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ABSTRACT  

This paper is an extension of our previous research investigating the potential of machine learning models to estimate 

shear wave velocity (Vs) from piezocone penetration test (CPTu) measurements. The aim of this update is to examine the 

effect of incorporating geographical information, namely latitude and longitude, as input parameters to the machine 

learning models. New models are developed by incorporating both CPTu parameters and spatial coordinates as input 

features and are compared to models developed with only CPTu parameters. Furthermore, SHAP (SHapley Additive 

exPlanations) analysis is employed to assess the importance of different features and variables in the developed machine 

learning models. The results show improvement in prediction performance when adding geographical data, indicating the 

influence of geological variations on Vs. The paper shows the potential of using geospatial information to improve the 

data-driven approach for estimating soil properties from CPTu tests when large worldwide datasets are available. 
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1. Introduction 

The assessment of shear wave velocity (Vs) in soil 

deposits is a crucial element in the domain of 

geotechnical earthquake engineering. Field-based 

seismic geophysical tests or empirical correlations may 

be used to measure or estimate Vs. Empirical correlations 

offer a practical means to estimate Vs from in-situ tests 

such as the piezocone penetration test (CPTu). Studies 

such as Hegazy and Mayne (1995), Mayne (2006), 

Robertson (2009), Andrus et al. (2007), and McGann et 

al. (2015) have proposed and examined various empirical 

correlations to predict Vs based on these in-situ tests. 

Recently, machine learning (ML) techniques have 

emerged as a powerful tool for data analysis and 

prediction in various fields, including geotechnical 

engineering. ML methods can learn complex and 

nonlinear patterns from large datasets without relying on 

predefined assumptions or equations. Several researchers 

have applied ML methods to estimate various soil 

properties from CPTu data (e.g. Wang et al. 2019, Xiao 

et al. 2021, Entezari et al. 2021 & 2022, Assaf et al. 

2023). These studies have shown that ML methods can 

outperform traditional empirical correlations. 

Geographical information, such as latitude and 

longitude, can capture the spatial variations and trends of 

soil properties across different regions and locations. 

This information can be useful for enhancing the 

generalization and robustness of the ML models, 

especially when dealing with large and diverse datasets. 

Furthermore, geographical information can provide 

insights into the underlying factors and mechanisms that 

influence the relationship between CPTu and Vs, such as 

soil type, depositional environment, age, cementation, 

and weathering. Therefore, it is important to investigate 

the potential of geographical information in the ML 

models for estimating Vs from CPTu data. 

In our prior research (Entezari et al., 2022), a 

substantial dataset comprising more than 100,000 paired 

Vs-CPTu observations derived from seismic piezocone 

(SCPTu) soundings conducted worldwide was utilized to 

develop machine learning models for the prediction of Vs 

based on CPTu data. The machine learning models were 

exclusively trained using fundamental CPTu parameters, 

including corrected tip resistance (qt), sleeve friction (fs), 

dynamic porewater pressure (u2), and depth (z). The 

performance of the models was assessed with a specific 

focus on the influence of soil microstructure. In this 

study, the impact of adding latitude and longitude as 

additional features to the models is assessed. 

Furthermore, SHAP (SHapley Additive exPlanations) 

analysis is used to investigate the importance of each 

feature on the predicted results. 

2. Dataset description 

The dataset used in this study is the same dataset used 

by Entezari et al. (2022) updated with new data as well 

as latitude and longitude of the test results compiled 

using the ConeTec’s geospatial database. The dataset 

includes more than 180,000 paired Vs with qt, fs, u2, z, 

latitude, and longitude datapoints collected from 2017 to 

early 2023 compiled from 10,386 individual SCPTu 

soundings across diverse soil types, stress histories, and 

geological environments worldwide. The geographical 

distribution of the dataset is shown in Fig. 1, where the 

density of the data is represented by the heatmap. 



 

 
Figure 1. A heatmap representation of the dataset showing the 

relative distribution and density of the data pairs.  

The dataset is split into training and test sets. The 

training set is used to calibrate the model whereas the test 

set is used to evaluate the model performance. The data 

collected in 2017- 2021 timeframe is used as the training 

set and data collected from 2022 to early 2023 provides 

the test set. This allows for an unbiased performance 

assessment and avoids leakage of information which is 

specifically important to assess the performance of the 

models with latitude and longitude as input features. The 

number of paired Vs-CPTu data points for the training 

and test sets are listed in Table 1. 

Fig. 2 depicts the test set on the normalized tip 

resistance (Qtn) versus small-strain rigidity index (IG) 

plot, showing the soils classified as cemented and 

uncemented based on the empirical KG
* threshold of 330 

(Robertson 2016). In this study, the impact of soil 

microstructure on the ML models is investigated through 

developing models for three categories: all-soils, 

uncemented, and cemented soils.  

 

Table 1. Number of data pairs in the training and test sets. 

 All Uncemented 

(KG
* ≤ 330) 

Cemented 

(KG
* > 330) 

Training set 142,114 85,285 56,829 

Test set 39,028 24,012 15,016 

  

 

 

 
Figure 2. The test set plotted in the Qtn-IG chart. 

 

 

3. ML modelling 

3.1. XGBoost 

The ML algorithm used in this study to develop 

models for predicting Vs from CPTu data is XGBoost 

(Chen and Guestrin 2016). XGBoost is a scalable and 

efficient implementation of gradient boosting trees that 

has gained popularity and success in various data science 

applications. XGBoost can handle both regression and 

classification tasks and offers several advantages such as 

regularization, parallelization, distributed computing, 

and missing value handling. 

In this study, XGBoost is used to develop both sets of 

models, the ones with only basic CPTu parameters (qt, fs, 

u2, and z) and the ones with adding latitude and longitude 

as additional features. Microsoft Azure AutoML (2023) 

is employed to optimize hyperparameters of the 

XGBoost models such as the learning rate, number of 

trees, tree depth, and the minimum loss reduction 

required to make a further partition. The optimization 

process is conducted through the widely used k-fold (k = 

5) cross-validation technique (Kohavi 1995) using the 

training set.  

3.2. Performance assessment 

The evaluation of the performance of the developed 

models involves the examination of cumulative 

distribution function (CDF) of errors on the test set. Error 

calculation is based on the disparity between the 

measured Vs obtained from the SCPTu and the Vs 

predicted by the XGBoost models. The bias of the 

prediction is determined at the 50th percentile in the CDF. 

Assuming normal distribution of errors, the CDF values 

at 15.9% and 84.1% correspond to ±1 standard deviation. 

The average of these CDF values at 15.9% and 84.1% is 

adopted as the comprehensive error measure for the 

model.  

 

4. Results 

4.1. Models with basic CPTu 

The test set results of the XGBoost models that use 

basic CPTu parameters to predict Vs from SCPTu are 

shown in Figs. 3a to 3c for all-soils, uncemented soils, 

and cemented soils, respectively. The all-soil model uses 

all the data pairs in the training set, while the models 

specific to uncemented and cemented soils are developed 

using their respective fractions within the training set. 

The error analysis using CDF of errors on the test set 

shows that the errors of the estimated results are ±55.53, 

±32.31, and ±51.22 (m/s) for all-soils, uncemented, and 

cemented soils, respectively (Table 2). Evidently, the 

uncemented soil model outperforms both the all-soils and 

cemented soils models. 



 

 
Figure 3. Relationship between measured and estimated Vs on 

the test set using (a) all-soils, (b) uncemented soils, and (c) 

cemented soils models developed with basic CPTu parameters. 

 
 

 
Figure 4. Relationship between measured and estimated Vs on 

the test set using (a) all-soils, (b) uncemented soils, and (c) 

cemented soils models developed with basic CPTu parameters 

along with latitude and longitude. 

 

 

 

 

 



 

Table 2. Performance of different models. 

 Bias±Error (m/s) R2 

Models with qt, fs, u2, z  

All Soils -15.39±55.53 0.58 

Uncemented  2.17±32.31 0.82 

Cemented -14.8±51.22 0.63 

Models with qt, fs, u2, z, lat, lon  

All Soils -4.73±41.9 0.70 

Uncemented  2.66±26.48 0.89 

Cemented -6.44±46.32 0.67 

 

4.2. Models with the inclusion of latitude and 

longitude 

Figs. 4a to 4c illustrate the performance of models 

developed with both basic CPTu data and geographical 

coordinates (latitude and longitude) on the test set. By 

analyzing the CDF of errors on the test set, the overall 

errors are found to be ±41.9, ±26.48, and ±46.32 for all-

soils, uncemented, and cemented soils, respectively. 

Similar to the models developed solely with basic CPTu 

parameters, the uncemented soil model exhibits superior 

performance compared to the all-soils and cemented soils 

models. 

An enhancement in performance across all three 

models is observed through a comparative analysis 

between models incorporating geographical coordinates 

and those relying exclusively on the basic CPTu 

parameters. Although the overall improvement may not 

be statistically significant, the integration of geographical 

coordinates appears to contribute to a nuanced 

refinement of the estimated results. Analyzing the 

outcomes presented in Figs. 3 and 4, a notable reduction 

in the dispersion of data points is observed, particularly 

within the high shear wave velocity region (Vs > 350 

m/s), when comparing models developed with the 

inclusion of latitude and longitude to those developed 

with only basic CPTu parameters. This effect is more 

pronounced in the uncemented soil model. This could 

imply that the inclusion of geographical locations may 

enhance the estimated results in relation to specific 

geographic locations. 

 

 Applicability of the models with geographical 
coordinates 

While the integration of geographical coordinates has 

demonstrated enhanced model performance, it is 

important to acknowledge the inherent sensitivity of ML 

models to the similarity between their training and test 

datasets. Generalizations drawn from the improved 

performance of latitude and longitude-inclusive models 

are dependent on the availability of comprehensive 

training data from corresponding geographic regions. 

Models incorporating geographic coordinates effectively 

capture regional variations, making them particularly 

reliable in areas with robust data coverage during the 

training phase. Conversely, in regions with limited 

training data, the effectiveness of these models may be 

compromised. Therefore, the applicability of such 

models is most reliable within the geographic scope well-

represented in the training set. 

In the context of this study, it is essential to conduct 

an analysis to evaluate the proximity of test set data 

points to those in the training set to identify whether 

errors and outliers in the predicted results may arise due 

to the absence of sufficient training data in corresponding 

geographic areas. This remains to be investigated in 

future work. 

 

5. SHAP analysis 

SHAP analysis is a method to explain the predictions 

of machine learning models (Lundberg and Lee 2017). 

SHAP values are based on the concept of cooperative 

game theory that allocates a contribution to each player 

in a coalition game. In the context of machine learning, 

features are considered as players and the prediction is 

the payoff of the game. In this paper, SHAP analysis is 

employed to compare the performance and 

interpretability of the uncemented soils models 

developed with basic CPTu variables, and with basic 

CPTu and latitude/longitude variables. SHAP analysis is 

applied on the test set to examine how the features 

contribute to the model predictions. 

5.1. Feature importance 

The SHAP summary plots (Lundberg and Lee 2017, 

Lundberg et al. 2020) depicting the uncemented soils 

models are showcased in Fig. 5. In the summary plots, 

every point represents a SHAP value (impact on model 

output) corresponding to a feature and a specific instance 

within the test set. The color gradient from blue to red 

indicates the feature value, ranging from low to high, 

respectively. To provide a clear distribution of SHAP 

values per feature, overlapping points are jittered along 

the y-axis. The arrangement of features follows their 

importance, where features with larger absolute SHAP 

values implies a more pronounced influence on 

predictions. 

As depicted in Fig. 5a, the uncemented soil model 

developed utilizing basic CPTu data highlights depth (z) 

as the primary influential feature, succeeded by qt, fs, and 

u2 in descending order of significance. The observed 

trends indicate that elevated values of z, qt, and fs are 

generally associated with an increase in the predicted 

outcomes. The summary plot also shows that u2 exhibits 

the least importance among the features, and there is an 

absence of an apparent pattern regarding its impact on the 

estimated results. 

In the uncemented soil model incorporating latitude 

and longitude as input features, the significance of 

features is as follows: z, qt, latitude, fs, u2, and longitude 

as shown in Fig 5b. Higher values of z, qt, and fs 

correspond to an increase in the predicted results, while 

elevated latitude values are generally associated with a 

reduction in the predicted outcomes. Also, u2 and 

longitude exhibit minimal impact on the model outcome, 

with no discernible relationship observed between these 

features and the model results. 

The significance attributed to latitude as an influential 

feature in contrast to the minimal impact of longitude, 

could be due to specific characteristics or  patterns  in  the  



 

 
Figure 5. SHAP summary plots for the uncemented soil model 

developed using (a) basic CPTu parameters, and (b) basic CPTu 

parameters along with latitude and longitude. 

 

dataset where changes in latitude correspond to 

significant variations in the predicted results. SHAP 

partial dependence plots (PDP) presented in next section 

can explain the details of the relationship between 

latitude and longitude and the predicted results. 

5.2. Partial dependence plots (PDP) 

SHAP PDP visually depicts the isolated impact of a 

single variable on model predictions, holding other 

variables constant. These plots offer valuable insights 

into the effects of individual features, aiding in the 

interpretation of complex ML models. 

In Fig. 6, the PDP for z, latitude, and longitude for the 

uncemented soil model developed with basic CPTu along 

with latitude and longitude are presented. These plots 

effectively illustrate how alterations in a specific feature 

would influence the model predictions. Sample 

observations are depicted through thin gray lines, 

showcasing the variability in predictions associated with 

changes in the feature. The average impact is represented 

by the thick gray line. The effect of changing the feature 

for a singular instance is delineated in blue. The vertical 

dashed blue line denotes the value of the feature for the 

specified instance, while the horizontal dashed blue line 

shows the corresponding predicted result for that singular 

instance. As shown in Fig 6a, there exists a positive 

correlation between z and the predicted results, 

signifying that, on average, an increase in depth, while 

maintaining other variables constant, results in an 

elevated predicted Vs. Subsequently, Fig. 6b shows that 

the impact of latitude on predicted results is complex and 

region-specific. Notably, latitude values proximate to -

16.5 degrees exhibit the highest predicted Vs outcomes. 

Further examination of the dataset identifies this region 

is characterized by deep water tables. Deeper water tables 

are associated with an increase in effective stress, 

resulting in elevated Vs values. In essence, soils in this 

specific region, with equivalent depths to those in another 

area, experience higher effective stress, leading to a 

subsequent rise in predicted Vs values. Therefore, it is 

anticipated that, for this particular region, depth has a 

more pronounced impact on the estimated results 

compared to soils located at other latitudes. The PDP for 

longitude, as depicted in Fig. 6c, shows a generally 

negligible impact on the predicted results. The near-flat 

average impact curve underscores the insignificant 

influence of longitude on the predicted outcomes. 

To investigate the interaction between depth and 

latitude, the SHAP dependence plot for depth is 

presented in Fig. 7. Notably, data points located near 

latitude -16.5 are distinguished by orange color. These 

specific points exhibit a distinct behavior, indicating an 

increased influence of depth on the estimated results 

when compared to the remainder of the dataset. This 

distinctive pattern may be attributed to deeper water 

tables and thus higher effective stresses in the 

corresponding region, as previously discussed. 

It should be noted that relationships observed 

associated with the impact of latitude and longitude on 

the predicted results are specific to the dataset employed 

in this research. While the dataset encompasses global 

information, the limited data availability from certain 

regions restricts the generalizability of the conclusions 

drawn in relation to the impact of geographical location 

on the Vs estimation – instead it is a function of where 

data are available in the dataset. 

 

 

 
Figure 6. SHAP partial dependence plots to show the impact of 

(a) depth, (b) latitude, and (c) longitude on the estimated Vs 

results for the uncemented soil model developed using basic 

CPTu parameters along with latitude and longitude. 



 

 
Figure 7. SHAP dependence plot to exhibit the impact of depth 

on the model output. 

 

6. Conclusions 

In this extended study, we built upon our previous 

research exploring the potential of ML models to 

estimate Vs from CPTu measurements. The focus of this 

update was to investigate the impact of incorporating 

geographical information, specifically latitude and 

longitude, as additional input parameters to the ML 

models. The newly developed models, featuring both 

CPTu parameters and spatial coordinates, were compared 

with models based solely on CPTu parameters. 

Performance assessment on an extensive test set of 

nearly 40,000 data pairs revealed that models with 

inclusion of latitude and longitude enhance the 

predictions results. While the overall enhancement was 

observed to be marginal, it was more pronounced on the 

prediction results of specific regions. Furthermore, 

SHAP analysis was employed to study the importance of 

each input parameter on the model output.  The SHAP 

analysis offered valuable insights into the contribution of 

each feature to the model predictions. Notably, for 

uncemented soils model, depth emerged as a primary 

influential parameter, because in this study depth is used 

as a proxy for in-situ effective stress. Moreover, the 

influence of latitude on predicted outcomes exhibited 

region-specific patterns, whereas longitude demonstrated 

minimal impact, ranking as the least consequential 

feature in the model. 

While the integration of geographical coordinates 

demonstrated improved model performance, the 

reliability of models depends on the availability of 

comprehensive training data from corresponding 

geographic regions. Applicability is most reliable within 

well-represented geographic scopes, necessitating a 

proximity analysis to assess data representation and 

potential errors in less-covered areas. 

This approach holds promise for geotechnical 

applications, underscoring the relevance of spatial 

context in soil property assessments. As this research 

progresses, integrating geospatial information into ML 

models emerges as a compelling avenue for advancing 

geotechnical predictions and furthering the 

comprehension of soil behavior, particularly when 

leveraging large and diverse datasets on a global scale. 

The ML models can be exported to standalone 

applications or integrated into commercial software 

packages for utilization within the geotechnical 

community. 
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