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Summary. Bayesian Updating with Structural reliability methods (BUS) is a novel approach 

for calibrating models within uncertainty analysis, transforming Bayesian updating into a 

structural reliability problem. However, reliability analysis in the case of high-dimensional 

problems remains a significant challenge, especially due to the significant computational cost 

as a function of the desired level of accuracy. To overcome this issue, the paper introduces an 

innovative Bayesian updating framework based on convolutional autoencoders. This approach 

successfully overcomes the challenges associated with high dimensions. It first involves the 

training of a failure-informed convolutional autoencoder aiming to create a failure surface in a 

low-dimensional latent space. The dimensionality of the input space is reduced by the encoder, 

and the output is reconstructed using the decoder. The high-dimensional reliability problem can 

be handled by replacing the limit-state function in the latent space using a novel, highly efficient 

active learning Kriging model, known as qAK, that has been recently proposed by the authors. 

Therefore, an active learning technique is adopted for the training of the model in order to 

produce points in the vicinity of the limit state surface. This approach improves the accuracy 

and also expedites the model updating procedure. A high-dimensional structural example is 

used to demonstrate the effectiveness of the proposed method. 
 

1 INTRODUCTION 

Bayesian analysis is widely applied in model calibration, where uncertainties in model inputs 

are expressed through a probability distribution that influences the model output. Initial beliefs 

about input variables are captured by prior distributions, which are then updated with new data 

via a likelihood function, reducing uncertainties and defining the posterior distribution. In the 

past, the posterior distribution has commonly been estimated through the implementation of 

Markov chain Monte Carlo (MCMC) simulation [1]. However, MCMC sampling can struggle 

to reach a stable state if the acceptance rate or batch size is not properly defined. To overcome 

this limitation, Ching et al. [2] proposed the transitional Markov chain Monte Carlo simulation 

(TMCMC) that does not require a kernel density estimation in order to expand the application 

of Bayesian updating to high-dimensional problems. In addition, Cheung [3] et al.developed a 

hybrid MCMC method for high-dimensional Bayesian updating, considering a fictitious 

dynamic system. Additionally, Bayesian Network [4] offers another approach to model 

updating. Recently, Bayesian updating with structural reliability methods (BUS) [5] was 
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introduced, linking Bayesian updating with reliability analysis and incorporating methods like 

subset simulation (SuS) and line sampling (LS) for enhanced efficiency. 

The major advantage of BUS lies in using reliability methods to solve the Bayesian updating 

problem. In BUS, a performance function is used to transform Bayesian updating into a 

reliability analysis problem by introducing a uniformly distributed auxiliary random variable P 

and a constant c. An input sample X that satisfies the condition follows the posterior 

distribution. Furthermore, Betz et al. [6] have proposed a modified version of BUS in which 

the constant c is determined adaptively. A maximum likelihood-free variant of the original BUS 

was introduced by Betz et al. [7]. While these variants provide different ways to estimate c, 

they involve considerable computational cost. Thus, there is a need to develop a more efficient 

approach for determining c and to create a robust and effective computational framework for 

BUS, especially when c is not easy to determine. 

Surrogate model-based reliability analysis, which uses the surrogate model as a substitute 

for the original performance function, has become popular in recent years due to its efficiency. 

Such methods can be combined with BUS to solve the reliability problem. In Bayesian model 

updating, Kriging has been integrated into the TMCMC [8] method to reduce the computational 

cost by replacing the full system simulations in likelihood evaluations. In the BUS framework, 

ANN-based [9] surrogate models of the likelihood function were used to reduce the number of 

simulations. Recently, Active learning Kriging (AK) methods [11 - 13] have been applied in 

the framework of BUS by calculating the constant c and adaptively selecting training samples. 

Moreover, AK methods encounter difficulties when handling high-dimensional problems since 

the size of the candidate sample increases significantly as the problem dimension also increases. 

A novel framework that tackles the problem of updating in the case of high-dimensional 

models is proposed in this work. The paper introduces a novel Bayesian updating framework 

that uses convolutional autoencoders. This approach effectively overcomes issues related to 

high-dimensional problems by initially training a failure-informed convolutional autoencoder 

to construct a failure surface within the latent space. The encoder reduces the dimensionality of 

the input space, while the decoder is responsible for reconstructing the output. The framework 

is suitable for high-dimensional reliability problems by replacing the limit state function in the 

latent space with an innovative and highly efficient active learning Kriging model, for brevity 

termed as qAK (quantified Active learning Kriging) that was recently proposed by the authors 

[16]. The qAK method incorporates active learning to generate points near the limit state 

surface, thereby enhancing both the accuracy and the efficiency of the model updating process. 

The efficiency of this approach is demonstrated through an application to a structural dynamics 

problem. 

The paper is organized as follows. Section 2 reviews the Bayesian updating problem and 

BUS. Section 3 describes the quantified active learning Kriging method. Section 4 presents the 

general framework of autoencoders and the convolutional autoencoders. Section 5 introduces 

the proposed framework for Bayesian updating for high-dimensional models and discusses 

implementation issues. Section 6 investigates the performance of the proposed approach 

through a structural dynamics problem. Finally, Section 7 summarizes the major findings of the 

paper. 
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2 BAYESIAN UPDATING WITH RELIABILITY METHODS 

3.1 Bayesian updating 

Bayesian model updating is an efficient tool for reducing model uncertainty by integrating new 

measurements that are used to update the prior distribution of input variables. Therefore, let 

𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑚]
𝑇 represent the m newly obtained output measurements, and 𝑿 =

[𝑋1, 𝑋2, … , 𝑋𝑛]
𝑇 denote the n-dimensional input variables of the model. The prior probability 

density function (PDF) of X is 𝑓𝑋(𝒙). Using the measurements y, the likelihood function can be 

defined as follows: 
 

𝐿(𝒙|𝒚) ∝ Pr⁡(𝒚|𝑿 = 𝒙) (1) 

The likelihood function L(x∣y) is generally assumed to follow a Gaussian distribution. The 

likelihood function for the i-th measurement can be constructed based on the difference between 

the measurements and the corresponding model output. 
 

𝐿𝑖(𝒙|𝒚𝒊) = 𝑓𝜀𝑖(𝑦𝑖 − 𝑔(𝒙𝑖)) (2) 

where 𝑦𝑖 is the measurements, 𝑔(𝒙𝑖) is the model output, and 𝜀𝑖 = 𝑦𝑖 − 𝑔(𝒙𝑖) is commonly 

assumed to follow a Gaussian distribution, with 𝑓𝜀𝑖(⋅) representing the PDF of the error εi The 

likelihood function L(x|y) can be defined as L(x|y) = ∏ 𝐿𝑖(𝒙|𝑦𝑖)
𝑚
𝑖=1 , where m is the number of 

observations. The posterior PDF of X is obtained as follows: 
 

𝑓𝑋|𝑌 ⁡(𝒙|𝒚) = 𝑐𝐸
−1𝐿(𝒙|𝒚)𝑓𝑿(𝒙) (3) 

The model evidence parameter, 𝑐𝐸 ,⁡ is defined as follows: 
 

𝑐𝐸 = ∫𝐿(𝒙|𝒚)𝑓𝑿(𝒙)
𝑋

𝑑𝒙 
(4) 

Thus, the essential aspect of Bayesian updating involves constructing the likelihood function 

L(x|y) using new measurements and then updating the prior distribution of the input variables 

in order to obtain their posterior distribution. 

3.2 The basic principle of BUS 

The BUS method shows significant potential in achieving a more accurate posterior distribution 

without requiring multi-dimensional (Eq. 4) integration. Moreover, the use of advanced 

reliability methods, such as SuS, to solve the model updating problem makes BUS highly 

efficient. First, a standard uniform auxiliary variable, P, is introduced. Next, BUS uses a simple 

rejection sampling algorithm to generate samples from the posterior distribution. The space of 

augmented variables in BUS is denoted as [X, P], and their joint PDF is as follows: 𝑓𝑋,𝑃(𝒙, 𝑝) =

𝑓𝑋(𝒙)𝑓𝑃(𝑝). The failure domain Ω is defined as: 
 

𝛺 = {𝑐 ≤ 𝑝 ⋅ 𝐿(𝒙|𝒚)⁡} (5) 

where c is a constant satisfying c⋅L(x|y )⩽1. The performance function can be constructed in 

BUS as follows: 
 

ℎ(𝒙, 𝑝) = 𝑝 − 𝑐 ⋅ 𝐿(𝒙|𝒚) (6) 

 

According to reference [5], samples drawn from the prior distribution that fall within the 
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domain Ω are consistent with the posterior distribution. The acceptance rate Pacc is the 

probability that the prior samples follow the posterior distribution, expressed as Pacc = Pr[h(X, 

P)⩽0]. 

3 QUANTIFIED ACTIVE LEARNING KRIGING METHOD 

Let us assume a Design of Experiments (DoE), 𝐒 = [𝒙1, … , 𝒙N0
]
T
 with 𝒙1 ⁡ ∈ ⁡ℝ

𝑛 (𝑖 =

1,2,… , 𝑁0) and 𝐆 = [𝐆(𝒙𝟏), 𝐆(𝒙𝟐),… , 𝐆(𝒙𝑵𝟎
)⁡⁡]

𝐓
. 𝐆(𝒙𝒊) ∈ ⁡ℝ

𝑛 are the values of the limit-

state function 𝑮(𝒙). The true response function 𝑮 can be approximated by ∈ ⁡ 𝑮̂(𝒙) as follows: 
 

𝐺(𝒙) = 𝛽𝑇𝑓(𝐱) + 𝑍(𝒙) (7) 

where 𝛽𝑇𝑓(𝐱)⁡is the trend of a Gaussian Process (GP), and 𝛽𝑇 = [𝛽1, …⁡, 𝛽𝑝]
𝑇
 is the regression 

coefficient of the basis function 𝑓(𝒙) = [𝑓(𝒙1),…⁡, 𝑓(𝑥𝑝)]
𝑻
 and p is the number of basis 

functions. The term 𝜎𝐺(𝒙)
2 is the variance of 𝑍(𝒙), which denotes a zero-mean stationary 

Gaussian Process that relates to a covariance matrix: 
 

𝐶𝑜𝑣(𝒙, 𝒙′) = ⁡𝜎𝐺(𝒙)
2𝑅(𝒙 − 𝒙′, 𝜽) (8) 

where 𝑅(𝒙 − 𝒙′, 𝜽) is the correlation function between points 𝒙 and 𝒙′and 𝜽 is the vector with 

the parameters of the correlation function. A widely used autocorrelation function is the 

anisotropic squared exponential model: 
 

𝑅(𝒙 − 𝒙′, 𝜽) = 𝑒𝑥𝑝 [−∑(
𝑥𝑘 − 𝑥𝑘

′

𝜃𝑘
)

2𝑛

𝑘=1

]⁡⁡ 
(9) 

 

According to the principle of Kriging, 𝐆 can be approximated with the PDF of a Gaussian 

distribution: 
 

𝑮̂(𝒙)~𝑁(𝜇𝑮̂(𝒙), ⁡𝜎𝑮̂(𝒙)) (10) 

In our work, a learning function that symmetrically quantifies a candidate support point is 

adopted. More specifically, the 𝜋𝑞(𝒙) learning function is called the most probable 

misclassification function [16], and it expresses the probability that the Kriging prediction 𝐺̂(𝒙) 
(Eq. 10) has been erroneously classified. For every sample x we calculate from the Kriging 

prediction, the mean μ𝐺(𝒙) and the standard deviation σ𝐺(𝒙), and the most probable 

misclassification function is obtained as:  
 

𝜋𝑞(𝒙) = 2⁡min⁡(𝜋(𝒙), 1 − 𝜋(𝒙))⁡ (11) 

In our work, a probabilistic-based stopping criterion [16] that is based on the learning 

function is adopted. First, we obtain the probability pq as: 
 

𝑝𝑞 = ∫ 𝜋𝑞(𝑥)𝑓𝑋(𝒙)
𝑅𝑛

𝑑𝒙 
(12) 

The probability pq is used to identify, with a degree of approximation, the regions of 

integration where model uncertainties prevail. The proposed probabilistic-based stopping 

criterion is the ratio of pq over pfe (Eq. 14), thus: 
 

𝜀𝑠𝑡𝑜𝑝 = 𝑝𝑞/𝑝𝑓𝑒  (13) 
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The tolerance for stopping the refinement procedure was empirically set equal to 𝜀 = 5%, 

which offers a good balance between accuracy and efficiency. For the MCS method, the failure 

probability pfe is calculated as follows: 
 

𝑝𝑓𝑒 =
1

𝑁
∑𝐼𝐹(𝑥

(𝑖))

𝑁

𝑖=1

 
(14) 

where 𝐼𝐹 is a boolean failure indicator function that is equal to one if 𝐺(𝑥(𝑖) ≤ 0 and zero 

otherwise. 

The aim of the adopted strategy [16] is to increase the accuracy of the model, which is related 

to the capacity of the Kriging model to make accurate predictions in the vicinity of the limit-

state surface 𝐺(𝒙) = 0. The metamodel will be built from the DoE population S, which is 

usually chosen with a Latin Hypercube scheme. The size of S depends on the number of random 

variables and has to be as small as possible. The algorithm initiates with the generation of a 

Monte Carlo population 𝑿𝑴𝑪𝑺 = [𝒙(1), 𝒙(2), … , 𝒙(𝑁)⁡]
𝑇
⁡ in the design space. This sample will 

be used for selecting new training points and for calculating the failure probability. Thus, the 

function evaluations of the most probable misclassification function of Eq. 11 are equal to the 

size of this sample. The best candidate samples from 𝑿𝑴𝑪𝑺 will be used to update the metamodel 

population S. 

The active learning procedure that will update the vector of support points S is subsequently 

initiated. The selection of new support points requires calculating the most probable 

misclassification function 𝜋𝑞(𝒙). For sample 𝒙(𝑖)⁡, the PDF from which the candidate sample 

is created is updated as follows: 
 

𝑓𝑋(𝒙) = 𝐻(𝑤(𝑥(𝑖)) − 𝑤lim⁡⁡) (15) 

where H is the Heaviside function, w are weights, and 𝑤𝑙𝑖𝑚 ⁡ is a threshold, usually set equal to 

0.1. According to Eq. 15, the updated PDF is formed by accepting points whose weights are 

greater than 𝑤𝑙𝑖𝑚 . For the MCS method, the weights are equal to the most probable 

misclassification function, i.e., 𝑤𝑙𝑖𝑚 = 𝜋𝑞(𝒙
(𝑖)). The new PDF shifts the PDF to the areas that 

mostly affect the failure probability. 

 

  
(a) (b) 

 

Figure 1: Four-branch limit-state function, (a) Sample from initial and updated PDF. (b) Data clustering and 

selection of new support points. The new points are shown with a red x. 
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Figure 1a shows the MCS candidate samples from both the initial PDF and the updated PDF. 

More specifically, in Fig. 1b, the red points were sampled according to the initial distribution 

of each random variable, while the blue points are obtained with the updated PDF. The blue 

points, which are close to the limit-state surface, are fewer than the red points because points 

with weights less than 𝑤𝑙𝑖𝑚  have been rejected. Thus, points with large weight values are near 

the limit-state surface, while points with a weight less than 𝑤𝑙𝑖𝑚  have been rejected due to their 

reduced proximity. 

4 GENERAL FRAMEWORK OF AUTOENCODERS 

The AE concept was introduced by Rumelhart et al. (1986), and it is regarded as a neural 

network that learns from an unlabeled data set in an unsupervised manner. An autoencoder (AE) 

is a type of neural network that is trained from unlabeled data in an unsupervised way, first 

introduced by Rumelhart et al. (1986). The primary goal of an AE [15] is to learn a compressed 

representation, known as encoding, for a given dataset, and subsequently to reconstruct the 

original input from this encoded version. The part of the AE responsible for this reconstruction 

is referred to as the decoder. The autoencoder processes an input 𝒙 and maps it to 𝒉, which can 

be expressed as 𝒉 = 𝜎(𝑾 𝒙 + 𝒃), where σ is an activation function (e.g., 𝑡𝑎𝑛ℎ, 𝑅𝑒𝐿𝑈, etc.), 𝑾 

is a weight matrix, and 𝒃 is a bias vector. The vector 𝒉 represents the encoded or latent 

representation of 𝒙, with 𝑯 being the latent or feature space. The decoder’s role is to perform 

the inverse operation, 𝜓, to reconstruct the input 𝒙 from its latent representation 𝒉. The general 

structure and concept of an AE are illustrated in Fig. 2. AEs are typically trained using a 

backpropagation algorithm, which is the most widely used method for training neural networks. 

 

 
 

Figure 2: Schematic representation of an autoencoder. 

Backpropagation efficiently calculates the gradient of the loss function with respect to a 

network's weights. Gradient-based optimization methods can be used to train multilayer neural 

networks by adjusting weights to minimize the loss function. For autoencoders, the loss 

function typically measures the reconstruction error between the input 𝒙𝑖 and its corresponding 

output 𝒙̃𝑖, often expressed as the mean squared error: 
 

ℒ =
1

𝑁
∑‖𝒙𝑖 − 𝒙𝑖

~‖2
2

𝑁

𝐼=1

 

(16) 

 

with ‖ ⋅ ‖2 denoting the 𝐿2 norm and 𝑁 being the number of points in the training data set. 

Although AEs are effective for dimensionality reduction, they encounter substantial 
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difficulties with extremely high-dimensional inputs. To address these challenges, convolutional 

autoencoders (CAEs) have been developed [17]. In CAEs, the encoder is constructed using a 

combination of convolutional layers, fully connected layers, pooling layers, and normalization 

layers, while the decoder uses deconvolutional layers, unpooling layers, fully connected layers, 

and normalization layers. 

 
 

Figure 3: Schematic representation of a 1-D convolutional filter with stride 𝑠 =3. 

Convolutional layers apply a filter F of a defined size to the elements of array 𝑴. The 

primary purpose of the convolution operation, as illustrated in Fig. 3, is to extract essential 

features from the input and utilize them for encoding. To clarify this process, consider a 1-D 

array 𝑴 = [𝑚𝑖] and its encoded version 𝑴𝑒𝑛𝑐 = [𝜇i], referred to as the feature map. This feature 

map is generated by applying a filter 𝑾 = [𝑤𝑖] of size f×1, moving horizontally with a stride s. 

The element 𝑴𝑒𝑛𝑐 is calculated as: 
 

𝜇𝑖 = ∑𝑚𝑖′

𝑓

𝑢=1

∙ 𝑤𝑢 + 𝑏⁡⁡⁡⁡𝑤𝑖𝑡ℎ⁡{⁡𝑖′ = 𝑖⁡ × 𝑠 + 𝑢 

(17) 

 

 

5 PROPOSED FRAMEWORK 

A novel framework (Fig. 4) for Bayesian updating of high-dimensional models is introduced 

using convolutional autoencoders. This framework reformulates the model updating problem 

into a structural reliability problem using BUS. Within this approach, the structural reliability 

problem is solved using the quantified active learning method [16], which directly influences 

the efficiency and precision of the updating process. Specifically, the limit-state function, 

initially defined through BUS, is replaced with an active learning Kriging model. The training 

dataset for the Kriging model includes the model's input parameters and the corresponding 

system outputs, which are derived from the values of the limit-state function. The constant c is 

calculated using the Kriging model and the MCS candidate sample. The next step is to reduce 

the dimensionality of the input parameter vector using convolutional autoencoders. The Kriging 

model is then trained in the latent space. This framework enables a robust solution for updating 

high-dimensional models. 

The process begins with defining the dimensionality of the latent space, which is a crucial 
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step in determining how the data will be represented and compressed within the autoencoder. 

Next, the architecture of the autoencoder is established, defining the structure that will be used 

to encode and decode the data. The autoencoder is trained on the realizations of the input 

variables X, which represent the model parameters. This training enables the autoencoder to 

learn a compact representation of the input data in the latent space. Once the autoencoder is 

trained, it encodes the input data into this latent space, creating a lower-dimensional 

representation of the original input. Using this encoded data, a training dataset for the Kriging 

model is constructed. This dataset consists of inputs in the latent space and their corresponding 

outputs from the limit-state function. 

 

 
 

Figure 4: Flowchart of the proposed framework. 

Active learning is then performed in the latent space to find new support points that are close 

to the limit-state surface. These newly identified support points are decoded back into the 

original input space using the decoder. For these new points, the limit-state function is evaluated 

to obtain the new output values for the system. The training dataset for the Kriging model is 

subsequently updated with these new outputs. The process of identifying new support points 

and updating the Kriging model continues iteratively until the probabilistic-based stopping 

criterion is satisfied. Using the MCS method, the failure probability is calculated, and the failure 

samples are defined. These failure samples are used to update the model's parameters. Finally, 

the mean value of these posterior samples is used to update the model. This approach allows 

for robust calibration of high-dimensional models. 
 

6 NUMERICAL APPLICATION 

A ten-story linear shear-building model (Fig. 5) has been borrowed from [3]. The 

identification process is based on simulated acceleration data, which are created using the El 

Centro ground-motion acceleration history as input. The measured response is simulated by 

first calculating the absolute acceleration response of the actual structure at the first and tenth 

floor (2 degrees of freedom) (Fig. 6), while a Gaussian discrete white noise sequence with 
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standard deviation 𝜎 equal to 10% of the root-mean-square value of the corresponding 

acceleration time histories is added. A nominal model is generated as the target model, and it 

can be found in [3]. 
 

 
 

Figure 5: Ten-story shear building 

For the model updating process, 10 model parameters are selected. They correspond to the 

stiffness parameters 𝑘𝑖, 𝑖 = 1, …, 10. The prior probability density functions for the model 

parameters 𝑘𝑖, where 𝑖 = 1, …, 10, are Gaussian distributions with mean values of 𝑘̄ = 2 × 10⁷ 

N/m and a coefficient of variation of 30%. The likelihood function selected is that proposed in 

reference [3]. 
 

 
Figure 6: Measurement data. 

Figure 7a presents the displacement time history of the 8th floor calculated with the finite 

element model, the active learning Kriging model, and the use of the convolutional 

autoencoders. The results show that responses from all the methods are very close to the real 

response. Moreover, using autoencoders, the number of candidate samples for active learning 

can be reduced by half compared to the sample size used in the active learning procedure (see 
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Table 1). In Fig. 7b, the normalized values (with respect to their target values, see [3]) of the 

model’s parameters are presented for the qAK-MCS and the qAK-MCS plus autoencoders. 

Compared with the prior uncertainty in the structural model parameters, the posterior 

uncertainty is significantly reduced since the data provide relevant information about these 

parameters. 

Table 1: Example of the construction of one table 

 

 

 

 

 

 

 
(a)      (b) 

 

Figure 7: (a) displacement time-history of the 8th floor calculated with qAK-MCS and qAK-MCS plus 

autoencoders, (b) normalized values of the input parameters. 

7 CONCLUSIONS 

The Bayesian updating with structural reliability methods (BUS) transforms Bayesian 

updating into a structural reliability problem, addressing uncertainties in model calibration. 

High-dimensional reliability analysis remains challenging due to significant computational 

costs. To address this, the paper introduces a novel Bayesian updating framework using 

convolutional autoencoders, which reduce dimensionality and define the limit state function in 

a lower-dimensional latent space. This approach integrates a highly efficient active learning 

Kriging model (qAK) to enhance accuracy and model updating. The effectiveness of this 

method is demonstrated with a structural dynamics example. 
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Method No model 

Evaluations 

Candidate Sample 

size 

BUS-SuS 5000 - 

qAK-MCS 220 100.000 

Autoencoder 220 50.000 
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