of unit length, all moving within the same plane. As
a result, the cross-sectional area of the pipe is equivalent to the in-
plane contact width, and the length of the pipe represents the distance
between the particles’ longitudinal axes. This is illustrated in Fig. 2. If
the neighboring element is a wall, the pipe length is determined as the
perpendicular distance between the particle’s longitudinal axis and the
wall.

2.3. RVE generation and evaluation

To obtain information from the microscale, we use Representative
Volume Elements (RVEs). In this context, an RVE is a DEM assembly
with a sufficient number of particles to statistically capture the mate-
rial’s constitutive behavior with good accuracy while maintaining the
computational efficiency. In this section, we first describe the protocol
of RVE generation and then explain the homogenization procedure used
to upscale the microscale information.

As illustrated in the left picture of Fig. 3, the first step of our
protocol for generating RVEs consists of randomly positioning a pre-
established number of particles within a control domain. Subsequently,
the particles are compacted by moving the boundaries of the domain
inwards, without considering the effects of gravity, similar to what is
done in other studies (Radjai and Dubois, 2011; Shahin et al., 2016).
The initial size of the domain should be sufficiently large to grant
significant freedom of movement to the particles during compression.
Unlike the aforementioned works, in our protocol, the boundaries are
made of frictionless flat wall elements. As it will be explained later, this
feature has implications for the homogenization procedure. The wall
elements are assigned the same material parameters as the particles,
except for the friction angle, which is set to zero between particles
and walls. During consolidation, the walls move at a constant speed
equivalent to the mean particle radius per second, a relatively slow
velocity in order to prevent excessive dynamic effects. To modify the
final fabric of the RVE, the velocities can be adjusted independently
among walls. The motion of the walls ends when the particle assembly
reaches a pre-defined limit for a certain variable, which, in this work,
is a threshold value of the porosity. Analogously to other protocols
proposed in the literature, 𝑒.𝑔., in Berzi and Vescovi (2021), after
topping the motion of the walls, the simulation continues until the
echanical equilibrium of the system is reached. After this relaxation
hase, the final positions of the particles and walls are used to compute
he fabric and homogenize the thermal conductivity, as explained next.

The fabric of a granular material is commonly used to character-
ze its microstructure. Following the popular contact-based tensorial
efinition of Oda (1982), the fabric is computed as:

= 1
𝑛𝑐

𝑛𝑐
∑

𝑐=1
(𝒏⊗ 𝒏)𝑐 (12)

where 𝑛𝑐 is the total number of contacts in the RVE and ⊗ denotes the
4

outer product.
Fig. 3. RVE generation process: initial configuration with 500 particles (left) and final
configuration with a target porosity after an isotropic compression (right).

The thermal conductivity of a discrete medium is homogenized into
an effective thermal conductivity tensor, which is generically computed
as:

𝑲 = 1
𝑉𝑅𝑉 𝐸

𝑛𝑐
∑

𝑐=1
(𝑲𝑎𝑙)𝑐 (13)

Analyzing Eq. (13), the thermal conductivity tensor of each contact
is multiplied by a representative cross-sectional area, 𝑎, and length, 𝑙,
over which the heat flows. The sum of this product over all contacts is
divided by the homogenization volume, 𝑉𝑅𝑉 𝐸 , which is the volume of
the RVE.

Using Fourier’s law, the thermal conductivity tensor of the contact
is expressed in terms of the heat flux vector, 𝒒, and the temperature
gradient in the normal direction of the contact, (∇𝑇 ⋅ 𝒏)𝒏. Therefore,
he effective thermal conductivity tensor can be expressed as:

= 1
𝑉𝑅𝑉 𝐸

𝑛𝑐
∑

𝑐=1

(

−𝒒 ⊗ [(∇𝑇 ⋅ 𝒏)𝒏]−1 𝑎𝑙
)

𝑐 (14)

For the thermal pipe model of heat conduction presented in Eq. (11),
he representative cross-sectional area is the cross-sectional area of the
ipe (𝑎 = 𝑎𝑝) and the representative length is the length of the pipe
𝑙 = 𝑙𝑝). Moreover, according to this model, the heat flux vector and
he temperature gradient are defined as follows:

= −𝑘𝛥𝑇
𝑙𝑝

𝒏 (15)

(∇𝑇 ⋅ 𝒏)𝒏 ≈ 𝛥𝑇
(

𝑙𝑝𝒏
)−1 (16)

Substituting Eqs. (15) and (16) into Eq. (14), one obtains the
omogenized expression of the effective thermal conductivity tensor for
he thermal pipe conduction model, which is:

= 1
𝑉𝑅𝑉 𝐸

𝑛𝑐
∑

𝑐=1

(

𝑘𝑎𝑝𝑙𝑝𝒏⊗ 𝒏
)

𝑐 (17)

This expression relies only on geometric information of the problem,
in addition to the thermal conductivity of the elements. Therefore, no
heat is imposed on the RVEs as their thermal solution is not required
to compute the homogenized conductivity tensor.

To mitigate local effects that may arise near the boundaries and thus
improve the representativeness of the assembly, contact interactions
with the walls and between particles touching a wall (peripheral parti-
cles) are not taken into account when evaluating the microstructural
properties of the RVE. This means that only contacts involving a
particle that is not touching a wall (internal particle) are considered for
solving Eqs. (12) and (17). Consequently, due to the discarding of some
contacts, the homogenization volume 𝑉𝑅𝑉 𝐸 must be reduced accord-
ingly. Therefore, a convex hull delimiting the chain of the considered
contacts is created to define the effective RVE volume (area with unit
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(

Fig. 4. Strategy to mitigate local effects near the walls illustrated for a small assembly
of particles. Left: RVE showing internal particles (green fill), peripheral particles (red
fill), considered contacts (continuous lines), and discarded contacts (dashed lines).
Right: Convex hull delimiting the chain of considered contacts.

length in 2D), which is used to homogenize the thermal conductivity
and to compute the porosity during the RVE compression phase. This
strategy is illustrated in Fig. 4 for a small assembly of particles.

All computational implementations related to the microscale, in-
cluding the generation of RVEs and the homogenization and evaluation
of microstructural properties, were done in the open-source framework
Kratos Multiphysics (Dadvand et al., 2010).

2.4. Microscale database and machine learning model

To create the database of microscale results, several RVEs need to
be generated, each one with a different porosity and fabric, which
are the inputs of the database. The target porosity is achieved by
stopping the compression of the RVE when that value is reached, while
the fabric is varied by changing the relative velocities of the walls.
Therefore, by altering only the wall velocities while maintaining the
same initial particle distribution, we are able to obtain different RVE
configurations characterized by distinct pairs of porosity and fabric.
Consequently, these configurations yield different effective thermal
conductivity tensors after the homogenization procedure described in
the previous section. The components of these tensors are divided by
the thermal conductivity of the particles (�̃� = 𝑲∕𝑘) to make the
database dimensionless and, thus, valid for any granular material that
shares the same particle size distribution and is ruled with the same
heat transfer model. The porosity, fabric tensor, and dimensionless
thermal conductivity tensor of each of the created configurations are
data points that are then stored in the microscale database. Due to
the absence of gravity, the solution of square RVEs is frame invariant
and, therefore, it is possible to multiply the number of data points by
considering orthogonal rotation of axes. For instance, in 2D, we can
duplicate the dataset by generating additional data points through a
90◦ rotation of the obtained thermal conductivity and fabric tensors
with a rotation transformation matrix.

The dimensionless thermal conductivity tensors are the output of
interest and the results stored in the microscale database can be consid-
ered as sample points of a continuous 𝑛-dimensional function 𝛹 , where
𝑛 is the number of inputs of the database (in this case, two), 𝑖.𝑒.:

�̃� = 𝛹 (𝑋), with 𝑋 = (𝜂,𝑭 ) (18)

Therefore, it is necessary to define the multi-valuated and multi-
dimensional function 𝛹 to predict the thermal conductivity for non-
simulated points. For this objective, we employ artificial neural net-
works (ANN). An ANN is a massively parallel distributed processor
made up of simple processing units that has a natural propensity for
storing data-based knowledge and making it available for use (Haykin,
2009). ANNs are often used as a surrogate model or as a response
surface approximation model because of their robustness in solving
5

multivariate and nonlinear modeling problems, such as function ap-
proximations, optimization, and classification (Bre et al., 2018). Some
authors have successfully used ANNs to predict or interpolate simulated
data in multiscale approaches (Idelsohn et al., 2020; Gimenez et al.,
2021).

In this work, a feed-forward multilayer network is used. The general
ANN architecture has an input layer, a set of hidden layers, and an
output layer. In each hidden and output layer, there are artificial neu-
rons interconnected via adaptive weights. These weights are calibrated
through a training process with input–output data. For each artificial
neuron, the tangent sigmoid is selected as the activation function,
except for the output layer, where linear functions are employed. The
ANN training process is made with the Root Mean Square Propa-
gation algorithm, considering the mean squared error (MSE) as the
convergence indicator.

The coefficient of determination R-squared (𝑅2):

𝑅2 = 1 −
∑𝑁

𝑖=1(𝐷𝑖 − 𝑃𝑖)2
∑𝑁

𝑖=1(𝐷𝑖 − [𝐷])2
, (19)

is used to quantify the agreement, where 𝐷𝑖 and 𝑃𝑖 are the computed
via DEM) and predicted (via ANN) values for the sample 𝑖, respec-

tively. The square brackets denote the mean value. A perfect agreement
is obtained when R2 is equal to one.

The validity of the surrogate model is guaranteed only within the
range of values covered by the training data points, as extrapolated
results are not reliable. Therefore, the microscale database and its ML-
based surrogate model are valid for the range of porosity and fabric
covered during the generation of RVEs.

3. Results and discussion

A granular material with the following properties is used for the
investigations presented in this section: density of 2650 kg/m3, Young’s
modulus of 600 MPa, tangential-to-normal stiffness ratio of 0.8, friction
angle of 0.5, thermal conductivity of 100 W/mK, and heat capacity
of 100 J/kgK. These values are fictitious material parameters solely
intended for validating the proposed methodology. In addition, a damp-
ing coefficient of 0.1 is employed. The particle size distribution follows
the one used in Guo and Zhao (2014) and is characterized by a constant
function of the radius with mean, minimum and maximum values of
5.0 mm, 3.0 mm and 7.0 mm, respectively.

3.1. Representativeness of the RVEs

It is of crucial importance to determine an optimal number of
particles in the RVEs that balances the representativeness of the mi-
croscale with the computational cost of its simulation. To calibrate the
particles number for the described RVE generation and homogenization
protocol, a convergence study was conducted by creating RVEs with
seven different numbers of particles: 100, 200, 300, 500, 750, 1000,
and 1500. For each number of particles, ten RVEs with distinct initial
particle positions were generated in order to enhance the reliability of
results and examine their variability. All RVEs were generated for the
same porosity of 13% by isotropic compression (𝑖.𝑒., orthogonal motion
of walls with the same speed in horizontal and vertical directions). Two
parameters are analyzed here to evaluate the convergence of results:
the polar histogram of the particle contact network (rose diagram) and
the homogenized thermal conductivity.

The rose diagram provides the distribution of contact normal di-
rections. For an isotropic compression of the RVE, this distribution
is expected to be approximately uniform, which corresponds to an
isotropic fabric with no principal directions. Therefore, the uniformity
of the diagrams has been qualitatively appraised, similarly to what is
done in other works (Guo and Zhao, 2014; Meier et al., 2008). The
resulting rose diagrams from one of the simulations of five different

setups (100, 300, 500, 1000, and 1500 particles) are given in Fig. 5.
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Fig. 5. Rose diagrams of RVEs with 100 to 1500 particles considering all contacts in the assembly (top row) and only contacts involving internal particles (bottom row).
Fig. 6. Mean value and standard deviation of the volumetric component of the effective
thermal conductivity tensor from RVEs with 100 to 1500 particles.

The top row shows the results considering all contacts in the assembly
while the bottom row depicts the diagrams of the same RVEs obtained
by considering only contacts involving internal particles, as proposed
in Section 2.3. The diagrams are normalized with respect to the total
number of contacts of each assembly.

From the rose diagrams in the top row of Fig. 5, the influence of
the flat walls is clearly evident by the predominance of the horizontal
and vertical contact directions. As the number of particles in the
RVE increases, the effects of walls seem to reduce as the prominence
of principal directions gradually diminishes. However, a very large
amount of particles is needed to cease these effects. In fact, with 1500
particles the diagram presents a nearly uniform distribution of contacts
(circular shape of the rose), but the horizontal and vertical directions
still have a slight dominance. On the other hand, when applying the
proposed procedure, as seen in the bottom row of Fig. 5, the wall effects
on the fabric vanish as the horizontal and vertical directions no longer
hold the majority of contacts. In addition, the diagrams seem to have
converged to a nearly uniform distribution with only 500 particles,
which suggests that this number of particles is sufficient to achieve a
faithful representation of the microscale.

The homogenized thermal conductivity of granular assemblies with
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the same porosity and similar fabrics is expected to be approximately
equal. Fig. 6 provides the mean value and the standard deviation of
the volumetric component of the effective thermal conductivity tensor
(𝑖.𝑒., the average of the 𝑥𝑥 and 𝑦𝑦 components) obtained from the ten
RVE simulations with each number of particles. The graph confirms
that with 500 particles both metrics have approached a converged
value. The simulations with this setup presented a standard deviation
of 0.863 W/mK, which corresponds to a relative error of 3.3% with
respect to the mean value, a precision considered sufficiently accurate.
Therefore, 500 particles are chosen since they offer the best balance
between representativeness and computational cost of the microscale
analysis. We highlight that the average number of internal particles
in the chosen RVEs, which are those effectively considered for the
contact interactions, is 422. Notably, despite the differences in the RVE
generation protocols, this number aligns with the range suggested in
the literature for 2D RVEs, which typically spans between 200 (Kaneko
et al., 2003) and 700 (Meier et al., 2008) particles. We also note that
several similar studies recommend a value of 400 particles (Guo and
Zhao, 2014; Shahin et al., 2016; Nitka et al., 2011; Nguyen et al., 2014).

3.2. Microscale surrogate model

A database of microscale results and an ML-based surrogate model
are created for the given granular material. In order to reduce the
number of input variables of the database, the fabric tensor is rep-
resented by a single scalar parameter. As defined in Eq. (12), the
fabric tensor always has a trace of 1.0. Therefore, in a two-dimensional
analysis, the diagonal components, 𝐹𝑥𝑥 and 𝐹𝑦𝑦, can be synthesized into
a single value, 𝑓 , given by the difference 𝑓 = 𝐹𝑥𝑥 − 𝐹𝑦𝑦. In addition,
since we only impose orthogonal motion to the boundaries of RVEs
during compression (bi-axial consolidation), the resulting off-diagonal
components of the fabric tensor, 𝐹𝑥𝑦 and 𝐹𝑦𝑥, are always negligible.
Therefore, we are able to take 𝑓 as the sole parameter to represent the
fabric of the RVE.

3.2.1. Database generation
The database of microscale results was created by generating RVEs

with fixed porosity values ranging from 10.0% to 18.0% with incre-
ments of 0.5%. It is of great importance that the database encompasses
a broad fabric spectrum to allow its applicability for diverse compaction
conditions of the granular material. Therefore, for each porosity, mul-
tiple RVEs were generated by imposing different relative wall speeds
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Fig. 7. Database of microscale results. Each pair (𝜂, 𝑓 ) represents a generated data point where the components of the dimensionless thermal conductivity tensor �̃� are the output.
The scatter diagrams (a), (b), and (c) depict the 𝑥𝑥, 𝑦𝑦, and 𝑥𝑦 components, respectively.
in the horizontal and vertical directions in order to widen the range of
fabric values covered by the database. In particular, relative wall speeds
ranging from an isotropic compression (same horizontal and vertical
speeds) to a purely horizontal compression (only vertical walls move)
were used.

In total, RVEs with 136 different configurations (porosity-fabric
pairs and their corresponding thermal conductivity tensors) were gen-
erated, each one with a distinct initial particle distribution. Based on
the assumption of invariance under orthogonal rotations, the solution
of each RVE was rotated by 90◦ (𝑖.𝑒., swapping the values of 𝐾𝑥𝑥
and 𝐾𝑦𝑦 and inverting the signs of 𝐾𝑥𝑦 and 𝑓 ) to give rise to a new
data point, thus totaling 272 data points. The thermal conductivity
tensors are made dimensionless by dividing their components by the
thermal conductivity of the particles. The results are given in Fig. 7,
where the data points are displayed on a color scale that represents
the dimensionless value of each component of the thermal conductivity
tensor. These results are available as supplementary material of this
paper.

It can be observed that, due to the rotation of RVE solutions, the
distribution of data points in the 𝑓 × 𝜂 plane is symmetric with respect
to 𝑓 = 0. For the same reason, the 𝑥𝑥 and 𝑦𝑦 components of the
thermal conductivity tensors are mirrored with respect to each other. It
is also noticeable that the range of fabric values tends to increase with
porosity, even though RVEs were generated with the same compression
conditions at every porosity level. Moreover, it is noteworthy that
the value of 𝑓 is complex to control precisely. However, in general,
we observe that RVEs generated with a greater disparity between
horizontal and vertical compression speeds tend to yield higher fabric
values, while nearly zero fabric values are typically obtained from RVEs
generated through isotropic compression.

Regarding the thermal conductivity, as expected, it is evident that
the 𝑥𝑥 and 𝑦𝑦 components decrease with porosity and increase as
the fabric components in their respective directions become more
pronounced. In addition, because of the absence of shear motion in
the RVEs, the values of the 𝑥𝑦 components are relatively very small
and can be considered as spurious noises, similarly to the off-diagonal
components of the fabric tensor. Therefore, these components are also
assumed negligible henceforth.

3.2.2. Machine learning
The Artificial Neural Network (ANN) architecture selected for train-

ing the database of RVE results is presented in Fig. 8a. It has two input
neurons (porosity and fabric) and two output neurons (the diagonal
components of the dimensionless thermal conductivity tensor). There
is not a general rule to define a proper ANN structure in terms of the
number of hidden layers and artificial neurons, so, for this database,
the ANN is formed by one hidden layer with 16 neurons and it was
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calibrated by trial and error. The ANN training was accomplished
with a maximum of 5000 epochs. The dataset was randomly split into
training and validation subsets, considering proportions of 80% and
20%, respectively. The learning curves are presented in Fig. 8b. The
good fit is identified by training and validation loss curves decreasing
to a point of stability with a minimal gap between the two final loss
values. The loss of the model on the training dataset is slightly lower
than the validation dataset; this small generalization gap guarantees
no over-fitting, so the model can make accurate predictions on new,
unseen examples.

The fitting of the 𝑥𝑥 and 𝑦𝑦 components of the dimensionless
thermal conductivity tensors are presented through the scatter plots
in Fig. 8c and Fig. 8d, respectively. These plots compare the DEM-
computed and ANN-predicted conductivities for each input of the set,
where the dashed line represents the ideal fitting of 𝑅2 = 1. The
obtained coefficients of determination (𝑅2 = 0.972 for 𝐾𝑥𝑥 and 𝑅2 =
0.971 for 𝐾𝑦𝑦) are considered sufficiently accurate. This is because
these results mean that more than 97% of the variations of the ther-
mal conductivity can be explained by the selected input parameters.
Therefore, the good agreement between ANN and DEM is a strong
indication that the input selection was correct. It corroborates that,
based exclusively on the porosity and fabric, we can predict effective
thermal conductivity tensors that reflect the local microstructure of
a granular material with approximately 97% of accuracy. The fitting
error of around 3% also aligns with the results presented in Section 3.1,
specifically in Fig. 6, where a relative error of 3.3% was observed for
the variation of the thermal conductivity of several 500-particle RVEs
with the same porosity and similar fabrics. These unexplained fluctua-
tions of the thermal conductivity are related to the influence of other
potential parameters that are not being considered as inputs of the
surrogate model because their impacts on the results are expected to be
very small. It should be noted that the model’s accuracy was achieved
under certain conditions in this work: static regime, two-dimensional
analysis, normal compression with no shear effects, and a single particle
size distribution. In other scenarios, where these conditions are not met,
different parameters may have a significant contribution and, therefore,
they would need to be identified and included into the ANN-based
surrogate model.

The ANN prediction surface for the 𝑥𝑥 component of the dimension-
less thermal conductivity tensor is shown in Fig. 9a. The data points are
also depicted, however, it should be noted that the conductivity values
at these points are not necessarily the values given by the prediction
surface. The bounding box of data points in the 𝑓 × 𝜂 plane (colored
region) defines the validity region of the prediction surface, where
the ANN fit is guaranteed and the interpolation of data is reliable.
The gray region, on the other hand, requires extrapolation of data,
which is not reliable from the employed algorithm. The variation of the
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Fig. 8. (a) ANN architecture selected. (b) learning curves. (c-d) fitting of the ANN predictions against DEM outputs for the 𝑥𝑥 and 𝑦𝑦 components of the dimensionless thermal
conductivity tensor, respectively.
Fig. 9. (a) ANN prediction surface for the 𝑥𝑥 component of the dimensionless thermal conductivity tensors, where the colored region denotes the reliable (interpolation) region.
Isolines of the ANN prediction surface for 𝐾𝑥𝑥 are shown for fixed values of (b) porosity and (c) fabric.
thermal conductivity for fixed values of the inputs is shown through the
isolines of the prediction surface in Fig. 9b and Fig. 9c. Notably, the
conductivity varies with a non-intuitive behavior with the fabric and
almost linearly with the porosity.

We remark that a machine-learning tool is employed here for the
sake of generality, as the ANN has only two inputs and, therefore, its
outputs could be interpolated with a simpler strategy (𝑒.𝑔., linear inter-
polation based on a Delaunay triangulation in the 𝑓×𝜂 plane). However,
since the employed ANN has only one hidden layer, using such a high-
dimensional mapping tool for the present case has negligible risk of
over-fitting due to low dimensionality. This is evident in Fig. 9a, where
the result is a smooth paraboloid-like surface. Moreover, the use of an
8

ANN allows the methodology to be readily expanded to a function with
more inputs, which would be the case when performing 3D simulations,
accounting for shear effects in the RVEs, generalizing the database to
different particle size distributions, or including mechanical behavior.
In fact, as the number of input/output parameters increases, it is
expected that deeper neural networks will be required.

3.3. Validation case

To validate the proposed methodology, the heat flux across a gran-
ular material is simulated with both discrete and continuous methods.
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Fig. 10. Reference DEM model.

Fig. 11. Local properties of reference DEM model.

The DEM model is used as a reference solution, from which we are able
to obtain local microstructural properties required for the continuum-
based analysis. The FVM model is then solved in a multiscale fashion
with microscale-informed local porosities and thermal conductivity
tensors, so its solution is compared against the reference discrete model.

3.3.1. Reference DEM model
The reference DEM model is shown in Fig. 10 and consists of a

rectangular box 2538.4 mm wide and 507.7 mm high with flat walls
as boundaries and containing 13500 particles. The thermomechanical
material properties and particle size distribution are the same as those
used for the previously created database of microscale results. The
initial temperature of the granular material is 0 K. The bottom wall
is kept at 100 K while the other boundaries are thermally insulated.
The total analysis time is 5000 s and the time step used for the DEM
solution is 5 × 10−4 s. The resulting wall-clock time for the full DEM
computation on a standard personal desktop computer was 12.5 h.

Due to the extent of the model and the way it was created, the
microstructural properties of the reference DEM model are not ho-
mogeneous across the domain, exhibiting local variations that affect
the heat flux. To apply the proposed methodology, the local values of
porosity and fabric are determined to serve as inputs of the previously
created database in order to obtain the thermal conductivity tensors
for the continuum-based model. These local values of microstructural
properties are determined by dividing the domain into sub-regions
where the porosity and fabric are calculated. In this case, the model
was divided into a grid of 10 × 2 square sub-regions. A complemen-
tary analysis, not presented here for simplicity, compared the results
obtained from subdivisions with different square sizes and found that
the aforementioned one is optimal for faithfully capturing the local
microstructural properties in this model. The maps of local porosity and
fabric values are shown in Fig. 11. We remark that, in practice, when
a DEM model of the material is not available, these local properties
should be known a priori. This information could be obtained either by
experimental analyses or by assuming a certain compaction level and
type (𝑒.𝑔., for the fabric, an isotropic compaction with 𝑓 = 0 would
often be a reasonable assumption).

Fig. 12 shows the thermal analysis solution of the reference DEM
model for a temperature range of 40 K to 60 K at distinct times. It
can be seen that heat flows faster near the lateral boundaries than in
9

Fig. 12. Solution of reference DEM model: temperature distribution in the range of 40
K to 60 K at two time instants.

the central zone of the domain. This is a consequence of the lower
porosity and the more accentuated fabric in the vertical direction near
the lateral boundaries, which lead to higher values of the 𝑦𝑦 component
of the thermal conductivity tensors in these zones, as described in the
following section.

3.3.2. Continuum-based solution vs DEM solution
The FVM grid used for the continuum-based simulations of the

granular medium is shown in Fig. 13. It was created by discretizing
the granular domain into 1280 square cells and applying the same
thermal boundary conditions and initial temperature as the reference
DEM model. The density and heat capacity of the material of all cells
are those provided for the solid grains. However, to obtain the effective
thermal inertia, as defined in Eq. (1), the solid thermal inertia (product
of density and heat capacity) is multiplied by the local porosity of each
cell. The values of local porosity are those obtained directly from the
reference DEM model, which are mapped in Fig. 11(a). The porosity
value assigned to an FVM cell is the value of the map sub-region where
the cell is located.

In order to verify the accuracy of the ML-based surrogate model, two
continuum-based analyses were considered: one without and one with
the incorporation of machine learning. In the analysis without machine
learning, the local thermal conductivity tensors are obtained directly
from the reference DEM model, by homogenization via Eq. (17) in each
of the 10 × 2 sub-regions (𝑖.𝑒., the sub-regions are treated as RVEs
to homogenize the thermal conductivity with an online procedure).
The analysis with machine learning uses the approach proposed in this
work: the dimensionless thermal conductivity tensor of each sub-region
is estimated from the local porosity and fabric, both mapped in Fig. 11,
through the ML-based surrogate model presented in Fig. 9. The distribu-
tion of the input points of all sub-regions is illustrated in Fig. 14 across
the fabric-porosity plane of the generated ANN surface for predicting
the 𝑥𝑥 component of the dimensionless thermal conductivity tensor.
The components of the dimensionless tensors are then scaled by the
thermal conductivity of the solid grains (𝑘 = 100 W/mK). The resulting
values of the 𝑥𝑥 and 𝑦𝑦 components of the local thermal conductivity
tensors provided by the microscale surrogate model are mapped in
Fig. 15. In both FVM analyses, the thermal conductivity tensor assigned
to an FVM cell is the tensor of the map sub-region where the cell is
located.

We highlight that we are only able to perform the analysis without
machine learning because a reference DEM model was built, from
which local thermal conductivity tensors can be easily computed. When
such a discrete model is not available, the proposed approach allows
homogenized thermal conductivities to be predicted from the locally
averaged values of porosity and fabric. We also note that, in the
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Fig. 13. FVM grid with control points A and B indicated.

Fig. 14. Local porosities and fabrics of reference DEM model (cross symbols) depicted
within the generated ANN prediction surface for the 𝑥𝑥 component of the dimensionless
thermal conductivity tensor.

Fig. 15. Components of the local thermal conductivity tensors obtained from the
microscale database by taking the local porosities and fabrics as inputs.

proposed approach, although the process of acquiring local thermal
conductivity tensors for the continuous model has been performed only
once, this is an online task. It means that, in the case of a transient
analysis in which local properties vary over time, this process should
be carried out several times along the simulation.

A time step of 1 s was employed for the FVM simulations, which ran
for 5000 s. The wall-clock simulation times, using the same machine
as the DEM analysis, were about 5 s. It corresponds to a speedup
factor in the order of 104× compared to the discrete method. Never-
theless, the solution of heat conduction over the granular medium was
achieved with satisfactory accuracy in the continuum-based analyses,
as discussed in the sequence.

The evolution of the average temperature of the discrete and contin-
uous models is presented in Fig. 16, where the multiscale solutions refer
to the continuum-based analyses without and with the incorporation of
machine learning. The average temperature of the DEM model is calcu-
lated as a volume-weighted average of the particles and discarding lone
elements whose temperature remains unchanged. In the FVM model,
10
Fig. 16. Average temperature evolution from the reference discrete model (DEM) and
the multiscale continuum–discrete approach (FVM) without and with machine learning
(ML).

it is simply computed as the mean temperature value of all cells. The
graph shows an excellent agreement between the three solutions. This
indicates that, in an integral way, the heat flow is nearly identical in
both discrete and continuous models. This also validates the accuracy of
the ML-based surrogate model in obtaining local thermal conductivity
tensors.

The temperature evolution of the discrete model and the continuous
model with the proposed approach (multiscale with machine learning)
is compared pointwise in the graphs of Fig. 17. The control points A and
B have their positions indicated in Fig. 13. At these points, the curves
also show a very good agreement, especially at point B, located near
the lateral boundary, where the solutions practically overlap. Point A,
located in the center of the models, is where the difference between the
curves is most pronounced. In this position, the maximum error of the
FVM solution against the reference DEM solution, normalized with the
final equilibrium temperature (100 K), is 2.8%.

To analyze the temperature profile, Fig. 18 shows the temperature
distribution in the range of 40 K to 60 K of the FVM model with the
proposed approach at 500 s and 1000 s. For a qualitative comparison,
the particles of the reference DEM model that are in the same range
of temperature at these times, as seen in Fig. 12, are depicted with no
color. It is clear that the continuum-based solution follows the same
pattern as the discrete one. However, the heat flux given by the FVM so-
lution in the central region is slightly slower than in the DEM solution.
This result is clearly shown in the graphs of Fig. 19 and Fig. 20, which
plot, respectively, the vertical and horizontal temperature profiles at
distinct times. In Fig. 19(a), which depicts the vertical temperature
profiles at the center of the model (passing through point A), the
underestimation of the heat flux given by the FVM solution is noticed.
This is the same discrepancy as observed in Fig. 17(a). Fig. 19(b) shows
a nearly perfect agreement of the vertical temperature profiles close
to the lateral boundary (passing through point B), as previously noted
in Fig. 17(b). The same findings can be observed in the horizontal
temperature profiles, both in the model’s mid-height (Fig. 20(a)), and
in the model’s upper part passing through points A and B (Fig. 20(b)).

The differences encountered in the central region are the result of
an underestimated thermal conductivity in the vertical direction in that
zone of the FVM model. Some possible sources of error in the method-
ology that can explain this behavior are in the creation of the database
and in the ANN model selected. Regarding the database creation, we
highlight that RVEs with a sufficient number of particles can offer a
good representation of a granular material, but up to a certain level
of accuracy. For this reason, the results of the thermal conductivity of
RVEs with the same porosity and similar fabrics present some disper-
sion, as seen in Fig. 6. Moreover, when preparing the database, the
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Fig. 17. Temperature evolution, at control points A and B, from the reference discrete model (DEM) and the proposed multiscale continuum–discrete approach (FVM).
Fig. 18. Multiscale continuum–discrete solution (FVM model) compared against the
reference discrete solution (DEM model): temperature distribution in the range of 40 K
to 60 K at two time instants.

number and distribution of datapoints across the range of input values
play an important role in estimating the outputs, as certain regions of
the input space may lack sufficient data for a precise interpolation.
In fact, by comparing Fig. 9a and Fig. 14, one can observe that the
input points of the validation example exhibit a relatively concentrated
distribution compared to the generated datapoints and part of them is
situated in a sparse region of datapoints. With respect to the ANN model
selected, potential sources of error were discussed in Section 3.2.2,
which include the fitting error of the ANN-based surrogate model due
to the influence of parameters that are not being considered as inputs
of the model. The accumulation of these factors contributes to some
inaccuracies in the estimation of local thermal conductivities. However,
the results of the heat flux can be considered satisfactorily precise for
representing a discrete solution with a continuous method.

4. Conclusions

In this work, we presented a multiscale methodology to simulate
heat transfer in static granular media with a continuous numerical
method by deriving effective thermal conductivity tensors via a data-
driven surrogate model of microscale DEM results. The efficiency of
the continuous approach relies on the creation of a database by means
of the analysis of several Representative Volume Elements (RVEs) with
11
different microstructural properties. The RVEs are generated through
the compression of the particles by flat walls, and a protocol for
evaluating the microstructural properties while disregarding the effects
of walls was described and validated. The microscale database is used
to train an artificial neural network (ANN) that serves as a surrogate
model for locally relating the conductivity tensor with the porosity
and fabric tensor of the material. These two local properties were
demonstrated to be sufficient to estimate accurate thermal conductiv-
ity tensors, and they must be either known or assumed in advance.
The results showed that the proposed methodology allows the simu-
lation of the thermal behavior of such a complex material type with
the computational performance of a continuous model and DEM-like
accuracy.

The proposed multiscale approach was applied in this work with a
series of simplifying considerations regarding the dimensionality of the
problem. These simplifications include 2D analysis and the absence of
shear effects, which enabled us, for example, to represent the fabric
tensor as a single scalar parameter. As a result, the number of database
inputs was minimized, and the use of an ANN could be considered an
overly powerful technique for interpolating the outputs. However, the
generality of the presented methodology allows it to overcome such
simplifications without altering its core concepts, just by increasing
the number of inputs and outputs according to the problem type.
Therefore, a natural extension of this work is to consider 3D simulations
with a microscale database that takes into account shear effects in
the RVEs. Furthermore, a potential extension of the methodology is
to incorporate the mechanical behavior of the material, which could
be achieved by introducing the necessary variables, such as the stress
tensor and tangent operator. If attained, the benefits of the offline
microscale computations would become even more evident, as the
RVEs would not need to be solved several times on the fly. All this
permits us to conclude that the proposed methodology offers several
possibilities for improvement in the continuum–discrete hierarchical
multiscale modeling of the thermomechanical behavior of granular
media.

Other developments for future work under the same numerical
framework are the consideration of different heat transfer models,
since the formulation presented here is particular to a thermal pipe
model of heat conduction; the inclusion of the effects of interstitial
air; and the assessment of the influence of different particle shapes.
In addition, the database of microscale results could be generalized to
any particle size distribution, possibly by generating data for several
different distribution functions and including representative parameters
of these functions as inputs to the ANN-based surrogate model. Finally,
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Fig. 19. Vertical temperature profiles, passing through control points A and B, from the reference discrete model (DEM) and the proposed multiscale continuum–discrete approach
(FVM).
Fig. 20. Horizontal temperature profiles, passing through the mid-height (Centerline) and upper part (Top - 𝑖.𝑒., where control points A and B are located), from the reference
iscrete model (DEM) and the proposed multiscale continuum–discrete approach (FVM).
ince the creation of databases is a time-consuming task and they can be
eused in similar applications, we believe that sharing processed data
or different materials, DEM models and ranges of input parameters
s a good practice. The database used in this study can be found as
upplementary material of the article.
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