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ABSTRACT

Accurate quantification of the shear wave velocity, Vs, of geo-materials is an important consideration in geotechnical
design. Seismic Cone Penetration Testing (SCPT) measures shear wave travel times from a source to in situ receivers
along assumed travel paths to calculate Vs. Despite complexities and uncertainties associated with obtaining Vs, results
are often reported to designers as a single deterministic profile without an intuitive measure of uncertainty that can be
incorporated into the design process. A rigorous workflow to rapidly obtain uncertainty-quantified profiles from SCPT
using a Bayesian inversion approach is developed. While similar approaches have been documented, this inversion
approach explicitly considers sources of measurement error which are generally neglected (i.e., assumed to be low) in
order to deliver more realistic probability distributions of true Vs and improve robustness against imperfect data. Such
errors can remain undetected when using traditional approaches, despite potentially leading to inaccuracy. Additionally,
an outlier detection framework is incorporated into the workflow to improve accuracy. The workflow is demonstrated by
application to a large database of SCPT data. The results show significant improvement over existing methods in terms
of robustness and validity, and therefore that the workflow is a valuable tool for practical analyses. Further, they provide

crucial insight into the prevalence and magnitude of key errors which are traditionally present but undetected.

Keywords: Seismic; SCPT; Uncertainty quantification; Bayesian approach.

1. Introduction

Accurate estimation of the shear wave velocity, Vs, of
soils and rocks is an important consideration in several
geotechnical design applications. The small-strain shear
modulus, Gmax, is calculated from Vs and the density of
the soil, p, using elastic theory,

Gmax = stz (D)

Offshore  wind-turbine foundation designers, in
particular, require reliable profiles of Gnax: (i) for input
into soil-structure interaction models to calculate
resonant frequencies of the foundation-turbine system,
and (ii) as one of several critical inputs into 1D or 3D
finite element models used for limit state analysis.

While Vs can be estimated in the laboratory using
bender element or resonant column tests, the results are
strongly influenced by sample disturbance, confining
stress, and initial void ratio. In situ tests often give more
representative results (e.g., Vinck 2021). Vs profiles can
be obtained in the field using a range of in situ
techniques, such as Crosshole/Downhole Seismic or
Seismic Cone Penetration Testing (SCPT), the latter of
which represents the focus of this paper. SCPT measures
travel times for shear waves from a source on the surface
to below ground receivers, along assumed travel paths, to
calculate V. Despite the complexities and uncertainties
associated with this process, and the fact that any errors
in Vs are amplified in the calculation of Gma, results are
often reported to designers as a single deterministic
dataset without an intuitive measure of uncertainty that
can be incorporated in the design process.

This paper outlines a robust workflow to rapidly
obtain uncertainty-quantified profiles of Vs from dual
receiver SCPT via a Bayesian inversion approach. An
existing maximum likelihood approach (see Tarantola
2005 and Pidlisecky and Haines 2011), which considers
only one source of uncertainty, is extended. In the new
workflow, additional errors encountered in real,
imperfect datasets are dealt with explicitly and reflected
in the results. It can therefore be applied within industry,
providing valid, meaningful results which depict the level
of uncertainty directly. Firstly, literature on SCPT
interpretation is reviewed, before the Pidlisecky and
Haines (2011) (PH) method is applied to a large, publicly
available dataset. The results are then interrogated, and
the updated method is developed and demonstrated.

2. Seismic Cone Penetration Testing

2.1. Acquisition

The focus of this paper is on SCPTs; however, the same
methodology can also be applied to Downhole Seismic
Testing data. The SCPT was first developed by
Campanella et al. (1986) for offshore applications: the
set-up consisted of a seismic receiver contained in a
standard CPT that is pushed into the soil and stopped at
pre-determined intervals to measure waves generated at
the surface. The most widely used configuration is shown
in Figure 1.

A shear wave source is located on the surface and
used to generate a seismic wave that is recorded by
sensors incorporated within the CPT module. Shear
waves are measured by one or two sensor packages



within the module that include three orthogonally-placed
receivers (two in the horizontal directions, X and Y, and
one in the vertical direction, Z). Where dual receiver
packages are used, they are typically located a fixed
distance of 0.5 m apart. Repeat signals (known as shots)
are acquired at each test location to facilitate signal
stacking and stored using a seismograph.
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Figure 1. Typical SCPT configuration.

2.2. Interpretation

The shear wave velocity is typically calculated for each
pair of successive receiver positions; true-interval (TI)
testing acquires simultaneous measurements in a dual-
receiver set-up, while pseudo-interval (PI) testing
acquires asynchronous measurements from a single
receiver at consecutive depths. In both cases, a method is
required to calculate both the travel time difference, AT,
and the travel path length AL such that (see Figure 1):

=z L@

T T,-Ty, AT

Interpretation of Vs from SCPT testing is non-trivial.
Travel time and ray path estimation can be carried out
using a range of methods of varying complexity,
reliability, and subjectivity; e.g. Stolte and Cox (2019).

Judgement-based methods to calculate AT — such as
comparing characteristic points on the signals from each
receiver — can give consistent results where the analyst
has significant experience. Stolte and Cox (2019),
however, posed that they can lead to subjective results for
non-standard datasets and resist automation. The
implementation of the cross-correlation (CC) function,
oxy(t), between the two signals has therefore become a
popular method for travel time estimation (Baziw 1993):

Ory(t) = Lk XicYiere , (3)

where Xy is the data from signal X at time step k, t is the
induced time shift between the two signals, and Y. is the
data from signal Y at time step k+t. The time shift at the
maximum cross correlation value is equal to the relative
travel time between the two signals. This method is often
preferred over analysis using characteristic points due to
its reduced subjectivity and ease of automation.

The travel path length can be estimated either by: (i)
assuming the ray follows a straight line from source to
receiver, or (ii) accounting for refraction of the ray path
in different velocity layers using Snell’s law in a ray

Vs

tracing (RT) algorithm (e.g., Wang et al. 2021). The latter
will lead to more accurate results at shallower depths,
where larger source offsets are used and in highly
stratified profiles with varying stiffness and therefore Vs.

2.3. Uncertainty

Parasie et al. (2022) provide a systematic review of
uncertainties dominant in SCPT testing in over-
consolidated clays and dense sands that includes those
related to instrumentation, data acquisition, and
interpretation. Accurate ray path estimation and the
influence of noise rank high on their list of uncertainties.
Therefore, interpretation can be particularly challenging
in heterogeneous profiles or noisy environments. Other
key uncertainties relate to geometric concerns (e.g.,
source offset and depth inaccuracies — see Peuchen and
Wemmenhove 2020 for further discussion on depth),
signal characteristics, and timing errors. The latter are
assumed to be small, and it is suggested that their
magnitude is linked to the sampling rate. In absence of an
agreed method to classify and quantify the uncertainty
inherent in the estimation of Vs, analysts must use their
judgement and experience in a somewhat arbitrary
process to assess the quality of the data and interpretation
and how or whether to report the final value.

One such process uses the maximum value of a
normalized version of the CC function (known as the CC
coefficient) — which ranges between 0 for non-correlated
signals to 1 for fully correlated signals — to indicate
reliability. However, this has been shown to be an
unreliable indicator since measurement noise can also be
correlated (Baziw and Verbeek 2016). The latter Authors
incorporated CC as part of a wider data quality
classification framework that considers other signal
characteristics to classify the data quality.

Bayesian analysis is emerging as a useful tool for
quantitative uncertainty consideration within geotechnics
(e.g., Buckley et al. 2023, Stuyts et al. 2022, Lo et al.
2021). Pidlisecky and Haines (2011), following
Malinverno and Briggs (2004) and Tarantola (2005),
employ a Bayesian approach to quantify maximum
likelihood probability distributions of Vs in single-
receiver downhole seismic testing. The approach allows
uncertainty in shear wave arrival time to be propagated
through to derived Vs values, leading to -easily
interpretable probability distributions of Vs, from which
low, mean, and high estimates can be extracted.
Pidlisecky and Haines (2011) considered single-receiver
SCPT testing in a relatively homogenous sand profile and
used RT to deal with curved ray paths.

3. Existing Bayesian inversion approach

3.1. Review of existing method

This section provides a brief overview of the PH method,
which utilises Bayesian inversion through maximum
likelihood estimates (MLE). For a full description of the
method, see Pidlisecky and Haines (2011) and Tarantola
(2005). The full dataset for a given location comprises
several signal traces (each corresponding to a shot) for
each receiver depth. The method notes that every



possible combination of receiver depths is associated
with a relative travel time, which acts as an observation
containing information on the Vs profile. Further, these
observations can be defined as uncertain to facilitate a
probabilistic framework. Thus, the method begins by
listing every possible pair of receiver depths, and for each
pair, using the CC method to evaluate the travel times for
every possible combination of signal traces (i.e., if 10
shots are available for each depth, 100 travel times will
be calculated for the pair). Then, for the given pair, the
observation is defined via a mean and variance, evaluated
from the sample set of travel times (capturing natural
variance/uncertainty in arrival time). This results in a
large number of travel time observations, represented by
a mean travel time vector t containing all observations,
and, a covariance matrix Ca containing the corresponding
variances along the diagonal.

It is then noted that the travel time observations are
related to the reciprocal of Vs, i.e., the slowness s, and the
ray paths along which the signals travel. If the s profile is
discretised into increments between each receiver depth,
the following matrix relationship can be defined:

t=Gs .4

To build the matrix G for a given row containing
travel time tmn = Tn — Tm, the piecewise ray paths from
source to depths dn and dr, are derived, where each piece
is linear within the layers between receiver depths. Then,
the j™ term within the row is equal to the ray length for
the j™ layer of the d, path subtract the ray length for the
j" layer of the dm path. From here, Tarantola (2005)
shows that the most likely s as well as the corresponding
covariance matrix Cs can be estimated:

suus = (GTC476) T (GTCq 't + ¢, 's,) (5)
¢ = (6"C 6+, ,(6)

where sp and Cp contain prior estimations of s and Cs
(these terms are ignored in the original method, i.e., no
prior knowledge). Finally, the slowness of each layer i
can be modelled as a normal distribution with mean equal
to the i value of smLe and variance given by the it value
along the diagonal of Cs.

Note that in order to build G, a RT model is used
which itself depends on the slowness vector s. Therefore,
this problem must be solved iteratively, first assuming a
constant s to build the G matrix, then evaluating the
output smLe, and subsequently updating G via the ray
tracing model until convergence in swmLe is achieved.

In addition to the above, several refinements/
additions were made as described in Table 1.

Table 1. Refinements during implementation.

slowness between the surface and the uppermost
receiver. Therefore, this value is assumed equal
to the slowness of the subsequent layer.

The inversion was iterated until 95% of slowness
values experienced a <1% change, up to a
maximum of 20 iterations.

Iteration

Feature Description
Filtering All signal trac_es were pre-processed using a 100
Hz low-pass filter.
For each location, the full set of X components
XYz or the full set of Y components were considered
selection depending on which exhibited greater average
signal power.
. Due to a lack of receiver at the surface, the G
Inversion

matrix is poorly conditioned to solve for the

3.2. Test data

The method outlined in the previous section was
implemented and tested across a range of 110 SCPT
locations acquired across four sites within the Dutch
Offshore Wind sector. These data are owned and made
publicly accessible by RVO.

Only seabed mode SCPTs were considered, which
generally comprise tests at 0.5-1.0 m depth increments.
At each test depth, 4-10 non-polarised shot repetitions
were performed. The raw dataset for each location
comprises a collection of raw signal traces (X, Y, and Z
components all included), each corresponding to a single
shot labeled with receiver depth, source horizontal offset
(constant for each location), and sampling rate (0.102 ms
for all cases considered). All data were acquired by
Fugro, who use a Fugro hydraulic underwater shearwave
hammer (HUSH) box as the source, attached to the
seabed frame and offset by 0.8 m.

3.3. Inversion of Vs using PH method

Analyses were run for all 110 locations; however, for the
purposes of this paper, four representative cases are
shown (one from each site). The maximum likelihood
estimate and the 2.5 and 97.5" percentile estimates of Vs
are plotted against depth for each location in Figure 2.
These locations generally reflect the range of observed
outcomes. Figure 2(a) is a ‘reasonable’ result: a relatively
consistent Vs profile with few fluctuations and error
bounds within a small range. Figure 2(b) demonstrates a
potentially reasonable, but somewhat questionable result
with some clearly unphysical outliers. Figure 2(c) and (d)
show clearly unreasonable and incomprehensible
profiles, respectively, with widespread high-low
fluctuations which cannot be physical in origin.
Reviewing the full range of results, the profiles for the
majority of locations have characteristics similar to those
of (c) and (d). A minority of profiles are as reasonable as
(b) and very few as reasonable as (a).

Across the set of results, two main issues are
identified: a general propensity for high—low fluctuations
between adjacent layers, and in some cases, the presence
of severe outliers. Through more detailed investigation,
these two features have been found to directly stem from
two separate issues which are discussed in more detail in
the following sections.

3.3.1. Travel time outliers

The presence of severe outliers in Vs has been found, via
inspection of intermediate results, to originate from
inaccurate CC-based travel time-estimates for certain
receiver pairings. This is most clearly evidenced by
plotting the average travel times (i.e., the values in the t
vector) in order of pairing. For N probe positions (hence
2N receiver depths), a logical order is: 0-1, 0-2, ..., 0—
(2N-1), 1-2, 1-3, .... 1-(2N-1), etc. Figure 3(a) shows
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Figure 2. Vs profiles via original method for (a) HKN56-SCPT, (b) TNW005-SCPT, (c) HKW067-SCPT, and (d) 1JV019-SCPT.
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Figure 3. Mean travel time (black) derived from direct cross-correlation compared to estimates built from sums of adjacent-receiver
cross-correlations (grey), (a) before and (b) after threshold-based refinement.

this plot for 1JV019-SCPT. In addition, the expected
travel time (see Section 4.1) — evaluated by accumulating
the travel times calculated via CC of adjacent receivers —
is plotted as a reference (grey continuous lines).

Figure 3(a) demonstrates that more distant receiver
pairings tend to deviate from the expected travel time and
are generally less reliable. This has been attributed to two
main causes. Firstly, signal traces from distant receivers
differ in shape more than those from nearby receivers.
Evaluating the time shift between signals which appear
very different from each other is much less robust.
Secondly, the characteristic first peak seen in the
received signal can become attenuated at large depths,
meaning comparison of a shallow and deep signals may
wrongly attempt to match the first peak of the shallow
signal with what is actually the second peak of the deep
signal, as the first is attenuated beyond detection.

3.3.2. Measurement errors

To understand the reason for the high—low fluctuations,
which are so widely observed, it is important to consider
the differences between alternating layers. For layers 0,
2, etc. (referred to as T layers), the most influential
observation is a true-interval observation, between top
receiver of a probe in one position and bottom receiver of
a probe in the same position. For layers 1, 3, etc. (referred
to as P layers), it is a pseudo-interval observation,
between bottom receiver of a probe in one position, and

top receiver of a probe in the next position. Considering

this, the discrepancy is attributed to one or more of the

following:

e A latency effect between top and bottom receiver,
such that the bottom begins recording at a time At
later (or earlier for negative values) than the top. This
would skew Vs for T layers in one direction and V; for
P layers in the other.

e Atrigger delay discrepancy, such that for each P layer
k, the receivers at the lower probe begin recording
data Atyigk later than the receiver at the upper probe
position. This would skew V; for P layers.

e A depth inaccuracy such that for each P layer k, the
true separation between the positions is Adx greater
than recorded. This would skew Vs for P layers.

This hypothesis can be tested by running analyses
including only data from top receivers or only data from
bottom receivers, thus eliminating the effect of latency
Ati and eliminating inconsistency between true-interval
and pseudo-interval observations by removing all true-
interval observations (i.e., all included observations are
subject to the same trigger delay discrepancies and depth
inaccuracies). Figure 4 shows these results for location
HKWO067-SCPT, where the phenomenon is particularly
pronounced. It is observed that the high-low fluctuation
disappears, supporting that it is due to one or more of the
aforementioned factors.
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4. Proposed formulation

4.1. Filtering of travel time outliers

Itis noted that when the CC method fails to select the true
travel time, the magnitude of the error cannot be any
value but will be close to a multiple of the dominant
period of the signal. Since the CC function delivers
maxima only when peaks of the two signals align,
incorrectly aligned signals will be some number of cycles
away from the true condition, rather than some arbitrary
value of time. Secondly, it is noted that in general, the
variance in relative travel time for correctly evaluated
pairs is much lower than the dominant period, i.e.,
variance of arrival time of the first peak is generally much
lower than the time between the peaks themselves. Thus,
a solution can be devised as follows:

e Define a threshold which sits between the
magnitudes of the dominant period and the true
variance of travel time. For the cases considered, the
dominant frequency is generally between 35-50 Hz
which corresponds to a period of 20-30 ms. The
variance for most observations is of the order of
1ms. Therefore, a 10 ms threshold is an
appropriate.

e Evaluate the expected travel times using a
traditional approach: stack all available traces for
each receiver, evaluate travel times between
adjacent receivers only (i.e., most reliable pairings
only) using the CC approach, and cumulatively sum
the relevant adjacent travel times for any given
receiver pairing to obtain the reference time.

e Run the analysis as usual, but discarding any travel
times which fall outside of the reference time +/- the
threshold.

Note that for the cases considered in this study, the
calculation of adjacent receiver travel times is further
constrained to select the first peak in the correlation
function as the relative travel time. This increases
reliability by preventing cycle skipping, as long as the
travel time is significantly less than the dominant period.

This solution results in some receiver pairings being
completely discarded from the t vector. However, this
does not matter as the governing Eq.4 is heavily over-
specified, and as such this amounts to using fewer (but
still sufficiently many) observations which are
considered accurate, rather than a greater number of
observations, some of which may be inaccurate.

Figure 3(b) shows the equivalent results with this
filtering applied. Figure 5 shows the updated V; profiles

for 13V019-SCPT and TNWO0O05-SCPT (noting that the
other locations are less affected by this issue). The results
are markedly improved, and the presence of extreme
outliers is reduced. This is a crucial modification, as
previously, the inaccurate observations were still treated
as valid observations. This meant that if the observations
were inaccurate but precise (i.e., all combinations of
traces giving inaccurate but similar values), the resulting
outliers in the Vs profile would exhibit low uncertainty
(i.e., narrow bounds), hence the results would induce
high confidence in inaccurate results.

4.2. Inclusion of measurement errors

To overcome the issue of pairing incompatibility, a
refined method is proposed which attempts to include the
aforementioned error terms such that the true velocity
profile can be estimated in spite of errors during
acquisition. Every travel time increment for a given layer
m can be expressed via the following:

tm,T = Sme - Atlat = Sme + Er ’ (7)
tmp = Sm G + Aty — Attrig,m + sy Adpy,
= Syl — &r + Epm , (8)

where tnp are the measured (i.e., error-prone) travel
times for a signal through layer m, sy is the slowness in
layer m, and Gy, is the length of the ray path through layer
m. A single True (T) error term et describes the latency
between top and bottom receivers, and if there are N
receiver positions, N-1 Pseudo (P) error terms epm
describe the lumped pseudo-time errors due to trigger
delay discrepancy and/or depth inaccuracy. All travel
times are expressed as some combination of the above
layer-based time increments. In other words, G is built
from various combinations of these expressions.
Introduction of the error terms allows for the high-low
values of Vs to be aligned. However, it is complex to
evaluate them as the problem is now underspecified.
Previously there were as many fundamental observations
as unknowns (2N-1 layer-based time increments and 2N—
1 unknown slownesses). Now there are also N-1 P error
and 1 T error unknowns. Therefore, assumptions must be
made in order evaluate these additional unknowns.
Before defining the mathematical formulation, it is
useful to consider qualitatively what these additional
parameters achieve. The P error parameters epm exist for
every P layer and therefore in theory allow the P
slownesses to be brought in line with the T slownesses.
However, since the T error parameter ¢r acts against them
(by changing the T slownesses), there are infinite
combinations of er and the set of gpm. Adjusting er will
allow the aligned profile to be shifted as a whole, thus
bringing it closer to either the original P slownesses or
the original T slownesses. Without prior knowledge on
the magnitude of these errors, these two possibilities are
equally likely. With prior knowledge on the likelihood of
these errors, the more likely possibility can be realised.
Let the fundamental Eq.4 be modified such that:

t=Gs+ X¢e , (9)

€= [epp ep1 - Epn-2z &7] " , (10)
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Figure 5. Vs profiles via refined method with threshold-based observation for (a) TNWO005-SCPT and (b) 1JV019-SCPT.

where X contains the coefficients of each error term to be
added. For each travel time observation (i.e., row),
coefficients are 0 or 1 for each epm (i.e., column)
depending on which P layers are encompassed, and the
coefficient of er is -1, 0, or 1, depending on whether the
two receiver positions are bottom-top, top—top/bottom—
bottom, or top—bottom, respectively.

Now let N-1 constraints, related to compatibility of T
and P slownesses, be defined. Each P slowness should be
equal to the average of the adjacent T slownesses (2Sip) —
Si-ym — Si+y() = 0), allowing for a tolerable variance. This
variance should be a measure of the local spatial
variability of slowness. Here, it is estimated as follows:

e Calculate all approximate T slownesses as s;, =

(Ties1 — Ti)/(disq — di) fork=0,2,4, ..., N-2,
where the travel times Tw+1 — Tk are calculated as
for the expected travel times in Section 4.1.

o Calculate variances a?;, = var(sy, Si,) fork=0,

2,4,...,N-4.

o Estimate representative variance as the average of

all variances: 02 = average(c2;,).
The set of constraints can be then expressed as follows:

0 =Bs . (11)

Each row of the B matrix corresponds to a P layer, and
contains the terms -1, 2, -1 for the corresponding layer
and its adjacent T layers. The 0 values are uncertain and
associated with the covariance matrix Cp = 4 021
Finally, a new governing equation can be formed:

F=[t o] =G's* = [g f)] [s & L(12)

(o

Ca O ] .(13)

“lo ¢

Given that this new expression follows the same
algebraic form as the original formulation, the same
inversion method can be followed to derive the most
likely slowness vector s, and now additionally the error
vector ¢, via one combined vector s*. However, it must be
stressed that given the under-specification of the G*
matrix, the solution will only exist if a prior is specified
on one or more of the error terms.

This new framework, for given prior knowledge on
the error terms, should allow for a smooth profile to be
evaluated which accounts for the pairing incompatibility
as additional uncertainty and/or a relative shift towards
the original T or P profile. Prior knowledge is specified
via normal distributions for er and &p, with zero mean and
a standard deviation related to the expected magnitude of

the errors. These values are included in Eg.5 and Eq.6 via
s*p and C*p, noting that all entries related to slowness (s)
rather than error (¢) are set to zero. The expected
magnitude of the errors has been estimated as follows:

The timing errors Atia; and Atyig are assumed to be of
the order of the sampling rate (in this case, 0.10 ms),
based on the implication by Parasie et al. (2022) that
timing errors reduce as the sampling rate decreases. For
the depth error, a CPT with application Class 2 (ISO
22476-1:2022) should exhibit <0.2 m error at 10 m
penetration. Assuming this is a normally distributed
error, which is an accumulation of normally distributed
errors associated with each push, the equivalent error for
each push is approximately <0.2 m/\/Npushes. For this
dataset, the push length is generally 1 m, hence a
representative magnitude for Ad is estimated as 0.063 m.
For a (conservative) Vs of 200 m/s, the subsequent travel
time error would be 0.32 ms. Based on the above,
standard deviations of 0.1 ms and 0.4 ms are
recommended for er and ¢p, respectively.

4.3. Results and discussion

Figure 6 presents the results from the new method under
the base condition of prior knowledge. The results show
the derived estimates of s, as previously, and now also
show the derived maximum likelihood error terms ¢r and
ep Which are available through the estimated s*.

In all cases, a smoother, coherent profile is derived
which allows for genuine interpretability when compared
with the original profiles hindered by the alternating
values. The base priors are sufficient to account for and
rectify even the most severe errors, hence these are
justified as preliminary conditions for any given location.

However, weaker priors in general lead to larger
uncertainty bounds. This reflects the fact that there are
many combinations of ¢r and ep which are not penalised
too heavily by the prior variance, i.e., both can increase
in opposite directions without too much penalty,
widening the bounds of possible V. Therefore, in some
cases where the actual magnitude of the errors is much
smaller than the priors, the uncertainty bounds will be
unnecessarily large. In some extreme cases (HKWO067-
SCPT and 1JV019-SCPT), it is likely that the errors are
in the order of the base case, hence such priors are
realistic and the resulting uncertainty bounds are valid. In
others (HKN56-SCPT), the error terms are likely to be of
much smaller magnitude. Their expected magnitude can
be re-assessed through the most likely error plots in
Figure 6. These error plots are highly informative in
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Figure 6. Vs profiles and corresponding most likely error terms ¢ via new method for (a) HKN56-SCPT, (b) TNWO005-SCPT, (c)

HKWO067-SCPT, and (d) 1JV019-SCPT.

terms of assessing the overall quality of the data. If they
are high, it suggests that significant measurement errors
are embedded in the data, i.e., the test is of low quality:
either there were significant timing errors or there was
significant depth inaccuracy. Such reliability assessment
is not available when using traditional methods.

As a result, should uncertainty bounds need to be
reduced, a second pass of the analysis for any given
location can be run, with reduced-variance priors
informed by the maximum likelihood error terms derived
through the initial analysis. This has been run for
HKN56-SCPT, displayed in Figure 7. It is observed that
the most likely Vs profile remains relatively unchanged,
but the uncertainty bounds are reduced. Thus, for any
given location, this optimised profile represents the
minimal level of uncertainty required to be able to
generate a smooth profile devoid of erroneous,
alternating high-low values. The implication of this is
that for low quality tests with high error terms, the final
uncertainty will be high, whereas for high quality tests
with low error terms, the final uncertainty will be low.

Alternatively, the T or P error terms can initially be
specified with low variance if measurements are assumed
to be accurate. For example, it is often perceived that
true-interval measurements are significantly more
reliable than pseudo-interval. From Figure 6, this is seen

to be a valid assumption for HKN56-SCPT and 1JV019-
SCPT, but is more questionable for HKW067-SCPT. To
examine the effect of such a specification, Figure 8
demonstrates the results for HKWO067-SCPT with a
reduced prior standard deviation of 0.01 ms for T error.
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Figure 7. Vs profile and most likely error terms & with
optimised priors for HKN56-SCPT (left).

Firstly, the profile is seen to be shifted higher than the
first-pass results, reflecting the increased confidence in
the T values, which were originally much higher than the
P values. Secondly, the P and T values are not able to be



aligned by ep alone, suggesting that the P errors would
have to be even larger than the derived values seen in the
Figure (which are limited by the 0.4 ms prior). From the
error plot, these derived values are all now centered
around a value of 0.6 ms. For a purely depth-based error
(i.e., no trigger time discrepancy) and a representative Vs
of 350 m/s (as observed), 0.6 ms would correspond to a
systematic depth error Ad of 0.21 m for every 1 m push
throughout the full profile. This seems unreasonable
(particularly since the errors would likely have to be even
higher, as discussed), which suggests that for this
location, assuming the T error to be zero is perhaps overly
naive. For cases where latency exists/T error is non-zero
(which the above demonstrates are likely to exist, albeit
not unanimously), this error would heavily influence the
results from a traditional interval method interpretation
(which only assesses T layers), all while remaining
completely undetected. The recommended procedure,
therefore, is to: (i) apply the adapted method initially with
the recommended priors, such that the magnitude of
errors can be evaluated and reflected in the Vs uncertainty
bounds, and (ii) where the operator has confidence that
measurement errors are small, they may induce stronger
priors on certain errors informed by the derived
maximum likelihood errors, and/or their own judgment.
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Figure 8. Vs profile and most likely error terms with near-zero
T-error prior for HKW067-SCPT,

5. Conclusions

A modified method for Bayesian interpretation of SCPT
data has been proposed, based on the work of Pidlisecky
and Haines (2011). The first modification is a procedure
for identification and removal of inaccurate travel time
estimates, leading to more reliable and accurate Vs
profiles as outliers are avoided. The second modification
is a reformulation of the fundamental model equation to
incorporate timing and/or depth errors, which increases
robustness of the method against real, often imperfect
datasets. Analysis across over 100 locations has shown
that such errors are frequent and influence derived Vs
values, even though traditional methods would not detect
them. The new model in its base form delivers a smooth
Vs profile with uncertainty bounds that account for
measurement errors in the data. Additionally, the
formulation allows for an engineer to reduce the prior
likelihood of certain errors should they feel confident to
do so, reducing the uncertainty of the profile.

This method provides valuable information on the
reliability of the data by estimating measurement errors
directly. Traditional methods ignore such errors, hence
can sometimes deliver inaccurate results. Therefore, this
method is recommended to ensure results can be relied
upon. At the very least, a true and a pseudo-interval
analysis should both be performed. Their compatibility
will indicate the significance of timing and/or depth
errors — a key consideration when assessing reliability.
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