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Summary. Due to their gradually varying properties, functionally graded materials have 

been known for their minimization of abrupt stress transitions, enhanced thermal protection in 

high-temperature environments, and improved durability. However, the study of beam 

structures made of these materials has mostly been limited to applications with rectangular-

shaped cross-section beams. Although these cross-section beams are used, other cross-section 

beams are common, especially in metallic construction. This work investigates the behaviour 

of non-symmetrical cross-section beams made of functionally graded materials, specifically 

concerning their static and dynamic behaviour. In this context, different non-symmetrical cross-

sections derived from the doubly-symmetric I-shaped cross-section beam are considered. These 

beams are modelled by a quadratic hexahedron finite element. The steel beams show in general 

a more conservative behaviour than their functionally graded counterparts, for the materials’ 

mixtures considered. Complementarily, as expected, the natural frequencies of functionally 

graded material beams are generally higher than those of steel beams. The stress profiles show 

a significant influence from the non-symmetrical characteristics of cross-sections.  
 

1 INTRODUCTION 

Functionally Graded Materials (FGM) are designed to achieve a gradual properties’ 

distribution over the material structure. FGM are overall heterogeneous composite materials 

with multi-functional characteristics, with at least two different materials whose volume 

fraction changes gradually along one or more dimensions [1]. It is this characteristic that gives 
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FGMs a continuously varying composition and structure over the component or structure 

volume. Hence, FGMs perform very well in specific applications that require certain desired 

thermal, mechanical, electrical, or chemical properties [2–6]. Moreover, their gradually 

changing properties allow for FGMs to have improved thermal properties and residual stress 

distribution, decreased in-plane and traverse stresses over their thickness, and increased fracture 

resistance [7]. These characteristics make FGMs interesting materials to study. Several authors 

proposed theories and methods to analyse FGM. Around 60% of the works published use the 

Navier’s method and the power law is the most used homogenization rule [2, 4]. The use of 3D 

analysis to study FGMs has been hampered by the high computational effort required, so 2D 

analyses are mostly used together with higher-order shear deformation theories. Also, the 

meshless method, an alternative to FEM, does not improve time consumption [8]. Regarding 

FGM manufacturing, several methods are proposed, with powder metallurgy being thought as 

the most efficient method [7, 8]. Other authors claim that additive manufacturing improves the 

production of FGMs at a lower cost. This type of manufacturing is known to be capable of 

producing intricate designs with great accuracy and wasting less material [3, 9]. Several works 

consider the analyses of FGM beams. Although a multi-layered approach can be considered, 

most studies use a continuously single-layer approach to model FGM [9–13], particularly when 

thin-walled structures are studied [14–16]. Different static studies on beam finite elements 

based on various displacement theories were performed by Filippi et al. [17] and the main 

difficulty found by the authors regarded shear stress distributions. Though higher-order beam 

theories were considered to improve these results, their higher computational cost came as a 

drawback. Several authors identified this problem and came up with different methods and new 

finite elements to improve the gradient distribution mode and produce more accurate 

mechanical properties [18–26]. The study of variable axial loading in FGM beams is 

investigated by Melaibari et al [27] and its effect on buckling and its mode shapes are analysed. 

Higher-order shear deformation theory is modified to include shear effects, bending and the 

rigidity of the beam and is proven to be efficient. The materials’ mixture distribution as well as 

orthotropy have an important effect on buckling. Regarding buckling modes, the major 

influence was found to be related to the gradation of the material and boundary conditions. Free 

vibration of FGM beams is investigated by several authors [28-33]. The influence of volume 

fraction distribution, particularly the power index, is the focus of most of those [28-31]. Refined 

theories and finite element models are introduced to improve the results arising from dynamic 

studies on FGM beams [32,33]. The dynamic response on porous FGM beams is a present topic 

of investigation [34-37], with increased porosity distribution index being a major influence on 

buckling loads and fundamental frequencies [36]. Most studies on FGM beams consider a 

rectangular cross-section geometry and different cross-section geometries are not easily found 

in the literature. This was the main motivation for the authors to investigate I-shaped FGM 

beams [38]. From the studies performed, it is possible to conclude that several differences are 

found, in comparison to the behaviour of rectangular-shaped cross-section beams, which fully 

justifies the interest in proceeding with this topic. 

2 MATERIALS AND METHODS 

2.1 Beam geometrical configurations  

The main objective of this work is to characterize the behaviour of FGM non-symmetrical 
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beams. To achieve this objective, two configurations derived from the doubly symmetric I-

shape beam were considered along with the doubly symmetric one, for comparison reasons. 

These cross-sectional areas are presented in Figure 1-a), where the height of the beams is 

H=100mm and the width is W=150mm. 

 
(a)  

(b) 
 

Figure 1: (a) Doubly symmetric I-shape and derived cross-section geometries. (b) Variables that define the beam 

cross-section geometry 

Furthermore, Figure 1-b) shows the axes that were considered in the cross-sections and the 

variables that define the geometry of the cross-section, such as, wt, the top flange width, tw, the 

web thickness, wb, the bottom flange width, tt, the top flange’s thickness, hw, the web height, 

and tb, the bottom flange’s thickness. It is important to note that the coordinate axes have the 

origin at the centre point of the bottom of the beam and are oriented as follows: the height of 

the beam is measured along the z-axis, the width and the length along the y and x-axis. 

2.2 Functionally graded material 

A FGM is a composite material that involves a gradient micro-structure spatial variation that 

may occur in different directions [15,25]. The beams considered in this work are made of 

alumina and steel, whose material properties are presented in Table 1. 
 

Table 1: Material properties 

ID Material Young’s Modulus [GPa] Poisson’s Coefficient Density [kg/m3] 

A Alumina 380 0.3 3800 

B Steel 200 0.3 7800 

 

𝑉𝑓 =

{
 
 
 
 
 
 

 
 
 
 
 
 𝑉𝐴 0 ≤

𝑧

𝐻
< 𝑧𝑚𝑖𝑛

(𝑉𝐴 − 𝑄1) (cosh (𝑄2𝐴 (
𝑧
𝐻 − 𝑧𝑐𝑢𝑡𝐴)) − 1)

cosh (𝑄2𝐴(𝑧𝑚𝑖𝑛 − 𝑧𝑐𝑢𝑡𝐴)) − 1
+ 𝑄1 𝑧𝑚𝑖𝑛 ≤

𝑧

𝐻
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𝐻
< 𝑧𝑐𝑢𝑡𝐵

(𝑉𝐵 − 𝑄1) (cosh (𝑄2𝐵 (
𝑧
𝐻 − 𝑧𝑐𝑢𝑡𝐵)) − 1)

cosh (𝑄2𝐵(𝑧𝑚𝑎𝑥 − 𝑧𝑐𝑢𝑡𝐵)) − 1
+ 𝑄1 𝑧𝑐𝑢𝑡𝐵 ≤

𝑧

𝐻
< 𝑧𝑚𝑎𝑥

𝑉𝐵 𝑧𝑚𝑎𝑥 <
𝑧

𝐻
≤ 1

 (1) 
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To account for the gradation of material along the height of the cross-sectional area, the 

volume fraction law, Vf, is a function with seven parameters, where z is the thickness coordinate 

variable; zmin and zmax are the material saturation limits in the flanges’ thickness; 𝑧𝑐𝑢𝑡𝐴 and 𝑧𝑐𝑢𝑡𝐵  

are the material saturation limits in the web thickness; Q1 is the minimum quantity of the main 

material in the web; and 𝑄2𝐴  and 𝑄2𝐵  are controls for the transition between materials. A and B 

represent the two materials involved in the gradient. Additionally, the FGM has no porosities. 

2.3 Equilibrium equations 

The kinematic deformation of the beam, and consequently the stresses’ distributions, are 

based on the description of the movement of a generic point considering its three displacement 

components (u,v,w) along the 3D Cartesian coordinate system, (x,y,z). Considering the 

kinematic relations of the Elasticity Theory for small deformations, the strain field 

characterized by the standard six linear strain components. The materials used are the biphasic 

FGM mentioned in the previous sub-section, for which a constitutive relation, where the elastic 

stiffness coefficients depending on the coordinate thickness, applies [39,40]. According to 

Hamilton’s principle: 

𝛿 ∫ 𝐿
𝑡1

𝑡0

𝑑𝑡 = 𝛿∫ (𝑇 − Π + Ω)
𝑡1

𝑡0

𝑑𝑡 = 0 (2) 

 

where T is the kinetic energy, Π is the elastic strain energy and Ω stands for the work done 

by the external forces. To perform a free vibration analysis or a linear static analysis, the 

mathematical manipulation of this equation will yield, at the element level: 
 

(𝑲𝑒 − 𝜔
2𝑴𝑒)𝒒𝑒 = 0     ;     𝑲𝑒𝒒𝑒 = 𝒇𝑒 

(3) 

with 𝑲𝑒 and 𝑴𝑒 standing respectively for the element elastic stiffness matrix and the element 

mass matrix. The vectors 𝒒𝑒 and 𝒇𝑒 represent the generalized degrees of freedom vector and 

the element vector of the surface forces respectively. A Lagrange tri-quadratic element, shown 

in Figure 2, was used to implement these equations via the finite element method. 

 
 

Figure 2: Generic Lagrange tri-quadratic finite element and its local coordinate system. 

The solution of these equations extended to the whole discretized domain, is obtained after 

solving the corresponding reduced equilibrium equations systems. 

3 RESULTS AND DISCUSSION 

Several studies were performed to investigate the behaviour of FGM non-symmetrical beams 
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concerning their free vibration responses as well as, maximum static deflections and stresses’ 

profiles. It is important to note that the same material distribution is considered for all FGM 

beams. This distribution is the one presented in Equation 1 and the distribution parameters used 

in the volume fraction law for these case studies are the following: zmin=6.44%, zmax=93.56%, zcut 

A=45%, zcut B=55%, C1=0, C2A=10%, C2B=10%. 

3.1 Maximum displacement analysis 

After performing a convergence analysis, the beams with different configurations, under 

different boundary conditions, were submitted to a uniformly distributed load of 1 kPa, and the 

maximum static transverse displacement was obtained.  

3.1.1 Effect of the cross-sectional area 

At first, the effect of the cross-sectional area was considered. The three configurations 

present in Figure 1 were analysed for a C-C boundary condition. Two aspect ratios were 

considered, L/H=20 and L/h=5, respectively associated with thin and thick beams. The 

maximum displacement is presented in Figure 3-a) and 3-b) for the different configurations and 

aspect ratios. As expected, the thin beams obtained higher maximum deflections. In terms of 

the cross-sectional area, the configuration closer to the doubly symmetric I-shape cross-section 

shows smaller deflections and the C-shape cross-section presents the highest deflection. 

Configuration CS01 performs best in both aspect ratio situations. 

 
(a) 

 
(b) 

 

Figure 3: Maximum static deflection (a) of thin beams (L/H=20), (b) of thick beams (L/H=5). 

3.2.2 Effect of the material 

The configuration studied was the least symmetric about the vertical axis z, the configuration 

CS20, as it has proved in the previous study to be the less stiff one. So, the beam was subjected 

to the C-F boundary condition and an FGM beam, and a steel beam were studied. When thin 

beams are considered, the maximum displacements, presented in Figures 4-a) and 4-b), show 

that the FGM beam yields higher deflections than the steel beam, but, for thick beams, the 

opposite occurs. 
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(a) 

 
(b) 

 

Figure 4: Maximum displacement of CS20 beam, made of different materials (a) L/H=20 (b) L/H=5. 

3.2.3 Stresses distributions 

The stresses’ distributions were studied for different aspect ratios considering three locations 

along beam length (L/4, L/2, 3L/4).  

 
 

Figure 5: Stress distribution σxx (L/H=20). 

For illustrative purposes, the stress along the length of the beam, σxx, for L/H=20 is shown 
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in Figure 5. The higher stresses occur at L/2. Configuration CS20 displays a shift in the location 

of the higher stresses along the y-axis, due to the cross-sectional geometry. Furthermore, these 

higher stresses occur in the flanges or near the interface between the web and the flange. Other 

stress components were assessed however they aren’t here presented for the sake of brevity. 

Regarding these cases, note that the stress distribution along the height of the beam (σzz) and 

the higher stresses occur in the web, although not symmetric. Regarding the transverse shear 

stress distribution, τxy, there is no deviation regarding the z-axis, with higher stresses in the 

middle height of the web. For the CS20, these higher stresses occur in the inner face of the 

section and closer to the supports of the beam, instead of the middle length. To further 

investigate the shear stress distribution, a static analysis of the thick CS20 beam was performed, 

and it was observed that higher τxy, stresses developed along the width of the web, reaching the 

outer side.  

3.3 Free vibration analysis 

The beams were analysed concerning their free vibration responses and the fundamental 

frequency was compared for different aspect ratios and boundary conditions. The effect of the 

material used for the beams was also considered. Considering the aspect ratio, the fundamental 

frequencies are considerably higher for thick beams (L/H=5), around 20 times higher than thin 

beams (L/H=20), as may be observed in Figure 66.  

 
 

Figure 6: Fundamental frequency of the beams for different aspect ratios. 

 
 

Figure 7: Fundamental frequency of the beams for L/H=5 and different boundary conditions. 
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Also, thick beams present a different mode behaviour, when compared to thin beams (Figure 

7). 

  

  

  
(a) (b) 

 

Figure 8: Fundamental vibration modes for C-F FGM beams with three cross-sections (CS00, CS01, and CS20): 

(a) for L/H=20, (b) for L/H=5. 

When comparing the effects of different boundary conditions, it is confirmed as expected, 

that double-clamped beams have higher fundamental frequencies than clamped-free beams, as 

may be observed in Figure 8. By clamping both ends, the stiffness of the beam is greatly 

increased while the mass remains constant.  

In terms of the modes’ shapes of the modes, it was found that thicker beams have a more 

pronounced torsional mode in comparison to the first bending mode in longer beams, where the 

bending is dominant (Figure 9). 

It is also relevant to note, that when considering the shapes of higher-order modes, the frequent 

presence of local modes on the web and flanges is much more noticeable for shorter beams. For 

longer beams, the modes are dominated by the full-body bending and torsional mode shapes. 
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(a) 
 

(b) 

 
(c) 

 

Figure 9: Fundamental vibration modes for C-C FGM beams with CS00, CS01, and CS20 cross-sections and 

L/H=5. 

12 CONCLUSIONS 

The study of FGM beams with non-symmetrical cross-sections was the focus of the present 

work. A quadratic hexahedron finite element model was used to analyse the doubly symmetrical 

I-shaped FGM beam, as well as two derived cross-sectional beams. The beams were subjected 

to a uniformly distributed load and the maximum displacement was obtained. The stress 

distribution was obtained and compared to the results of a corresponding steel beam. The beams 

were also studied concerning their free vibration response. 

The results showed that for the materials considered, the steel beams present a more 

conservative behaviour when compared to their FGM counterparts.  

The stress distribution is very dependent on the cross-sectional area, showing deviations due to 

the nonsymmetric cross-section. Also, the CS20 (C-shaped) FGM beam presented higher 

stresses in the inner wall of the web, not extending to the whole web width. Furthermore, the 

stress distribution in this FGM beam has a diagonal evolution along the height.  

The effect of the length-to-thickness aspect ratio was investigated, and it was found that there 

is a significant influence on the maximum static displacements and the stress distributions.  

Regarding the vibration analysis, natural frequencies were higher for FGM beams than steel 

beams.  

The aspect ratio has an important influence on the fundamental frequencies as these are 

considerably higher for thick beams. These beams also presented more predominance on the 

torsional mode shape due to the boundary conditions.  

The vibrational modes are significantly affected by the cross-section geometries, while the 
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material distribution mainly affects the magnitude of the natural frequencies. 
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