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Abstract. The safety verification of in-plane loaded masonry panels requires the 
evaluation of at least three different collapse conditions connected with overturning, shear 
sliding, and shear – compression failure at the panels’ toe. In reinforced panels, the resisting 
models should even take into consideration the presence of localized or distributed 
reinforcement. 

In general, the masonry is considered a Mohr-Coulomb type material not resisting tension 
and plastic in compression, while reinforcement is a brittle elastic material resisting 
tensile forces only [1]. 

The ultimate limit state is however linked with a given subset of compressed material 
inside the panel area. The compressed sections are therefore varying inside the panel as a 
function of the applied load. The collapse occurs in shear or overturning when one peculiar 
compressed section reduces to its minimum [2]. 

By equating the capacity in shear and overturning it is possible to derive an explicit 
statement of the minimum length of the compressed section which will be activated by a 
simultaneous failure in shear and overturning. A simple inequality is detecting the real failure 
mode and this allows directly computing the failure load resultant. 

The procedure is very fast and can deal even with localized or distributed reinforcement 
layers such as fiber strips or mesh reinforced mortars. 

Some examples of panels discussed in the literature show the effectiveness of the 
proposed verification procedure. 

1 INTRODUCTION 

As is well-known masonry panels under in-plane loading can exhibit several collapse forms 
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according to the combination of geometry, restraint, axial and shear forces acting on it. 

In particular, due to the low tensile capacity of masonry materials, small axial compression 

forces lead to moderate shear capacities, mainly linked to the cohesion of the material. 

 If the horizontal displacement demand increases, cracks running on the mortar joints will 

appear in the masonry panel, reducing thus the length of the compressed zone along the height 

of the panel. In the cracked condition, the shear is carried on by the compressed area only, 

producing so a mixed compression-shear state on the masonry. At the shear peak value, the 

panel can collapse alternately with rocking failure until overturning, or with sliding failure with 

progressive crack opening. 

Collapse by overturning is typical of slender panels under low or moderate axial forces, 

while shear sliding is typical of very squat walls. When the axial force is very high or the 

compressive masonry strength is very low, the probability that the panel will fail with shear 

crushing of the compressed toe increases considerably. In this case, inclined diagonal cracks 

splitting the bricks arise on the panels. 

In this paper, the problem of mixed shear-rocking failure is solved by determining the 

compressed zone length that makes the shear producing overturning and sliding the same. A 

closed formula allows computing the ending geometry of stable behavior. Namely, after this 

point, by decreasing the size of the compressed zone even the shear has to reduce its value in a 

softening branch. The limit value that results in a shear-crushing of the toe is even expressed in 

terms of the Mohr-Coulomb failure criterion. 

In order to validate the analytical formulation, several experimental campaigns presented in 

the literature takes as a reference and their findings are discussed in the following. 

 

2 COMBINED SHEAR – FLEXURAL FAILURE OF MASONRY PANELS 

Considering a rectangular panel of constant thickness tM acted on by a linear bending 

moment distribution it is in any case possible to extract a cantilever part of it which can be 

considered the part relevant for the failure. The height of this cantilever is given by the ratio of 

the largest bending moment MS to the shear force VS and is equivalent to a shear arm av: 

 S
V

S

M
a

V
  (1) 

As a consequence of the limited tensile resistance of the masonry texture and beyond a 

certain shear force, the base section of the cantilever begins to crack, and therefore the 

equilibrium is guaranteed by the eccentricity of the stress resultant acting on the contact area. 

The verification of this incipient failure situation is in general carried out by using different 

formulas for the possible collapse modes: flexural overturning, shear sliding and shear-

compression crushing (according to the Mohr-Coulomb criterion, see [1]). 
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In the given formulas NS is the axial force in the panel, L and t are the length and the thickness 

of the panel’ section, fMc and fMt are respectively the compressive and tensile strength of the 

masonry material,  is the length of the compressed area in the base section,  and  are the 

ductility and friction coefficients. The other variables are as follows: 
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It is to note that the shear-compression failure formula derived in agreement with the Mohr-

Coulomb criterion is very similar to the Turnsek-Cacovic formula if the axial stress is not very 

high: 
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The resisting shear stress is obviously the minimum among the three formulas (2). 

Since masonry in compression can be considered an elastic perfectly plastic material [3], the 

stress distribution at the panel’s base is a consequence of the linear strain distribution. By 

assuming that the ductility D of the material is described by the ratio of the ultimate strain ult 

to the limit elastic one e, the resultant of the stress distribution can be expressed in terms of the 

compressed area and the ductility ratio D.

If the cantilever is very slender, the failure is occurring by overturning with the minimal 

length of the contact area: 
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If the cantilever is sufficiently squat, the failure is occurring by shear with a compressed 

zone larger than the minimal one. The value of the compressed length at failure can be computed 

by equating the shear force producing sliding with the one producing overturning: 
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The value of the parameter n is defining the adimensional distance of the stress resultant 

force from the edge of the panel: 
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Since the deflection of the cantilever can only increase if the shear is increasing and the 

compressed length is decreasing (in order to guarantee the rotational equilibrium), the limit   

defines even the limit stable displacement of the panel. If the shear - displacement curve of the 

panel is known, the curve must be cut at VR,lim given by lim. 

Many procedures exist that can allow plotting the shear - displacement curve up to panel 

overturning (see among the others [4, 5]). One very simple procedure allowing for well-

approximated shear displacement curves is the use of hyperbolic functions. As is usual in 

geotechnics, only two parameters are necessary to build up an effective relationship: 
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In which K0 is the initial stiffness of the panel and Vlim the maximum resisting shear when 

the displacement tends toward infinity. 

If masonry panels are concern, the initial stiffness is computed from the geometry and the 

material properties of the panel. The limit shear is computed from the largest panel eccentricity 

attained at the overturning. 
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Where EM and GM are the elastic and shear moduli of the masonry, and c is a coefficient 

describing the end rotational restraint of the panel, with values in the range {3;12}. 

Once VR,sh < Vlim is known, the failure displacement can be computed. 

 

3 SHEAR-FLEXURAL FAILURE OF REINFORCED PANELS 

The procedure holding for unreinforced masonry panels can be modified in order to include 

the effect of fiber reinforcement nets added to the external surfaces of the panel. In general, the 

flexural reinforcement of masonry elements is carried out by adding fiber strips along the 

vertical edges of the walls or by using fiber cross braces on the wall faces. The shear 

reinforcement of the panel instead, is best suited by using mortar coatings and fiber meshes on 

the faces or by using near-surface mounted bars (NSM) resting on the mortar courses. 

The flexural reinforcement is based on the introduction of some tensile resisting force that 

can carry on a bending moment summing up with the one resisted by the masonry alone. On 

the contrary, shear reinforcement is mainly thought for increasing the shear capacity of the 

masonry material. 

In what follows a reinforced panel is considered, in which the four vertical edges are 

equipped with unidirectional strips of fibers externally bonded to the bricks (EBR). Moreover, 

the panel is reinforced in shear by means of two external thin layers of high strength mortar 

reinforced with glass fiber meshes. 

The CNR-UNI documents 200 and 213 [6, 7] contain the basic theoretical formulation for 

the strength evaluation of fiber reinforcement systems in which the bonding agent is high 

strength mortar. A homogenization strategy is presented in [1] able to deal with mortar coatings 

reinforced with fiber meshes. 
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Considering the panel presented in figure 1 the aim is the definition of a suitable modification 

for the formulas presented in the previous section. 

 

 

Figure 1: geometry of the considered reinforced panel 

By denoting with tM the thickness of the unreinforced masonry panel, tL the total thickness 

of the added reinforcing layers, and with tH the total thickness of the wall tH = tM + tL, it is 

possible to use the composition rules of series and parallel systems for the calculation of the 

homogenized shear and compression strength: 
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Where fLc and fLV0 are the compressive and shear strength of the reinforcing coatings. The 

homogenization through the volumetric ratios is possible if the connection between the masonry 

panel and the reinforced coatings is sufficiently ductile in leading to the full yielding of both 

materials. 

If the flexural capacity of the panel is not sufficient for the rotational equilibrium, added 

reinforcement strips on the edges can supply the missing resisting moments. By using formulas 

for EBR or NSM the axial strength TF of the reinforcement can be computed: 

 2F F F F wT E G A s  (11) 

In formula (10) EF is the reinforcement elastic modulus, GF is the fracture energy of the 

interface, AF is the reinforcement area and sw is the breadth of the bonding surface [6]. 

Once the strength of the flexural reinforcement is defined, the formulas (5, 6) can be 

modified in order to include the effect of the added strength: 
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Where d is the distance of the reinforcement axis to the most compressed fiber. 

If  is larger than min the limit shear force is easily computed as: 

  , 0H sh S F H HVV N T t f     (13) 

Alternately, if min is the smallest length, the limit shear force is computed as: 
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4 VERIFICATION OF THE PROPOSED FORMULA 

The analysis previously defined is applied to a set of eight brick masonry walls tested by 

Churilov et Al. [8]. The height of the walls was fixed to 1820 mm, while two different lengths 

respectively equal to 1420 mm and 2820 mm were chosen investigating the effect of the aspect 

ratio on the lateral capacity of the wall. Since the purpose of the research was the investigation 

of the in-plane behavior of both unreinforced and jacketed walls, the whole number of 

specimens was split into two groups, each of which was made of two slender and two squat 

walls. The walls of only one group were reinforced through the reinforced concrete (RC) 

jacketing technique. 

The reinforcement was applied to the external faces of the panels by executing transversal 

connection ties over which the steel wire meshes were welded. then two layers of high strength 

mortar were poured on forms with a thickness of 25 mm approximately. 

Table 1 collects the thicknesses t of the masonry components, their elastic modulus E and 

their tensile and compressive strength, ft and fc, respectively. Concerning brick units, the 

cylindrical compressive strength was computed as 0.83 times the cubic one, while their tensile 

strength was evaluated from the flexural tensile strength obtained experimentally. 

Elastic moduli of mortar and bricks were estimated starting from their compressive strengths 

[3]. All these properties were used in this paper to compute the mechanical properties of the 

masonry walls validating the proposed formulas. 

The presented experiments considered very squat panels under a very high axial load and 

repeated alternated increasing displacement cycles. Therefore they constitute a very sharp 

reference for testing the prediction capability of formulas dealing with shear-compression 

failure of masonry panels. 
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Table 1: Geometrical and mechanical properties of the materials. 

 t 

[mm] 

fc 

[MPa] 

ft 

[MPa] 

E 

[MPa] 

Brick 65 13.6 1.8 6800 

Lime Mortar 10 0.6 0.1 300 

Concrete 25 22.7 3.6 20000 

Steel Wires Φ 4.2/10 450 450 200000 

 

In Figure 2 some pictures of the failed panels are presented. The cracking pattern shown by 

the panels highlights a shear sliding failure under high compressive stress with very large 

contact zones at the two panel ends. 

 

   
Figure 2: Failure of the panels considered in the Churilov et Al. [8] experimental tests 

In what follows the experimental data are compared with the results of the proposed theory 

in terms of the different possible failure mechanisms, reconstruction of the load-displacement 

curve and evaluation of the limit displacement at failure. The shear forces Vi are computed 

through the equations (2.a, 2.b, 2.c) identified by the flexural, the shear, and the crushing-shear 

failure modes, respectively. 

Table 2 presents the comparison of the computed shear forces with the peak forces of the 

experimental tests of Churilov et Al. [8]. Concerning the displacements, Table 3 collects the 

maximum displacements ult and the percentage drift  measured in the experimental 

campaign, compared with the displacements associated with the maximum shear force acting 

on the wall.  

Since the original tests were performed under cyclic loading, two lines described the 

behavior of the masonry panel along the two opposite directions. For the sake of completeness, 

both the positive and the negative load-displacement branches were plotted and taken under 

consideration for the error computation.  The maximum analytical displacement V,max provided 

by the Eq. (8) is the displacement associated with the maximum shear capacity of the wall, 

assumed as the minimum value among the shears V1, V2, V3 collected in Table 2. 
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Table 2: Lateral load capacity of URM and SM masonry panels computed for each failure mechanism and 

under the application of the axial load N.  

Units 

[kN] 
URM1 URM2 URM3 URM4 SM1 SM2 SM3 SM4 

N 630.00 365.00 315.00 182.50 630.00 365.00 315.00 182.50 

V1 310.22 168.27 179.23 92.12 614.50 311.65 414.61 229.57 

V2 278.72 150.02 157.18 83.02 578.90 288.65 395.41 215.27 

V3 174.14 100.89 139.87 80.96 1056.82 612.28 854.32 494.54 

Vmax 174.14 100.89 139.87 80.96 578.90 288.65 395.41 215.27 

Vexp 189.14 88.54 157.35 65.46 483.79 227.18 365.15 208.62 

e,V 9% -12% 12% -19% -16% -21% -8% -3% 

 

Table 3: Experimental [8] and analytical displacements provided for the whole bench of specimens.  

Units 

[mm] 
URM1 URM2 URM3 URM4 SM1 SM2 SM3 SM4 

ult 11.51 16.10 12.86 11.56 12.33 15.05 20.95 21.01 

 0.63 0.88 0.71 0.64 0.68 0.83 1.15 1.15 

peak + 3.87 6.86 8.13 7.02 2.78 8.40 8.44 16.97 

peak  4.43 7.00 8.35 8.96 3.99 8.93 11.96 15.02 

peak] 4.15 6.93 8.24 7.99 3.39 8.67 10.20 16.00 

V,max 3.10 4.40 5 11.70 20 17.00 17.10 15.4 

e, -25% -37% -39% 46% - 96% 68% -4% 

 

According to what is mentioned before, Figure 3 and Figure 4 illustrate the backbone load-

displacement curves of each masonry wall in the two loading directions. 

In particular, the solid line describes the lateral capacity of the masonry wall (Eq.8), while 

red and blue dashed curves are the experimental evolution of the lateral load applied at the top 

of the wall against the horizontal displacement corresponding to the positive and the negative 

directions respectively. Two more points are presented in the plots, namely, the triangle 

identifies the maximum analytical lateral load resisted by the wall, while the circle represents 

the theoretical maximum displacement given by the existing standards.  

The maximum displacements considered by Italian and European standards value are 

defined as  0.4% and 0.8% of the total height of the panel. Specifically, the first value is 

associated with the shear-type failure, whereas the other one describes the limit displacement 

in case of panel overturning. 

By observing previous tables and figures, it is very clear that the proposed formula is able to 

appreciate the maximum value of the lateral load at which the panel fails, even if it is barely 

accurate only in terms of displacements.   
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Figure 3: Load-Displacement curves: (a) URM1, (b) URM2, (c) URM3, (d) URM4.  

 
Figure 4: Load-Displacement curves: (a) SM1, (b) SM2, (c) SM3, (d) SM4.  
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Concerning lateral stiffnesses collected in Table 4, since the hyperbolic curve needs of the 

value of initial lateral stiffness K0, its value is computed according to Eq.(9) and it is compared 

with the value provided experimentally in Churilov et Al [8]. 

It is to mention that the value of stiffness computed analytically was roughly the double of 

the secant stiffness obtained experimentally, as previously expected. Consequently, it is 

extremely important to use the initial stiffness in the load path calculations in order to obtain 

smaller bias in the estimation of the maximum displacement, as is pointed out by the 

comparison with the experimental data. 

 

Table 4: Tangential and secant lateral stiffnesses of all the specimens, and their ratio. 

Units 

[kN/mm] 
URM1 URM2 URM3 URM4 SM1 SM2 SM3 SM4 

K0 128.93 57.76 128.93 57.76 500.62 224.29 500.62 224.29 

Kexp 185.610 44.29 74.23 40.30 460.69 102.81 236.28 66.36 

K [ - ] 0.69 1.30 1.74 1.43 1.09 2.18 2.12 3.38 

 

 

5 CONCLUSIONS 

In the paper, the theoretical framework of the interaction of the failure modes for masonry 

panels has been discussed in detail. The limit compression zone resulting from the combination 

of shear and overturning failure has been defined. The shear capacity limitation due to high 

compression states has been derived in terms of Mohr-Coulomb limit plasticity.  

Then, the theoretical framework has been extended to panels reinforced with external 

coatings of thin FRM layers, and panels reinforced with fiber strips bonded along the vertical 

edges.  

The use of the hyperbolic representation of the load-displacement path allowed the easy 

construction of the panel’ pushover curves. The parameters needed to build the curves were 

presented and discussed. 

By using some experimental results presented in the literature, the effectiveness of the 

proposed formulation has been demonstrated. The presented results pointed out the importance 

of considering shear-crushing failure when the axial force has significant value. 

The presented procedure is an easy and fast way for the verification and strengthening design 

of masonry panels subjected to high compression forces, as in monumental buildings. 
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