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ABSTRACT  

Accurate quantification of the shear wave velocity, Vs, of geo-materials is an important consideration in geotechnical 

design. Seismic Cone Penetration Testing (SCPT) measures shear wave travel times from a source to in situ receivers 

along assumed travel paths to calculate Vs. Despite complexities and uncertainties associated with obtaining Vs, results 

are often reported to designers as a single deterministic profile without an intuitive measure of uncertainty that can be 

incorporated into the design process. A rigorous workflow to rapidly obtain uncertainty-quantified profiles from SCPT 

using a Bayesian inversion approach is developed. While similar approaches have been documented, this inversion 

approach explicitly considers sources of measurement error which are generally neglected (i.e., assumed to be low) in 

order to deliver more realistic probability distributions of true Vs and improve robustness against imperfect data. Such 

errors can remain undetected when using traditional approaches, despite potentially leading to inaccuracy. Additionally, 

an outlier detection framework is incorporated into the workflow to improve accuracy. The workflow is demonstrated by 

application to a large database of SCPT data. The results show significant improvement over existing methods in terms 

of robustness and validity, and therefore that the workflow is a valuable tool for practical analyses. Further, they provide 

crucial insight into the prevalence and magnitude of key errors which are traditionally present but undetected. 
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1. Introduction 

Accurate estimation of the shear wave velocity, Vs, of 

soils and rocks is an important consideration in several 

geotechnical design applications. The small-strain shear 

modulus, Gmax, is calculated from Vs and the density of 

the soil, ρ, using elastic theory,  

𝐺𝑚𝑎𝑥 = 𝜌𝑉𝑠
2  . (1) 

Offshore wind-turbine foundation designers, in 

particular, require reliable profiles of Gmax: (i) for input 

into soil-structure interaction models to calculate 

resonant frequencies of the foundation-turbine system, 

and (ii) as one of several critical inputs into 1D or 3D 

finite element models used for limit state analysis. 

While Vs can be estimated in the laboratory using 

bender element or resonant column tests, the results are 

strongly influenced by sample disturbance, confining 

stress, and initial void ratio. In situ tests often give more 

representative results (e.g., Vinck 2021). Vs profiles can 

be obtained in the field using a range of in situ 

techniques, such as Crosshole/Downhole Seismic or 

Seismic Cone Penetration Testing (SCPT), the latter of 

which represents the focus of this paper. SCPT measures 

travel times for shear waves from a source on the surface 

to below ground receivers, along assumed travel paths, to 

calculate Vs. Despite the complexities and uncertainties 

associated with this process, and the fact that any errors 

in Vs are amplified in the calculation of Gmax, results are 

often reported to designers as a single deterministic 

dataset without an intuitive measure of uncertainty that 

can be incorporated in the design process.  

This paper outlines a robust workflow to rapidly 

obtain uncertainty-quantified profiles of Vs from dual 

receiver SCPT via a Bayesian inversion approach. An 

existing maximum likelihood approach (see Tarantola 

2005 and Pidlisecky and Haines 2011), which considers 

only one source of uncertainty, is extended.  In the new 

workflow, additional errors encountered in real, 

imperfect datasets are dealt with explicitly and reflected 

in the results. It can therefore be applied within industry, 

providing valid, meaningful results which depict the level 

of uncertainty directly. Firstly, literature on SCPT 

interpretation is reviewed, before the Pidlisecky and 

Haines (2011) (PH) method is applied to a large, publicly 

available dataset. The results are then interrogated, and 

the updated method is developed and demonstrated.  

2. Seismic Cone Penetration Testing 

2.1. Acquisition 

The focus of this paper is on SCPTs; however, the same 

methodology can also be applied to Downhole Seismic 

Testing data. The SCPT was first developed by 

Campanella et al. (1986) for offshore applications: the 

set-up consisted of a seismic receiver contained in a 

standard CPT that is pushed into the soil and stopped at 

pre-determined intervals to measure waves generated at 

the surface. The most widely used configuration is shown 

in Figure 1.  

A shear wave source is located on the surface and 

used to generate a seismic wave that is recorded by 

sensors incorporated within the CPT module. Shear 

waves are measured by one or two sensor packages 



 

within the module that include three orthogonally-placed 

receivers (two in the horizontal directions, X and Y, and 

one in the vertical direction, Z). Where dual receiver 

packages are used, they are typically located a fixed 

distance of 0.5 m apart. Repeat signals (known as shots) 

are acquired at each test location to facilitate signal 

stacking and stored using a seismograph. 

 

 
Figure 1. Typical SCPT configuration.  

2.2. Interpretation 

The shear wave velocity is typically calculated for each 

pair of successive receiver positions; true-interval (TI) 

testing acquires simultaneous measurements in a dual-

receiver set-up, while pseudo-interval (PI) testing 

acquires asynchronous measurements from a single 

receiver at consecutive depths. In both cases, a method is 

required to calculate both the travel time difference, ΔT, 

and the travel path length ΔL such that (see Figure 1): 

𝑉𝑠 =
𝐿2−𝐿1

𝑇2−𝑇1
=

∆𝐿

∆𝑇
 . (2) 

Interpretation of Vs from SCPT testing is non-trivial. 

Travel time and ray path estimation can be carried out 

using a range of methods of varying complexity, 

reliability, and subjectivity; e.g. Stolte and Cox (2019).   

Judgement-based methods to calculate ΔT – such as 

comparing characteristic points on the signals from each 

receiver – can give consistent results where the analyst 

has significant experience. Stolte and Cox (2019), 

however, posed that they can lead to subjective results for 

non-standard datasets and resist automation. The 

implementation of the cross-correlation (CC) function, 

φxy(t), between the two signals has therefore become a 

popular method for travel time estimation (Baziw 1993): 

𝜑𝑥𝑦(𝑡) = ∑ 𝑋𝑘𝑌𝑘+𝑡𝑘  , (3) 

where Xk is the data from signal X at time step k, t is the 

induced time shift between the two signals, and Yk+t is the 

data from signal Y at time step k+t. The time shift at the 

maximum cross correlation value is equal to the relative 

travel time between the two signals. This method is often 

preferred over analysis using characteristic points due to 

its reduced subjectivity and ease of automation.  

The travel path length can be estimated either by: (i) 

assuming the ray follows a straight line from source to 

receiver, or (ii) accounting for refraction of the ray path 

in different velocity layers using Snell’s law in a ray 

tracing (RT) algorithm (e.g., Wang et al. 2021). The latter 

will lead to more accurate results at shallower depths, 

where larger source offsets are used and in highly 

stratified profiles with varying stiffness and therefore Vs.  

2.3. Uncertainty 

Parasie et al. (2022) provide a systematic review of 

uncertainties dominant in SCPT testing in over-

consolidated clays and dense sands that includes those 

related to instrumentation, data acquisition, and 

interpretation. Accurate ray path estimation and the 

influence of noise rank high on their list of uncertainties.  

Therefore, interpretation can be particularly challenging 

in heterogeneous profiles or noisy environments. Other 

key uncertainties relate to geometric concerns (e.g., 

source offset and depth inaccuracies – see Peuchen and 

Wemmenhove 2020 for further discussion on depth), 

signal characteristics, and timing errors. The latter are 

assumed to be small, and it is suggested that their 

magnitude is linked to the sampling rate. In absence of an 

agreed method to classify and quantify the uncertainty 

inherent in the estimation of Vs, analysts must use their 

judgement and experience in a somewhat arbitrary 

process to assess the quality of the data and interpretation 

and how or whether to report the final value.  

One such process uses the maximum value of a 

normalized version of the CC function (known as the CC 

coefficient) – which ranges between 0 for non-correlated 

signals to 1 for fully correlated signals – to indicate 

reliability. However, this has been shown to be an 

unreliable indicator since measurement noise can also be 

correlated (Baziw and Verbeek 2016). The latter Authors 

incorporated CC as part of a wider data quality 

classification framework that considers other signal 

characteristics to classify the data quality. 

Bayesian analysis is emerging as a useful tool for 

quantitative uncertainty consideration within geotechnics 

(e.g., Buckley et al. 2023, Stuyts et al. 2022, Lo et al. 

2021). Pidlisecky and Haines (2011), following 

Malinverno and Briggs (2004) and Tarantola (2005), 

employ a Bayesian approach to quantify maximum 

likelihood probability distributions of Vs in single-

receiver downhole seismic testing. The approach allows 

uncertainty in shear wave arrival time to be propagated 

through to derived Vs values, leading to easily 

interpretable probability distributions of Vs, from which 

low, mean, and high estimates can be extracted. 

Pidlisecky and Haines (2011) considered single-receiver 

SCPT testing in a relatively homogenous sand profile and 

used RT to deal with curved ray paths.  

3. Existing Bayesian inversion approach 

3.1. Review of existing method 

This section provides a brief overview of the PH method, 

which utilises Bayesian inversion through maximum 

likelihood estimates (MLE). For a full description of the 

method, see Pidlisecky and Haines (2011) and Tarantola 

(2005). The full dataset for a given location comprises 

several signal traces (each corresponding to a shot) for 

each receiver depth. The method notes that every 



 

possible combination of receiver depths is associated 

with a relative travel time, which acts as an observation 

containing information on the Vs profile. Further, these 

observations can be defined as uncertain to facilitate a 

probabilistic framework. Thus, the method begins by 

listing every possible pair of receiver depths, and for each 

pair, using the CC method to evaluate the travel times for 

every possible combination of signal traces (i.e., if 10 

shots are available for each depth, 100 travel times will 

be calculated for the pair). Then, for the given pair, the 

observation is defined via a mean and variance, evaluated 

from the sample set of travel times (capturing natural 

variance/uncertainty in arrival time). This results in a 

large number of travel time observations, represented by 

a mean travel time vector t containing all observations, 

and, a covariance matrix Cd containing the corresponding 

variances along the diagonal. 

It is then noted that the travel time observations are 

related to the reciprocal of Vs, i.e., the slowness s, and the 

ray paths along which the signals travel. If the s profile is 

discretised into increments between each receiver depth, 

the following matrix relationship can be defined: 

𝒕 = 𝐆𝒔 . (4) 

To build the matrix G for a given row containing 

travel time tmn = Tn – Tm, the piecewise ray paths from 

source to depths dn and dm are derived, where each piece 

is linear within the layers between receiver depths. Then, 

the jth term within the row is equal to the ray length for 

the jth layer of the dn path subtract the ray length for the 

jth layer of the dm path. From here, Tarantola (2005) 

shows that the most likely s as well as the corresponding 

covariance matrix Cs can be estimated: 

𝒔𝑴𝑳𝑬 = (𝐆T𝐂𝐝
−𝟏𝑮)

−𝟏
(𝐆T𝐂𝐝

−𝟏𝒕 + 𝐂𝐩
−𝟏𝒔𝒑)  , (5) 

𝐂𝐬 = (𝐆T𝐂𝐝
−𝟏𝑮 + 𝐂𝐩

−𝟏)
−𝟏

 , (6) 

where sp and Cp contain prior estimations of s and Cs 

(these terms are ignored in the original method, i.e., no 

prior knowledge). Finally, the slowness of each layer i 

can be modelled as a normal distribution with mean equal 

to the ith value of sMLE and variance given by the ith value 

along the diagonal of Cs. 

Note that in order to build G, a RT model is used 

which itself depends on the slowness vector s. Therefore, 

this problem must be solved iteratively, first assuming a 

constant s to build the G matrix, then evaluating the 

output sMLE, and subsequently updating G via the ray 

tracing model until convergence in sMLE is achieved. 

In addition to the above, several refinements/ 

additions were made as described in Table 1. 

Table 1. Refinements during implementation. 

Feature Description 

Filtering 
All signal traces were pre-processed using a 100 

Hz low-pass filter. 

X/Y/Z 

selection 

For each location, the full set of X components 

or the full set of Y components were considered 

depending on which exhibited greater average 

signal power. 

Inversion 
Due to a lack of receiver at the surface, the G 

matrix is poorly conditioned to solve for the 

slowness between the surface and the uppermost 

receiver. Therefore, this value is assumed equal 

to the slowness of the subsequent layer. 

Iteration 

The inversion was iterated until 95% of slowness 

values experienced a <1% change, up to a 

maximum of 20 iterations.  

3.2. Test data 

The method outlined in the previous section was 

implemented and tested across a range of 110 SCPT 

locations acquired across four sites within the Dutch 

Offshore Wind sector. These data are owned and made 

publicly accessible by RVO.  

Only seabed mode SCPTs were considered, which 

generally comprise tests at 0.5–1.0 m depth increments. 

At each test depth, 4–10 non-polarised shot repetitions 

were performed. The raw dataset for each location 

comprises a collection of raw signal traces (X, Y, and Z 

components all included), each corresponding to a single 

shot labeled with receiver depth, source horizontal offset 

(constant for each location), and sampling rate (0.102 ms 

for all cases considered). All data were acquired by 

Fugro, who use a Fugro hydraulic underwater shearwave 

hammer (HUSH) box as the source, attached to the 

seabed frame and offset by 0.8 m. 

3.3. Inversion of Vs using PH method 

Analyses were run for all 110 locations; however, for the 

purposes of this paper, four representative cases are 

shown (one from each site). The maximum likelihood 

estimate and the 2.5th and 97.5th percentile estimates of Vs 

are plotted against depth for each location in Figure 2. 

These locations generally reflect the range of observed 

outcomes. Figure 2(a) is a ‘reasonable’ result: a relatively 

consistent Vs profile with few fluctuations and error 

bounds within a small range. Figure 2(b) demonstrates a 

potentially reasonable, but somewhat questionable result 

with some clearly unphysical outliers. Figure 2(c) and (d) 

show clearly unreasonable and incomprehensible 

profiles, respectively, with widespread high-low 

fluctuations which cannot be physical in origin. 

Reviewing the full range of results, the profiles for the 

majority of locations have characteristics similar to those 

of (c) and (d). A minority of profiles are as reasonable as 

(b) and very few as reasonable as (a). 

Across the set of results, two main issues are 

identified: a general propensity for high–low fluctuations 

between adjacent layers, and in some cases, the presence 

of severe outliers. Through more detailed investigation, 

these two features have been found to directly stem from 

two separate issues which are discussed in more detail in 

the following sections. 

 Travel time outliers 

The presence of severe outliers in Vs has been found, via 

inspection of intermediate results, to originate from 

inaccurate CC-based travel time-estimates for certain 

receiver pairings. This is most clearly evidenced by 

plotting the average travel times (i.e., the values in the t 

vector) in order of pairing. For N probe positions (hence 

2N receiver depths), a logical order is: 0–1, 0–2, …, 0–

(2N–1), 1–2, 1–3, …. 1–(2N–1), etc. Figure 3(a) shows  



 

  
Figure 2. Vs profiles via original method for (a) HKN56-SCPT, (b) TNW005-SCPT, (c) HKW067-SCPT, and (d) IJV019-SCPT.  

 
Figure 3. Mean travel time (black) derived from direct cross-correlation compared to estimates built from sums of adjacent-receiver 

cross-correlations (grey), (a) before and (b) after threshold-based refinement. 

 

this plot for IJV019-SCPT. In addition, the expected 

travel time (see Section 4.1) – evaluated by accumulating 

the travel times calculated via CC of adjacent receivers – 

is plotted as a reference (grey continuous lines). 

Figure 3(a) demonstrates that more distant receiver 

pairings tend to deviate from the expected travel time and 

are generally less reliable. This has been attributed to two 

main causes. Firstly, signal traces from distant receivers 

differ in shape more than those from nearby receivers. 

Evaluating the time shift between signals which appear 

very different from each other is much less robust. 

Secondly, the characteristic first peak seen in the 

received signal can become attenuated at large depths, 

meaning comparison of a shallow and deep signals may 

wrongly attempt to match the first peak of the shallow 

signal with what is actually the second peak of the deep 

signal, as the first is attenuated beyond detection. 

 Measurement errors 

To understand the reason for the high–low fluctuations, 

which are so widely observed, it is important to consider 

the differences between alternating layers. For layers 0, 

2, etc. (referred to as T layers), the most influential 

observation is a true-interval observation, between top 

receiver of a probe in one position and bottom receiver of 

a probe in the same position. For layers 1, 3, etc. (referred 

to as P layers), it is a pseudo-interval observation, 

between bottom receiver of a probe in one position, and 

top receiver of a probe in the next position. Considering 

this, the discrepancy is attributed to one or more of the 

following: 

• A latency effect between top and bottom receiver, 

such that the bottom begins recording at a time Δtlat 

later (or earlier for negative values) than the top. This 

would skew Vs for T layers in one direction and Vs for 

P layers in the other. 

• A trigger delay discrepancy, such that for each P layer 

k, the receivers at the lower probe begin recording 

data Δttrig,k later than the receiver at the upper probe 

position. This would skew Vs for P layers. 

• A depth inaccuracy such that for each P layer k, the 

true separation between the positions is Δdk greater 

than recorded. This would skew Vs for P layers. 

This hypothesis can be tested by running analyses 

including only data from top receivers or only data from 

bottom receivers, thus eliminating the effect of latency 

Δtlat and eliminating inconsistency between true-interval 

and pseudo-interval observations by removing all true-

interval observations (i.e., all included observations are 

subject to the same trigger delay discrepancies and depth 

inaccuracies). Figure 4 shows these results for location 

HKW067-SCPT, where the phenomenon is particularly 

pronounced. It is observed that the high-low fluctuation 

disappears, supporting that it is due to one or more of the 

aforementioned factors.  



 

 
Figure 4. Vs profiles for HKW067-SCPT, considering only 

data from top receivers, and only data from bottom receivers.  

4. Proposed formulation 

4.1. Filtering of travel time outliers 

It is noted that when the CC method fails to select the true 

travel time, the magnitude of the error cannot be any 

value but will be close to a multiple of the dominant 

period of the signal. Since the CC function delivers 

maxima only when peaks of the two signals align, 

incorrectly aligned signals will be some number of cycles 

away from the true condition, rather than some arbitrary 

value of time. Secondly, it is noted that in general, the 

variance in relative travel time for correctly evaluated 

pairs is much lower than the dominant period, i.e., 

variance of arrival time of the first peak is generally much 

lower than the time between the peaks themselves. Thus, 

a solution can be devised as follows: 

• Define a threshold which sits between the 

magnitudes of the dominant period and the true 

variance of travel time. For the cases considered, the 

dominant frequency is generally between 35–50 Hz 

which corresponds to a period of 20–30 ms. The 

variance for most observations is of the order of 

1 ms. Therefore, a 10 ms threshold is an 

appropriate.  

• Evaluate the expected travel times using a 

traditional approach: stack all available traces for 

each receiver, evaluate travel times between 

adjacent receivers only (i.e., most reliable pairings 

only) using the CC approach, and cumulatively sum 

the relevant adjacent travel times for any given 

receiver pairing to obtain the reference time. 

• Run the analysis as usual, but discarding any travel 

times which fall outside of the reference time +/- the 

threshold. 

Note that for the cases considered in this study, the 

calculation of adjacent receiver travel times is further 

constrained to select the first peak in the correlation 

function as the relative travel time. This increases 

reliability by preventing cycle skipping, as long as the 

travel time is significantly less than the dominant period. 

This solution results in some receiver pairings being 

completely discarded from the t vector. However, this 

does not matter as the governing Eq.4 is heavily over- 

specified, and as such this amounts to using fewer (but 

still sufficiently many) observations which are 

considered accurate, rather than a greater number of 

observations, some of which may be inaccurate. 

Figure 3(b) shows the equivalent results with this 

filtering applied. Figure 5 shows the updated Vs profiles 

for IJV019-SCPT and TNW005-SCPT (noting that the 

other locations are less affected by this issue). The results 

are markedly improved, and the presence of extreme 

outliers is reduced. This is a crucial modification, as 

previously, the inaccurate observations were still treated 

as valid observations. This meant that if the observations 

were inaccurate but precise (i.e., all combinations of 

traces giving inaccurate but similar values), the resulting 

outliers in the Vs profile would exhibit low uncertainty 

(i.e., narrow bounds), hence the results would induce 

high confidence in inaccurate results. 

4.2. Inclusion of measurement errors 

To overcome the issue of pairing incompatibility, a 

refined method is proposed which attempts to include the 

aforementioned error terms such that the true velocity 

profile can be estimated in spite of errors during 

acquisition. Every travel time increment for a given layer 

m can be expressed via the following: 

𝑡𝑚,𝑇 = 𝑠𝑚𝐺𝑚 − ∆𝑡𝑙𝑎𝑡 = 𝑠𝑚𝐺𝑚 + 𝜀𝑇 , (7) 

𝑡𝑚,𝑃 = 𝑠𝑚𝐺𝑚 + ∆𝑡𝑙𝑎𝑡 − ∆𝑡𝑡𝑟𝑖𝑔,𝑚 + 𝑠𝑚∆𝑑𝑚  

             = 𝑠𝑚𝐺𝑚 − 𝜀𝑇 + 𝜀𝑃,𝑚 , (8) 

where tm,T/P are the measured (i.e., error-prone) travel 

times for a signal through layer m, sm is the slowness in 

layer m, and Gm is the length of the ray path through layer 

m. A single True (T) error term εT describes the latency 

between top and bottom receivers, and if there are N 

receiver positions, N–1 Pseudo (P) error terms εP,m 

describe the lumped pseudo-time errors due to trigger 

delay discrepancy and/or  depth inaccuracy. All travel 

times are expressed as some combination of the above 

layer-based time increments. In other words, G is built 

from various combinations of these expressions. 

Introduction of the error terms allows for the high-low 

values of Vs to be aligned. However, it is complex to 

evaluate them as the problem is now underspecified. 

Previously there were as many fundamental observations 

as unknowns (2N–1 layer-based time increments and 2N–

1 unknown slownesses). Now there are also N–1 P error 

and 1 T error unknowns. Therefore, assumptions must be 

made in order evaluate these additional unknowns.  

Before defining the mathematical formulation, it is 

useful to consider qualitatively what these additional 

parameters achieve. The P error parameters εP,m exist for 

every P layer and therefore in theory allow the P 

slownesses to be brought in line with the T slownesses. 

However, since the T error parameter εT acts against them 

(by changing the T slownesses), there are infinite 

combinations of εT and the set of εP,m. Adjusting εT will 

allow the aligned profile to be shifted as a whole, thus 

bringing it closer to either the original P slownesses or 

the original T slownesses. Without prior knowledge on 

the magnitude of these errors, these two possibilities are 

equally likely. With prior knowledge on the likelihood of 

these errors, the more likely possibility can be realised.  

Let the fundamental Eq.4 be modified such that: 

𝒕 = 𝐆𝒔 + 𝚺𝜺 , (9) 

𝜺 = [𝜀𝑃,0  𝜀𝑃,1   ⋯  𝜀𝑃,𝑁−2  𝜀𝑇] T , (10) 



 

 
Figure 5. Vs profiles via refined method with threshold-based observation for (a) TNW005-SCPT and (b) IJV019-SCPT. 

 

where Σ contains the coefficients of each error term to be 

added. For each travel time observation (i.e., row), 

coefficients are 0 or 1 for each εP,m (i.e., column) 

depending on which P layers are encompassed, and the 

coefficient of εT is –1, 0, or 1, depending on whether the 

two receiver positions are bottom–top, top–top/bottom–

bottom, or top–bottom, respectively. 

Now let N–1 constraints, related to compatibility of T 

and P slownesses, be defined. Each P slowness should be 

equal to the average of the adjacent T slownesses (2si(P) – 

si-1(T) – si+1(T) = 0), allowing for a tolerable variance. This 

variance should be a measure of the local spatial 

variability of slowness. Here, it is estimated as follows: 

• Calculate all approximate T slownesses as 𝑠𝑘 =
(𝑇𝑘+1 − 𝑇𝑘)/(𝑑𝑘+1 − 𝑑𝑘) for k = 0, 2, 4, …, N–2, 

where the travel times Tk+1 – Tk are calculated as 

for the expected travel times in Section 4.1. 

• Calculate variances 𝜎2
𝑘 = var(𝑠𝑘 , 𝑠𝑘+2) for k = 0, 

2, 4, …, N–4 . 

• Estimate representative variance as the average of 

all variances: 𝜎2̅̅ ̅ = average(𝜎2
𝑘). 

The set of constraints can be then expressed as follows: 

𝟎 = 𝐁𝒔 . (11) 

Each row of the B matrix corresponds to a P layer, and 

contains the terms -1, 2, -1 for the corresponding layer 

and its adjacent T layers. The 0 values are uncertain and 

associated with the covariance matrix 𝐂𝐛 = 4 𝜎2̅̅ ̅𝐈. 
Finally, a new governing equation can be formed: 

𝒕X = [𝒕 𝟎]T = 𝐆X𝒔X = [
𝑮 𝚺

𝑩 𝟎
] [𝒔 𝜺]T , (12) 

𝐂𝐝
X = [

𝐂𝐝 𝟎

𝟎 𝐂𝐛
] . (13) 

Given that this new expression follows the same 

algebraic form as the original formulation, the same 

inversion method can be followed to derive the most 

likely slowness vector s, and now additionally the error 

vector ε, via one combined vector sx. However, it must be 

stressed that given the under-specification of the Gx 

matrix, the solution will only exist if a prior is specified 

on one or more of the error terms. 

This new framework, for given prior knowledge on 

the error terms, should allow for a smooth profile to be 

evaluated which accounts for the pairing incompatibility 

as additional uncertainty and/or a relative shift towards 

the original T or P profile. Prior knowledge is specified 

via normal distributions for εT and εP, with zero mean and 

a standard deviation related to the expected magnitude of 

the errors. These values are included in Eq.5 and Eq.6 via 

sx
p and Cx

p, noting that all entries related to slowness (s) 

rather than error (ε) are set to zero. The expected 

magnitude of the errors has been estimated as follows: 

The timing errors Δtlat and Δttrig are assumed to be of 

the order of the sampling rate (in this case, 0.10 ms), 

based on the implication by Parasie et al. (2022) that 

timing errors reduce as the sampling rate decreases. For 

the depth error, a CPT with application Class 2 (ISO 

22476-1:2022) should exhibit <0.2 m error at 10 m 

penetration. Assuming this is a normally distributed 

error, which is an accumulation of normally distributed 

errors associated with each push, the equivalent error for 

each push is approximately <0.2 m/√Npushes. For this 

dataset, the push length is generally 1 m, hence a 

representative magnitude for Δd is estimated as 0.063 m. 

For a (conservative) Vs of 200 m/s, the subsequent travel 

time error would be 0.32 ms. Based on the above, 

standard deviations of 0.1 ms and 0.4 ms are 

recommended for εT and εP, respectively. 

4.3. Results and discussion 

Figure 6 presents the results from the new method under 

the base condition of prior knowledge. The results show 

the derived estimates of s, as previously, and now also 

show the derived maximum likelihood error terms εT and 

εP which are available through the estimated sx. 

In all cases, a smoother, coherent profile is derived 

which allows for genuine interpretability when compared 

with the original profiles hindered by the alternating 

values. The base priors are sufficient to account for and 

rectify even the most severe errors, hence these are 

justified as preliminary conditions for any given location. 

However, weaker priors in general lead to larger 

uncertainty bounds. This reflects the fact that there are 

many combinations of εT and εP which are not penalised 

too heavily by the prior variance, i.e., both can increase 

in opposite directions without too much penalty, 

widening the bounds of possible Vs. Therefore, in some 

cases where the actual magnitude of the errors is much 

smaller than the priors, the uncertainty bounds will be 

unnecessarily large. In some extreme cases (HKW067- 

SCPT and IJV019-SCPT), it is likely that the errors are 

in the order of the base case, hence such priors are 

realistic and the resulting uncertainty bounds are valid. In 

others (HKN56-SCPT), the error terms are likely to be of 

much smaller magnitude. Their expected magnitude can 

be re-assessed through the most likely error plots in 

Figure 6. These error plots are highly informative in 

 



 

 

 
Figure 6. Vs profiles and corresponding most likely error terms ε via new method for (a) HKN56-SCPT, (b) TNW005-SCPT, (c) 

HKW067-SCPT, and (d) IJV019-SCPT.  

terms of assessing the overall quality of the data. If they 

are high, it suggests that significant measurement errors 

are embedded in the data, i.e., the test is of low quality: 

either there were significant timing errors or there was 

significant depth inaccuracy. Such reliability assessment 

is not available when using traditional methods.  

As a result, should uncertainty bounds need to be 

reduced, a second pass of the analysis for any given 

location can be run, with reduced-variance priors 

informed by the maximum likelihood error terms derived 

through the initial analysis. This has been run for 

HKN56-SCPT, displayed in Figure 7. It is observed that 

the most likely Vs profile remains relatively unchanged, 

but the uncertainty bounds are reduced.  Thus, for any 

given location, this optimised profile represents the 

minimal level of uncertainty required to be able to 

generate a smooth profile devoid of erroneous, 

alternating high-low values. The implication of this is 

that for low quality tests with high error terms, the final 

uncertainty will be high, whereas for high quality tests 

with low error terms, the final uncertainty will be low. 

Alternatively, the T or P error terms can initially be 

specified with low variance if measurements are assumed 

to be accurate. For example, it is often perceived that 

true-interval measurements are significantly more 

reliable than pseudo-interval. From Figure 6, this is seen 

to be a valid assumption for HKN56-SCPT and IJV019-

SCPT, but is more questionable for HKW067-SCPT. To 

examine the effect of such a specification, Figure 8 

demonstrates the results for HKW067-SCPT with a 

reduced prior standard deviation of 0.01 ms for T error. 
 

 
Figure 7. Vs profile and most likely error terms ε with 

optimised priors for HKN56-SCPT (left). 

Firstly, the profile is seen to be shifted higher than the 

first-pass results, reflecting the increased confidence in 

the T values, which were originally much higher than the 

P values. Secondly, the P and T values are not able to be 



 

aligned by εP alone, suggesting that the P errors would 

have to be even larger than the derived values seen in the 

Figure (which are limited by the 0.4 ms prior).  From the 

error plot, these derived values are all now centered 

around a value of 0.6 ms. For a purely depth-based error 

(i.e., no trigger time discrepancy) and a representative Vs 

of 350 m/s (as observed), 0.6 ms would correspond to a 

systematic depth error Δd of 0.21 m for every 1 m push 

throughout the full profile. This seems unreasonable 

(particularly since the errors would likely have to be even 

higher, as discussed), which suggests that for this 

location, assuming the T error to be zero is perhaps overly 

naïve. For cases where latency exists/T error is non-zero 

(which the above demonstrates are likely to exist, albeit 

not unanimously), this error would heavily influence the 

results from a traditional interval method interpretation 

(which only assesses T layers), all while remaining 

completely undetected. The recommended procedure, 

therefore, is to: (i) apply the adapted method initially with 

the recommended priors, such that the magnitude of 

errors can be evaluated and reflected in the Vs uncertainty 

bounds, and (ii) where the operator has confidence that 

measurement errors are small, they may induce stronger 

priors on certain errors informed by the derived 

maximum likelihood errors, and/or their own judgment. 
 

 
Figure 8. Vs profile and most likely error terms with near-zero 

T-error prior for HKW067-SCPT,  

5. Conclusions 

A modified method for Bayesian interpretation of SCPT 

data has been proposed, based on the work of Pidlisecky 

and Haines (2011). The first modification is a procedure 

for identification and removal of inaccurate travel time 

estimates, leading to more reliable and accurate Vs 

profiles as outliers are avoided. The second modification 

is a reformulation of the fundamental model equation to 

incorporate timing and/or depth errors, which increases 

robustness of the method against real, often imperfect 

datasets. Analysis across over 100 locations has shown 

that such errors are frequent and influence derived Vs 

values, even though traditional methods would not detect 

them. The new model in its base form delivers a smooth 

Vs profile with uncertainty bounds that account for 

measurement errors in the data. Additionally, the 

formulation allows for an engineer to reduce the prior 

likelihood of certain errors should they feel confident to 

do so, reducing the uncertainty of the profile. 

This method provides valuable information on the 

reliability of the data by estimating measurement errors 

directly. Traditional methods ignore such errors, hence 

can sometimes deliver inaccurate results. Therefore, this 

method is recommended to ensure results can be relied 

upon. At the very least, a true and a pseudo-interval 

analysis should both be performed. Their compatibility 

will indicate the significance of timing and/or depth 

errors – a key consideration when assessing reliability. 
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