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Abstract. In mineral processing, ore fracture is an essential first step for which the objective is 
to increase the exposed surface area of the valuable mineral, thereby increasing the likelihood 
of liberation in subsequent separation stages. This process is well known to be energy-intensive, 
and increasing scrutiny around sustainable practices has heightened the need to examine the 
efficiency of current industry approaches. Factors such as mineralogical structure and inherent 
weakening in the form of micro cracks are known to affect ore breakage mechanisms. However, 
isolating and investigating individual factors under experimental conditions is challenging and 
typically impractical. Numerical techniques such as the Bonded Particle Model-Discrete 
Element Method (BPM-DEM) have been developed as a means of investigating in isolation, 
the effects of different factors on ore breakage behaviour under closely controlled breakage 
conditions. In this work, the robustness of the BPM-DEM in predicting fracture characteristics 
during SILC impact breakage is evaluated. Thereafter, the BPM-DEM is used to analyse the 
internal mechanical response of a simulated rock specimen under impact loading commensurate 
with that of the SILC. The method is shown to be an insightful opportunity to study intrinsic 
and extrinsic rock properties during dynamic loading and breakage. 

 
1 INTRODUCTION 

Particle breakage is essential in many solid processing industries, including food, 
pharmaceutical, agricultural and mineral processing. In mineral processing, breakage of run-of-
mine ore takes place in a comminution circuit to achieve size reduction which consequently 
increases the likelihood of liberation of valuable minerals [1,2]. This process is typically 



Lawrence Bbosa, Temitope Oladele and Dion Weatherley 

 2 

associated with relatively high energy costs and is and is often reported to be inefficient. 
Previous studies have estimated that comminution typically accounts for approximately 50-
60% of the total power to a plant [3], and for commonly utilized methods that less than 5% is 
directly utilized in the mechanics of particle breakage [4]. The sustainability of the industry 
necessitates improving current comminution practices, which can be facilitated through 
advances made from studying its fundamental mechanisms. 

Impact fracture studies of single rock samples are commonly used as the initial basis to study 
comminution. These are normally conducted using standard laboratory breakage devices. The 
Short Impact Load Cell (SILC) was designed to be a portable device which could be used to 
determine impact breakage properties of materials at dynamic loading conditions typical to 
comminution devices [5].  

Numerical techniques such as the discrete element method (DEM) have emerged as a means 
of complementing laboratory studies, acting as a “virtual laboratory” which offers the versatility 
to isolate and investigate highly specific scenarios. Among its strengths is the ability to alter its 
parameters in a carefully calibrated environment and examine their effect in isolation on the 
types of macro scale responses measured by experiments. Furthermore, DEM has been 
demonstrated as a viable tool for studying fracture mechanics in many forms including rock 
blasts, seismic failures and within comminution devices [6,7,8].  

Based on these considerations, this study aimed to evaluate the robustness of the BPM-DEM 
in predicting fracture characteristics during SILC impact breakage. Thereafter, the BPM-DEM 
was used to analyse the internal mechanical response of a simulated rock specimen under 
impact loading commensurate with that of the SILC. Thereby, the BPM-DEM was 
demonstrated to be beneficial approach which provides an opportunity to study both intrinsic 
and extrinsic rock properties during dynamic loading and breakage. 

2 SUMMARY OF METHODOLOGY 

2.1 Discrete element method 
The discrete element method (DEM) is a discontinuous numerical modelling approach based 

on Newton’s laws of mechanics, initially designed to study the flow of granular materials [9]. 
A physical system is represented as an assembly of discrete entities, typically spheres, referred 
to as DEM-spheres in this work. These DEM-spheres undergo forces due to prescribed 
interactions with adjacent DEM-spheres, other entities such as walls, and/or potential fields 
such as gravity.  

The method explicitly computes the net force acting on each DEM-sphere at an 
instantaneous time and subsequently updates the positions and velocities of the DEM-spheres 
to the next discrete time step by integrating the ensuing equation of motion (Newton’s Second 
Law; Eq. 1). Typically, explicit time-integration schemes are employed, allowing dynamic 
processes such as elastic wave propagation to be simulated. In cases where only the quasi-static 
response of materials is of interest, artificial damping forces are added to approximate implicit 
time-integration; an approach similar to penalty methods employed in continuum numerical 
models. 

The instantaneous acceleration of any given DEM-sphere i is given by the sum of all forces 
acting on that DEM-sphere at a prescribed time t. The basic forces are DEM-sphere-pair 
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interactions (𝐹𝐹𝑖𝑖𝑖𝑖
𝑝𝑝), damping (𝐹𝐹𝑖𝑖𝑑𝑑) and gravitation (𝐹𝐹𝑖𝑖

𝑔𝑔), as well as wall forces (𝐹𝐹𝑖𝑖𝑤𝑤), although 
other expressions can be added depending on the scenario to be simulated. 

mi
dvi
dt

=∑ 𝐹𝐹𝑖𝑖𝑖𝑖
𝑝𝑝 + 𝐹𝐹𝑖𝑖𝑑𝑑 + 𝐹𝐹𝑖𝑖

𝑔𝑔 + ∑ 𝐹𝐹𝑖𝑖𝑤𝑤
𝑁𝑁𝑤𝑤
𝑤𝑤=1

𝑁𝑁𝑖𝑖
𝑐𝑐

𝑖𝑖=1        (1) 

Where: mi, vi are the mass and velocity of DEM-sphere i at time t. Furthermore, Ni
c 

indicates the total number of DEM-spheres in contact with DEM-sphere i and Nw is the number 
of walls within the simulation domain. 

This equation of motion is typically integrated in time via one of a range of explicit numerical 
time integration schemes (Eqs 2 and 3). One of the simplest such schemes is employed herein: 

 
𝑣𝑣𝑖𝑖(𝑡𝑡 + ∆𝑡𝑡) =  𝑣𝑣𝑖𝑖(𝑡𝑡) + ∆𝑡𝑡 𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
 (t)         (2) 

𝑝𝑝𝑖𝑖(𝑡𝑡 + ∆𝑡𝑡) =  𝑝𝑝𝑖𝑖(𝑡𝑡) + ∆𝑡𝑡 𝑣𝑣𝑖𝑖 (𝑡𝑡 + ∆𝑡𝑡) + ∆𝑡𝑡2  𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

 (t)       (3) 

Where: pi is the position of DEM-sphere i and ∆𝑡𝑡 is the time-step increment. 
As the DEM has been refined, it has proven useful to model a variety of applications in 

highly dynamic scenarios involving high particle strain rates [10,11,12]. Examples include; 
earth quake studies and fault propagation [13], rock fracture [14,15] and comminution [16,17]. 
Many such scenarios necessitated the implementation of breakage modelling within the DEM 
environment, in addition to contact mechanics appropriate for simulating granular media. 

2.2 Bonded particle model 
The BPM represents a parent particle as an assembly of DEM-spheres each bound to 

neighbours via brittle-elastic beam interactions. Upon application of external forces to the 
assembly of bonded particles, each beam interaction is stressed until a prescribed failure 
criterion is met. Beam interactions meeting the failure criterion are replaced with elastic 
repulsive, frictional interactions between the previously bound particles; the compressive and 
shear elastic stiffnesses of which match that of the replaced beam interactions. This method 
aims to mimic the spontaneous formation of frictional fracture surfaces during crack 
propagation within brittle materials. Consequently, the shapes and size-distributions of progeny 
particles arise naturally and can therefore be validated with reference to laboratory experiments. 

The simplest BPM models employ simple linear elastic springs between adjacent DEM-
spheres, with failure occurring when the spring extension exceeds a prescribed distance. These 
simple BPMs accurately simulate failure of brittle materials under pure tension but do not 
accurately predict crack propagation under compressive or shear loading. The latter is achieved 
by accounting for additional deformational degrees-of-freedom between adjacent DEM-
spheres; specifically shear, bending and torsional deformation in addition to 
tensile/compressive deformation. A variety of mathematical formulations have been proposed 
to accommodate these additional degrees-of-freedom, although the exact details of the 
formulation appear to be of little importance for simulating crack propagation and failure of 
brittle materials. Herein, the formulation of Wang et al. [12] is employed.  
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Figure 1: The six interactions between bonded DEM-spheres: pulling or pushing in radial direction (a), shearing 
forces in tangential direction (b and c), twisting (d) and bending around two axis (e and f). Wang et al., (2006) 

Wang et al notionally connect adjacent DEM-spheres with cylindrical linear elastic beams 
having six deformational degrees-of-freedom, as illustrated in Fig. 1. Each degree-of-freedom 
is mathematically represented via a Hookean interaction. Purely tensile (compressive) forces 
are proportional to the relative extension (compression) of adjacent DEM-spheres. Similarly 
shear forces in each of the two directions perpendicular to the line joining the two DEM-
sphere’s centres-of-mass are calculated in proportion to the relative shear displacement. 
Ascribing an initial orientation to each DEM-sphere (rotational degrees-of-freedom in addition 
to translational) permits the calculation of relative bending and twisting between adjacent 
DEM-sphere; with bending and twisting moments calculated in proportion to the relevant 
changes in angle between adjacent DEM-spheres.   

With the assumption of isotropy of shearing and bending deformation, two forces (Eqs 5 and 
6) and two moments (Eqs 7 and 8) are calculated between adjacent, bonded pairs of DEM-
spheres, in any given timestep. These are: 
𝐹𝐹𝑖𝑖𝑖𝑖𝑛𝑛 =  𝐾𝐾𝑖𝑖𝑖𝑖𝑛𝑛∆𝑈𝑈𝑖𝑖𝑖𝑖𝑛𝑛            4 

𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠 =  𝐾𝐾𝑖𝑖𝑖𝑖𝑠𝑠 ∆𝑈𝑈𝑖𝑖𝑖𝑖𝑠𝑠            5 

𝑀𝑀𝑖𝑖𝑖𝑖
𝑏𝑏 =  𝐾𝐾𝑖𝑖𝑖𝑖𝑏𝑏∆𝜃𝜃𝑖𝑖𝑖𝑖𝑏𝑏            6 

𝑀𝑀𝑖𝑖𝑖𝑖
𝑑𝑑 =  𝐾𝐾𝑖𝑖𝑖𝑖𝑑𝑑 ∆𝜃𝜃𝑖𝑖𝑖𝑖𝑑𝑑            7 
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Where: ∆𝑈𝑈𝑖𝑖𝑖𝑖𝛼𝛼  is the relative normal or shear (𝛼𝛼 = 𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠) displacement of adjacent DEM-
spheres i and j, and ∆𝜃𝜃𝑖𝑖𝑖𝑖

𝛽𝛽 is the relative angle change due to bending or torsion (𝛽𝛽 = 𝑏𝑏 𝑜𝑜𝑜𝑜 𝑡𝑡) 
between the DEM-spheres.  

The four spring constants (𝐾𝐾𝑖𝑖𝑖𝑖𝑛𝑛, 𝐾𝐾𝑖𝑖𝑖𝑖𝑠𝑠 , 𝐾𝐾𝑖𝑖𝑖𝑖𝑏𝑏 , 𝐾𝐾𝑖𝑖𝑖𝑖𝑑𝑑 )  are computed in accordance with linear elastic 
beam theory given by Eqs 9-12. Assuming adjacent DEM-spheres are connected via cylindrical 
beams whose cross-sectional radius is equal to the arithmetic mean of the radii of the DEM-
spheres [ 𝑅𝑅𝑖𝑖𝑖𝑖 = 1

2
(𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑖𝑖)]  and whose equilibrium length is equal to the sum of the DEM-

sphere radii: 
𝐾𝐾𝑖𝑖𝑖𝑖𝑛𝑛 =  𝜋𝜋

2
𝑌𝑌(𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑖𝑖)          8 

𝐾𝐾𝑖𝑖𝑖𝑖𝑠𝑠 =  𝜋𝜋
2
𝐺𝐺(𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑖𝑖)          9 

𝐾𝐾𝑖𝑖𝑖𝑖𝑏𝑏 =  𝜋𝜋
8
𝑌𝑌(𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑖𝑖)3          10 

𝐾𝐾𝑖𝑖𝑖𝑖𝑑𝑑 =  𝜋𝜋
4
𝐺𝐺(𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑖𝑖)3          11 

Where: Y is the interaction Young’s modulus and 𝐺𝐺 =  𝑌𝑌
2(1+𝜈𝜈)

 is the interaction shear modulus; 
typically defined in terms of a dimensionless Poisson’s ratio (𝜈𝜈). It should be noted that these 
mechanical parameters are micro-physical quantities. The equivalent macroscopic mechanical 
properties are related to these but also depend upon the topology of the assembly of bonded 
interactions comprising a DEM rock sample.  

Failure of bonded interactions is governed by a Mohr-Coulomb failure criterion shown in 
Eq 13. 
𝜏𝜏𝑖𝑖𝑖𝑖 ≥  �𝐶𝐶 − 𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛 𝑡𝑡𝑡𝑡𝑛𝑛𝛷𝛷          𝑖𝑖𝑖𝑖 𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛 < 𝐶𝐶 𝑡𝑡𝑡𝑡𝑛𝑛𝛷𝛷

0                                 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑜𝑜𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒   
       12 

Where: C is the cohesive strength of the interaction and Φ is the internal angle of friction. 
The normal stress (𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛) and shear stress (𝜏𝜏𝑖𝑖𝑖𝑖) of the interaction are computed in accordance 
with linear elastic beam theory expressed Eqs 14 and 15 respectively: 

𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛 =
𝐹𝐹𝑖𝑖𝑖𝑖
𝑛𝑛

𝐴𝐴𝑖𝑖𝑖𝑖
+

�𝑀𝑀𝑖𝑖𝑖𝑖
𝑏𝑏 �

𝐼𝐼𝑖𝑖𝑖𝑖
𝑅𝑅𝑖𝑖𝑖𝑖          13 

𝜏𝜏𝑖𝑖𝑖𝑖 =
�𝐹𝐹𝑖𝑖𝑖𝑖
𝑠𝑠 �

𝐴𝐴𝑖𝑖𝑖𝑖
+

�𝑀𝑀𝑖𝑖𝑖𝑖
𝑡𝑡 �

𝐽𝐽𝑖𝑖𝑖𝑖
𝑅𝑅𝑖𝑖𝑖𝑖          14 

Where: 𝐴𝐴𝑖𝑖𝑖𝑖 =  𝜋𝜋𝑅𝑅𝑖𝑖𝑖𝑖2  is the cross-sectional area, 𝐼𝐼𝑖𝑖𝑖𝑖 =  𝜋𝜋𝑅𝑅𝑖𝑖𝑖𝑖4 /4 is the bending moment of inertia 
and 𝐽𝐽𝑖𝑖𝑖𝑖 =  𝜋𝜋𝑅𝑅𝑖𝑖𝑖𝑖4 /2 is the polar moment of inertia of the interaction connecting DEM-spheres i 
and j. 

3 NUMERICAL APPROACH 
Numerical simulations were conducted using ESyS-Particle, an open-source discrete 

element method (DEM) software package which uses Python-based libraries to generate 
geometries and simulations and a C++ engine for mathematical computations 
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(https://launchpad.net/esys-particle). Sample geometries were created using Gengeo, a library 
of tools available within the ESyS-particle package. which uses a volume-filling algorithm to 
pack DEM-spheres into a prescribed volume. The numerical methodology employed herein 
consists of the following two steps: model calibration and numerical SILC experiments. These 
are described in the sections that follow. 

4 INITIAL STATISTICAL ANALYSIS OF FRACTURE CHARACTERISTICS 

4.1 Model resolution sensitivity analysis 
Model resolution has been demonstrated to have a significant effect on the accuracy of BPM 

simulations of rock damage [18]. The effect of model resolution in this current study was 
examined by varying the scale of DEM-spheres and measuring the variation in fracture force 
obtained while keeping all other simulation parameters constant. Model resolution herein is 
governed by a dimensionless ratio (Rmax/L) i.e., the ratio of the maximum radius of DEM-
sphere in the simulation (Rmax) to the length of the specimen (L), where L is constant.  

 
Figure 2: A representative specimen at different model resolutions 

It is important to emphasize that the resolution level was indicated by the number of DEM-
spheres, whereby fewer spheres translated to lower levels while a greater number meant a 
higher level. Model resolution was varied from 0.128 (low level) to 0.016 (high level) to test 
scenarios from relatively low to high amounts of DEM-spheres, as demonstrated in Fig.3. For 
each resolution, an equal ratio between the minimum DEM-sphere radius (Rmin) and Rmax 
was maintained. This ensures that the macroscopic mechanical properties of the rock specimens 
remain the same. Each simulation was repeated 30 times to provide representative statistics for 
each scenario.  
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Table 1 lists the parameters used for both Rmin and Rmax at different model resolutions as 
well as the approximate average number of DEM-spheres obtained when the numerical volume 
filling algorithm completed constructing the specimens.  In addition, the mean fracture force 
and indication of the variation is given. The average fracture force remained statistically 
consistent for all model resolutions except the lowest two levels. The variation in fracture force 
tended to increase at successively lower model resolution levels, with the lowest two exhibiting 
notably wider discrepancies.  

Table 1: Example of the construction of one table 

Rmin 
(mm) 

Rmax 
(mm) 

Rmax/L Approx. 
No. DEM-

spheres 

Average 
Fracture force 

(kN) 

Std  
Dev 

Resolution 
Level 

0.32 1.28 0.128 550 5.15 1.56 Lowest  
0.28 1.12 0.112 900 4.65 1.49  
0.24 0.96 0.096 1500 4.04 1.06  
0.20 0.80 0.080 3000 3.84 0.77  
0.16 0.64 0.064 5500 3.93 0.95  
0.12 0.48 0.048 1300 3.65 0.59  
0.08 0.32 0.032 45000 3.39 0.47  
0.04 0.16 0.016 350000 3.04 0.18 Highest 

 
This implied that the measured fracture force converged to greater accuracy with higher 

model resolution, highlighting the importance of selecting a sufficient size and number of 
DEM-spheres when used to represent a rock specimen. 

4.2 Specimen-size dependency 
The sensitivity of the BPM to specimen size when calculating fracture characteristics was 

also investigated by varying lengths from 2-10mm. Simulations across different rock specimen 
lengths were conducted at a resolution (Rmax/L) of 0.032, which was noted to give reasonably 
accurate representation in the previous section. An added advantage of this model resolution 
was increased computational efficiency, with simulations at this level requiring 15 hours per 
specimen in comparison with approximately double the time per specimen at the highest 
resolution.  

Figure 3 shows a summary plot of the variation in fracture force with size. This depicted a 
non-linear size dependency with fracture force, in accordance with theory, and progressively 
increasing variation in fracture force as rock specimen length increased.  
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Figure 3: Variation of fracture force with specimen length 

5 MEASUREMENT OF MECHANICAL PROPERTIES 
Following the evaluation of variability in the BPM-DEM model, a study was considered to 

assess the integrity of the technique in performing impact breakage SILC simulations on a 
10mm cylindrical rock specimen. The macro-scale responses were extracted and analyzed with 
the added benefit of concurrently examining the microscale behaviour. Pertinent information 
included force-time histories, extent of new free surface generation (inferred from the 
percentage of broken bonds/beams joining DEM spheres together) and stress (stress tensor 
within the simulation domain). 

Figure 4 (left) provides a comparison plot of the force and percentage of broken bonds across 
the duration of the impact, with the stress tensor and extent of fracture at the instance of fracture 
shown on the right.  The behavior of the simulations followed closely that typically observed 
in SILC experiments. 

The steel ball contacted the rock sample at the start of impact, resulting in a gradual increase 
in the measured force as stress intensified toward a maximum. As the stress built up, an 
increasing number of connecting bonds began to break as illustrated, representing the gradual 
accumulation of damage to the sample at locations which could be spatially visualized. Over 
the duration of fracture, the percentage of broken bonds increased drastically corresponding to 
the point of failure (peak fracture force) and subsequent cleaving of the sample largely into two 
halves. 
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Figure 4: Plots of the force and percentage of broken bonds over the duration of impact (left), with the 
stress tensor magnitude and fracture shown at 0.028s (right). 

The Young’s modulus (Y) and uniaxial compressive strength (UCS) are important macro 
mechanical material properties in rock mechanics. While Y describes the elastic property of a 
rock specimen prior to failure, the UCS is commonly quantified as the strength. The sensitivity 
of these characteristics in the current setup was investigated. Figure 5 provides plots of the 
fracture force against the UCS and Y respectively obtained from systematically varying these 
over a spectrum of normally observed values. 350 simulations were conducted with ten 
specimens in each combination of UCS and Y. 

 
Figure 5: Fracture force versus UCS at different Young’s moduli 
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6 DISCUSSION 
This study evaluated the bonded particle model in DEM for simulating common scenarios 

of rock breakage under dynamic loading in a SILC device. The robustness of this model was 
initially tested by considering model resolution sensitivity, size dependency and ranges of 
variation of macroscopic mechanical properties against measured fractured characteristics.  

The number of discrete entities (DEM-spheres) is a simplified representation of the 
microstructure of a typical rock. The current investigation highlights that a high model 
resolution (i.e. a higher number of entities used to construct the rock) has a significant effect on 
reducing the variation associated with the obtained fracture characteristics. This indicates that 
prior to performing simulations it is worth considering whether the selected configuration is 
numerically “safe” to obtain consistent and realistic results. This approach can be further refined 
to align it with actual measurements by integrating mineralogical data from techniques such as 
X-ray computed tomography [19]. In this way, approximated grain sizes could be used as a 
basis to define the Rmin and Rmax parameters as well as the composition used for simulations. 
The current work assumed a constant ratio of Rmin and Rmax for simplicity. Size dependency 
is another criterion to consider when testing model sensitivity. Larger sizes typically lead to 
greater variability in the fracture response, with experimental literature concurring that larger 
rock specimens increase the likelihood of containing flaws and inconsistencies in the 
application of loading. 

7 SUMMARY AND CONCLUSION 
The BPM-DEM has been demonstrated to be a robust breakage model that provides an 

opportunity to study both intrinsic and extrinsic rock properties during dynamic loading and 
breakage. Model resolution, rock specimen size and the variance of macro and micro-
mechanical properties were statistically analysed to benchmark the integrity of the initial case.  

Selecting a model resolution with a sufficiently high number of DEM-spheres to produce 
consistent results was demonstrated to be an important step toward achieving numerically stable 
results. The dependence of some fracture characteristics on rock specimen size highlighted how 
some variabilities observed during ore characterization tests may be size effects. It was also 
shown that the macro level properties such as Young’s modulus and UCS could be tuned to 
desired values, i.e. representing a wide range of ore types.  

Inclusion of increasingly representative features will facilitate the use of the BPM for 
quantitative investigations on the relationships between ore properties, the form of load 
application, and its macroscopic mechanical response; knowledge that will enable future 
analytical ore characterisation methodologies to supplant contemporary empirical methods.   

REFERENCES 

[1] Wills, B.A. and Napier-Munn, T. Wills' Mineral Processing Technology: An Introduction 
to the Practical Aspects of Ore Treatment and Mineral Recovery. Butterworth-
Heinemann, (2015). 

[2] Fuerstenau, M.C. and Han, K.N. Principles of Mineral Processing. SME, (2003). 
[3] Ballantyne, G.R. and Powell, M.S. Benchmarking Comminution Energy Consumption for 

the Processing of Copper and Gold Ores. Minerals Engineering, 65:109-114, (2014). 



Lawrence Bbosa, Temitope Oladele and Dion Weatherley 

 11 

[4] Tromans, D. Mineral Comminution: Energy Efficiency Considerations. Minerals 
Engineering, 21(8):613-620, (2008). 

[5] Bourgeois, F.S. and Banini, G.A. A Portable Load Cell for In-situ Ore Impact Breakage 
Testing. International Journal of Mineral Processing, 65(1):31-54, (2002). 

[6] Weatherley, D. and Ayton, T. Numerical Investigations on the Role of Micro-cracks in 
Determining the Compressive and Tensile Strength of Rocks. EGU General Assembly 
Conference Abstracts, 8294, (2012). 

[7] Weerasekara, N.S., Powell, M.S., Cleary, P.W., Tavares, L.M., Evertsson, M., Morrison, 
R.D., Quist, J. and Carvalho, R.M. The Contribution of DEM to the Science of 
Comminution. Powder Technology, 248:3-24, (2013). 

[8] Han, Z., Weatherley, D. and Puscasu, R. Application of Discrete Element Method to 
Model Crack Propagation. 13th ISRM International Congress of Rock Mechanics, 
International Society for Rock Mechanics, (2015). 

[9] Cundall, P.A. and Strack, O.D. A Discrete Numerical Model for Granular Assemblies. 
Geotechnique, 29(1):47-65, (1979). 

[10] Wang, Y., Yin, X., Ke, F., Xia, M. and Peng, K. Numerical Simulation of Rock Failure 
and Earthquake Process on Mesoscopic Scale. Pure and Applied Geophysics, 157(11-
12):1905-1928, (2000). 

[11] Griffiths, D.V. and Mustoe, G.G. Modelling of Elastic Continua Using a Grillage of 
Structural Elements Based on Discrete Element Concepts. International Journal for 
Numerical Methods in Engineering, 50(7):1759-1775, (2001). 

[12] Wang, Y., Abe, S., Latham, S. and Mora, P. Implementation of Particle-scale Rotation in 
the 3-D Lattice Solid Model. Pure and Applied Geophysics, 163(9):1769-1785, (2006). 

[13] Mora, P. and Place, D. A Lattice Solid Model for the Nonlinear Dynamics of 
Earthquakes. International Journal of Modern Physics C, 4(06):1059-1074, (1993). 

[14] Hentz, S., Donzé, F.V. and Daudeville, L. Discrete Element Modelling of Concrete 
Submitted to Dynamic Loading at High Strain Rates. Computers & Structures, 82(29-
30):2509-2524, (2004). 

[15] Potyondy, D.O. and Cundall, P.A. A Bonded-particle Model for Rock. International 
Journal of Rock Mechanics and Mining Sciences, 41(8):1329-1364, (2004). 

[16] Huang, H., Detournay, E. and Bellier, B. Discrete Element Modelling of Rock Cutting. 
Rock Mechanics for Industry, 1(1):123-130, (1999). 

[17] Cleary, P.W. DEM Simulation of Industrial Particle Flows: Case Studies of Dragline 
Excavators, Mixing in Tumblers and Centrifugal Mills. Powder Technology, 109(1-
3):83-104, (2000). 

[18] Charikinya, E. Characterising the Effect of Microwave Treatment on Bio-Leaching of 
Coarse, Massive Sulphide Ore Particles. PhD thesis, University of Stellenbosch, South 
Africa, (2015). 

[19] Ghorbani, Y., Becker, M., Petersen, J., Morar, S.H., Mainza, A. and Franzidis, J. Use of 
X-ray Computed Tomography to Investigate Crack Distribution and Mineral 
Dissemination in Sphalerite Ore Particles. Minerals Engineering, 24(12):1249-1257, 
(2011). 

 


	1 INTRODUCTION
	2 SUMMARY OF METHODOLOGY
	2.1 Discrete element method
	2.2 Bonded particle model
	3 NUMERICAL APPROACH
	4 INITIAL STATISTICAL ANALYSIS OF FRACTURE CHARACTERISTICS
	4.1 Model resolution sensitivity analysis
	4.2 Specimen-size dependency
	5 MEASUREMENT OF MECHANICAL PROPERTIES
	6 DISCUSSION
	7 SUMMARY AND CONCLUSION
	REFERENCES

