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Abstract

This work aims at deriving special types of one-dimensional Finite Elements (1D FE) for efficiently modeling heterogeneous
rismatic structures, in the small strains regime, by means of reduced-order modeling (ROM) and domain decomposition
echniques. The employed partitioning framework introduces “fictitious” interfaces between contiguous subdomains, leading to
formulation with both subdomain and interface fields. We propose a low-dimensional parameterization at both subdomain and

nterface levels by using reduced-order bases precomputed in an offline stage by applying the Singular Value Decomposition
SVD) on solution snapshots. In this parameterization, the amplitude of the fictitious interfaces play the role of coarse-scale
isplacement unknowns. We demonstrate that, with this partitioned framework, it is possible to arrive at a solution strategy
hat avoids solving the typical nested local/global problem of other similar methods (such as the FE2 method). Rather, in our

approach, the coarse-grid cells can be regarded as special types of finite elements, whose nodes coincides with the centroids
of the interfaces, and whose kinematics are dictated by the modes of the “fictitious” interfaces. This means that the kinematics
of our coarse-scale FE are not pre-defined by the user, but extracted from the set of “training” computational experiments.
Likewise, we demonstrate that the coarse-scale and fine-scale displacements are related by inter-scale operators that can be
precomputed in the offline stage. Lastly, a hyperreduced scheme is considered for the evaluation of the internal forces, allowing
us to deal with possible material nonlinearities.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords: Multiscale method; Reduced-order modeling; Localized model order reduction; Singular value decomposition; Domain decomposition;
Finite element analysis

1. Introduction

It is well known that discretization techniques for partial differential equations (PDE) of complex systems
requently lead to very high-dimensional numerical models with corresponding high demands concerning hardware
nd computation times. This holds particularly in problems with complex geometries and nonlinear behaviors, where
he system of equations to be solved often includes a large number of degrees of freedom (DOFs). Many strategies
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have been developed to tackle this issue, allowing us to reduce the number of DOFs of the full-order model with
a lower-dimensional representation, whose accuracy must be carefully considered. The particular field of ROM
encompasses a broad set of mathematical methods that allow us to generate and evaluate these simplified models [1].
It is worth mentioning that one precedent to this field may be found in the low-dimensional parameterization of
systems based on analytical deductions, in which one introduces simplifying assumptions on the system behavior
to facilitate its treatment. An illustrative example in this respect is that of classical beam theory, which assumes
that cross-sections of a prismatic beam remain planar after deformation, and by doing so, the displacement field
of such cross-sections become parameterized in terms of three translations and three rotations. Unfortunately, most
engineering problems are not amenable to empirical models or derivations based on first-principles. Consequently,
other approaches are used for addressing more complex systems, typically high-dimensional, with underlying
dominant patterns that should be properly characterized.

In this regard, one of the most popular approaches is projection-based ROM, which basically restricts the
solution space to a smaller subspace spanned by a precomputed reduced-order basis. A widely used method to
construct this basis is the Proper Orthogonal Decomposition (POD), firstly introduced in the statistical and turbulence
research area [2,3]. POD is based on snapshots of the response of the system of interest, and therefore, it requires
accumulating solutions of problems (sampling the input parameter space) using the high-fidelity model [4], during a
so-called offline stage. Then, the most statistically dominant patterns of these snapshots are identified by the SVD,
obtaining a reduced-order basis that minimizes the projection error of the snapshots [5]. The governing equations are
then projected onto the subspace spanned by this reduced-order basis, obtaining a system with far fewer equations
than the original one. However, especially for high-dimensional and multiscale problems, projection-based ROM
exhibits certain limitations, such as offline high-computational cost, no topological flexibility, and dependency on a
large number of input parameters [6]. In this sense, since one cannot afford creating a new reduced model for every
change in the parameter values, the desired approach is to generate a parametric reduced model that approximates
the original one with high fidelity over a range of parameters [1].

Localized model order reduction methods overcome or significantly mitigate these limitations, exhibiting more
flexibility than standard ROM, where the topology of the geometry is fixed. The strategy consists in combining
approaches from ROM and domain decomposition with the purpose of building distinct reduced spaces in different
parts of the computational domain, and then, accommodating (local) changes of the geometry and the PDE in
the online stage [6]. On the one hand, the spatial domain under study is decomposed into substructures, with
the aim of splitting the global system of equations into smaller (local) systems (see, e.g. [7,8]). On the other
hand, ROM techniques allow us to build local reduced spaces that have only support on each subdomain. Thus,
by combining these approaches, one can compute a global approximation (within certain accuracy) by means
of a effective coupling of the local spaces [6], achieved by enforcing continuity requirements between adjacent
subdomains. Localized ROM was firstly introduced in the context of dynamic analyses with the “Component Mode
Synthesis” [9,10], and then it was also applied to a wide range of problems, such as in elastostatics [11–13] and
multi-body systems [14,15], among others (see, e.g [16–18]). All these methods have proven that localized ROM
offers a effective approach for solving parameterized PDE of high-dimensional systems. Nevertheless, we have to
take into account the additional costs and effort of incorporating the coupling conditions that ensure the continuity
of the solutions at the interfaces [17]. Indeed, the distinct treatments of this critical issue is what characterizes each
different method.

Localized ROM has been further combined with multiscale modeling approaches, enabling the approximation of
the solution of problems with complex heterogeneities and large domains. Multiscale problems are usually addressed
by hierarchical approaches, where for each material point on the coarse scale, a fine scale Boundary Value Problem
(BVP) is solved on a Representative Volume Element (RVE) (or unit cell, for periodic structures) in order to obtain
the homogenized macroscopic response. In the specific context of two-scale homogenization, the approximation
of the (computationally expensive) fine-scale solutions by projection-based methods has already been explored by
several authors (see, e.g. [19–21]). Beyond scale separation, more general hierarchical multiscale techniques have
been proposed, such as the multiscale finite element method [22], the localized reduced basis multiscale method [23],
the heterogeneous multiscale method [24,25], and the Generalized Multiscale FEM (GMsFEM) [26]. All these
methods attempt to approximate the global solution by coupling local (coarse-grid) solutions, which are sought in
low-dimensional spaces that reflect (fine-grid) structures in a way consistent with the local property of the differential

operator [22]. However, all these methods need to integrate the resulting reduced-order equations in all the fine-grid
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integration points, leading to approaches that are only suitable to address BVPs that bear an affine relation with
the coarse-grid input parameter (such as the case of linear elasticity, in which the reduced stiffness matrix can be
precomputed in the offline stage).

The method proposed in the present work belongs in the same class as the aforementioned general multiscale
approaches, but it presents some distinctive features which are described in what follows. Most of these features
are generalizations, to the case of general partitions, of the ideas proposed by the second author in Ref. [27] for the
particular case of periodic structures. Firstly, the chosen partitioning framework is the Localized Lagrange Multiplier
(LLM) method, originally proposed in Ref. [28], which introduces “fictitious” interfaces between contiguous
subdomains, whose displacements are assumed independent to the substructures. This partitioning scheme allows
us to indirectly enforce continuity conditions between adjacent subdomains, through the fictitious interfaces with
the use of localized Lagrange multipliers (for a better understanding of this approach we refer the reader to the
works of Park et al. in [28,29]). This partitioning scheme leads to a three-field formulation in terms of subdomain
displacements, subdomain reactions and interface displacements. As proposed in Ref. [27], we shall approximate
these variables as linear combinations of reduced sets of dominant modes (i.e. reduced-order bases), which are
precomputed by applying the SVD over a battery of full-order FE solutions (snapshots) at selected values of the
input parameter. Governing equations defined at the subdomain level are, as customary, projected onto the low-
dimensional subspaces spanned by these bases. Our multiscale model is then built by assigning a coarse-grid cell
to each subdomain, and by splitting the problem unknowns between local and global variables: local variables
are defined at the fine-grid subdomain level and global variables are those related to the interfaces, which in turn
define our coarse grid. One important ingredient of our method is that element-wise Gauss integration of reduced
internal forces is replaced by an efficient integration rule, obtained by means of the Empirical Cubature Method
(ECM) [27,30], which selects a subset of integration points among all the fine-grid Gauss points of the subdomain.
This efficient integration rule is tailored to the physics of the cell problem, and it can be regarded as a second step
of reduction (hence the name “hyperreduction”) of the (possibly nonlinear) internal force term in the subdomains
equilibrium equation. It should be remarked that, thanks to this hyperreduction step, the overall computational
cost of the method depends only on the number of subdomains in the partition as well as the number of reduced
integration points (yet not on the complexity of the underlying finite element discretization of each subdomain).

Another remarkable feature of the proposed approach is that, in order to avoid having to solve the nested
local/global problems (characteristic of most multiscale approaches), we introduce constraints in the construction of
our coarse-scale model in such a way that all subdomain variables can be expressed in terms of interface variables.
This particular feature results in a coarse-scale equilibrium equation posed solely in terms of interface variables,
or, stated another way, we replace the standard hierarchical approach by an inter-scale strategy, in which the
displacements of the interfaces are the only primary unknowns (more specifically, the amplitude of the displacement
modes of such interfaces). As a consequence of using this inter-scale approach, our methodology can be easily
implemented in a FE package, since the coarse-grid cells can be regarded as special types of finite elements, whose
nodes coincides with the centroids of the interfaces, and which have associated inter-scale operators (e.g. shape
functions) accounting for the influence of the underlying subdomain. Note that these particular inter-scale operators
are built based on computational experiments performed in the offline stage.

The generalization to the case of general partitions (including non-periodic cases) implies that, for each distinct
cell, a reduced-order basis should be computed based on a set of snapshots that includes information about the
specific cell configuration. Consequently, the offline computational cost increases with the number of distinct
subdomains in the partition. In order to overcome this issue, we propose here a strategy aimed at dealing with
many different cell configurations at a reasonable computational cost. Firstly, in this strategy, the training structures
(i.e. geometries to be used in the training tests built by an arrangement of cells) may be designed taking into
account combinations of distinct cells, so that we can extract patterns of deformation for many subdomains using
a few number of training tests. Secondly, we propose to leverage the manifold interpolation scheme advocated by
Amsallem et al. in Ref. [31]; this scheme will allow us to adapt the precomputed reduced-order bases to changes in
physical/modeling parameters. This strategy is particularly useful in cases in which the subdomains are amenable
to geometric parameterization. In such cases, we can build parametric reduced-order bases for a subset of cells, and
then, interpolate for new configurations, allowing us to enlarge our library of reduced bases without the need of
testing each distinct subdomain.

The computational cost invested in the offline stage is amply repaid by the low computational cost associated to
the online stage. Indeed, the key feature of using a localized ROM is that we can build many different coarse-scale
3
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models by combining the cells in diverse geometrical configurations, and rapidly analyze them under different
boundary conditions and external loads.

As mentioned at the outset, the scope of the proposed strategy is limited to the case of subdomains with two
interface boundaries. If the structure is prismatic, and the partition is made by planes normal to the midlines (so that
the subdomains are “slices”), then the resulting coarse-scale model is akin to that of classical FE structural beam
theories, in which the DOFs of the nodes encapsulate the displacements of the interfaces. The simplest model arising
from this conceptualization is that in which the interfaces do not experience deformation, just rigid-body motions
(6 DOFs for each interface/node) as in standard beam theories. However, the proposed coarse-scale may have more
than 6 DOFs, depending on the complexity of the cross-section, and on the training data. From this perspective,
the proposed approach may be regarded as a machine learning tool for deriving special types of one-dimensional
FE (two-nodes FE), representing the underlying two-interface cells, whose customized kinematics are based on the
deformational patterns of the subdomains sharing the interface. It should be noted, however, that the analysis of
prismatic structures by means of cross-sectional modes is not new, and within this context, our approach bears
some resemblance to the Generalized Beam Theory (GBT) [32], which has been extensively used for the buckling
analysis of open-sectional unbranched thin-walled members. However, as opposed to our approach, the GBT is
based on the computation of these modes in an analytical fashion, and besides, it does not offer the possibility of
combining slices with different cross-sectional modes.

1.1. Organization of the paper

The remainder of the paper is organized as follows. Section 2 introduces the employed domain decomposition
framework, describing the geometric setup and the fine-scale variables. Section 3 presents the parameterized
variational principle, as well as the corresponding governing equations. Section 4 describes the offline training stage
briefly, while Section 5 explains how to obtain the subdomain coarse-scale variables from the modal expansion of
their fine-scale counterparts. Section 6 is concerned with the low-dimensional approximation of fictitious interface
displacements and related well-posedness considerations. Section 7 thoroughly describes the coarse-scale model,
including details on the construction of many coarse-scale and inter-scale operators. Finally, in Sections 8, 9, and
10, we present the numerical evaluation of the proposed methodology. Section 8 presents a consistency analysis
performed on 2 distinct prismatic structures. Section 9, on the other hand, is concerned with the derivation of
characteristic coarse-scale elements (which solely accounts for the transmission of loads through the subdomain,
ignoring any local effect). In the first case, a rectangular cross-section beam is analyzed, and then, the derived
coarse-scale element is compared against Timoshenko-based beam element. In the second case, we derive a coarse-
scale element for a U-shaped cross-section beam, and then we test the performance in unseen scenarios (namely, a
longer structure with different boundary conditions). We conclude the numerical assessment in Section 10, applying
the methodology to two cases featuring heterogeneous composition, cross-section changes and curved midlines. In
the first case, we build a coarse-scale model for a fiber-reinforced tubular structure with 3 characteristic subdomains,
while in the second case we analyze a helical structure with variable cross-section, deriving 10 characteristic coarse-
cale elements. All the test cases are compared against FE solutions, measuring the accuracy and computational
ost reduction.

. Geometric setup

.1. Coarse and fine partitions

Let Ω ⊂ R3 be the domain occupied by a given body, with boundary ∂Ω , and consider two nested partitions
f Ω , referred to as coarse and fine partitions. The coarse partition is formed by M non-overlapping subdomains
1,Ω2 . . .ΩM such that each subdomain is in contact with either one or two subdomains, and, furthermore, the

nterface boundaries are planar and do not intersect with each other. For practical purposes, Ω may be thought
f as a curved beam of varying cross-section, and the subdomains as slices arising from cutting out the beam by
lanes along its axis, as illustrated in Fig. 1 (although it should be stressed that the approach is general and does not
resuppose any constraint in the shape and size of the subdomains). For convenience, we assume that the ends of

e
he beam are interface boundaries as well, so that all subdomains have 2 interface boundaries (denoted by ∂Ω1 and
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Fig. 1. Prismatic domain decomposed following the Localized Lagrange Multiplier method, in which fictitious interfaces between contiguous
lices are introduced for imposing continuity conditions. Graphical description of global and local reference systems for both fictitious
nterfaces ΓI (I = 1, 2, 3, 4, 5) and subdomains Ω e (e = 1, 2, 3, 4) .

∂Ω e
2 ). The remaining part of the boundary of each subdomain is referred to as lateral boundary, and it is denoted

by ∂Ω̂ e (e = 1, 2 . . . M).
We place at the centroid of each subdomain a local reference system defined by the triad of unit orthogonal

vectors {êe
1, êe

2, êe
3} (e = 1, 2 . . . M). The coordinates of this triad relative to the global reference system {e1, e2, e3}

re given by the matrix:

[ Q̂
e
]i j = eT

i êe
j , i, j = 1, 2, 3, e = 1, 2 . . . M. (1)

e adopt the convention of taking êe
1 normal to ∂Ω e

1 , and pointing inwards; êe
2 and êe

3, on the other hand, may be
riented as the principal axes of ∂Ω e

1 . Unless otherwise stated, in the sequel, all variables defined at subdomain
evel are expressed in this local reference system.

The fine partition, on the other hand, is a FE discretization of each subdomain Ω e into me elements (e =
, 2 . . . M). The vector of nodal displacements, expressed in the local reference frame of ∂Ω e, is denoted by

de
∈ R3ne

, ne being the number of nodes of the discretization. We split the list of DOFs of the subdomain Ω e

s

{1, 2 . . . 3ne
} = fe

∪ se
= f e

1 ∪ f e
2 ∪ se (2)

here f e
1 and f e

2 stand for the DOFs corresponding to ∂Ω e
1 and ∂Ω e

2 , respectively, whereas se represents the remaining
OFs. The corresponding partition of the vector of nodal displacements reads

de
=

[
Fede

Sede

]
=

[
de

f
de

s

]
=

⎡⎣de
f1

de
f2

de
s

⎤⎦ . (3)

here de
f1
= Fe

1de
∈ R3le

1 and de
f2
= Fe

2de
∈ R3le

2 are the interface boundary displacements of ∂Ω e
1 and ∂Ω e

2 ,
espectively (and Fe

1 and Fe
2 the corresponding Boolean restriction operators). This partition of nodal displacements

f the domain is illustrated in Fig. 2a.
The vector of nodal interface forces of subdomain Ω e is denoted by λe. For convenience in the formulation, we

efine it at all the nodes of the fine mesh of subdomain Ω e (thus λe
∈ R3ne

), yet it will be only nonzero at the
5
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Fig. 2. Fine-scale nodal variables employed by the Localized Lagrange Multiplier method. (a) Displacement vectors (for the subdomains,
partitioned as indicated in Eq. (3), and for the fictious interfaces, see Eq. (6)). (b) Interface force vector (Lagrange multipliers) for the
subdomains (partitioned as indicated in Eq. (4)).

entries corresponding to ∂Ω e
1 and ∂Ω e

2 , i.e.:

λe
=

[
λe

f
λe

s

]
=

⎡⎣λe
f1

λe
f2

λe
s

⎤⎦ , where λe
s = 0 (4)

(see Fig. 2b).

2.2. Fictitious interfaces

Interface conditions between adjacent subdomains are not established directly but through N fictitious interfaces
Γ1,Γ2 . . .ΓN . Boundary conditions at the ends of the beam are also established through these fictitious interfaces
(thus N = M + 1). The position of the fictitious interfaces coincides with the position of the interface boundaries
of the corresponding subdomains in the undeformed configuration (yet not necessarily after the deformation). The
connectivity information is provided by a M × 2 connectivity array T , so that if I = T (e, k), then ΓI = ∂Ω e

k . We
shall assume that the meshes of contiguous subdomains are conforming, and make therefore the discretization of
the corresponding fictitious interface coincident with both meshes (and with the same order of interpolation).

We attach a local coordinate system {ēI1, ēI2, ēI3} to the centroid of each fictitious interface ΓI (I = 1, 2 . . . N ).
If ΓI = ∂Ω e

1 for some e ∈ {1, 2 . . . M}, we align {ēI1, ēI2, ēI3} with the corresponding subdomain reference system
{êe

1, êe
2, êe

3}; otherwise, we make ēI1 normal to ∂Ω e
2 pointing outwards, and orient the tangential vectors ēI2 and ēI3

as the principal axes of ∂Ω e
2 . The coordinates of the interface triad of ΓI = ∂Ω e

k in the reference system of Ω e are
tored in the matrix

[ Qe
k]i j = êeT

i ēI j , i, j = 1, 2, 3, I = T (e, k). (5)

ote that, according to the convention adopted above, Qe
1 = I (e = 1, 2 . . . M), I ∈ R3×3 being the identity matrix.

We denote by uI ∈ R3lI the vector of nodal displacements for interface ΓI (see Fig. 2a), expressed in this case
in the reference system of the interface. Likewise, we write the displacement of the fictitious interfaces associated
to subdomain Ω e as

ue
:=

[
ue

1
ue

2

]
=

[
uI

uJ

]
, where I = T (e, 1), J = T (e, 2), e = 1, 2 . . . M. (6)

Displacements of fictitious interfaces are assumed independent of the associated subdomain displacements; the
ap between both variables for a given subdomain Ω e can be compactly expressed as

∆ue
= de

f − Deue (7)

here

De
=

[
De

1 0
e

]
:=

[
De

1 0
e e

]
. (8)
0 D2 0 Q2D2

6
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Here Qe
2 ∈ R3lI×3lI is a block diagonal matrix containing le

2 repetitions of the rotation matrix defined in Eq. (5):

Qe
2 = diag ( Qe

2, Qe
2, · · · , Qe

2), e = 1, 2 . . . M; (9)

hereas De
k denotes the connection matrix relating the displacements of ΓI and ∂Ω e

k . Notice that, as we have
ssumed that the meshes are conforming, De

k will be a square Boolean matrix.

. Parameterized variational principle

Consider the following parameterization of surface tractions, body forces and imposed displacements in terms
f a set of parameters µ ∈ D ⊂ Rdµ :

t̂ e
: ∂Ω̂ e

×D→ R3, be
: Ω e
×D→ R3, e = 1, 2 . . . M (10)

t̄ I : ΓI ×D→ R3, v̄K : ΓK ×D→ R3, I ∈ j l , K ∈ j r . (11)

Here be represents body forces per unit volume acting on Ω e, whereas t̂ e
are the surface tractions applied on

the lateral surface ∂Ω̂ e (e = 1, 2 . . . M). On the other hand, the mappings defined in Eq. (11) are the boundary
conditions1 on ΓI (I ∈ j ), j being the indexes of the end interfaces2; more specifically, v̄K is the prescribed

isplacement on ΓK (K ∈ j r ⊆ j ), whereas t̄ I designates the surface tractions on ΓI (I ∈ j l ⊆ j ). Both v̄K and
t̄ I are expressed in the local reference frame of each interface. Notice that if j r = j , that is, if displacements are
rescribed on both ends, then j l is empty.

Our goal is to derive a hyperreduced-order model (HROM) able to determine the nodal displacements de of each
ubdomain Ω e (e = 1, 2 . . . M), as well as other related fine-scale variables, for any value of the input parameter
∈ D. We shall assume that displacements and strains are small, that loads are applied in a quasi-static manner,

et we place no constraints on the constitutive behavior of the material(s). If the constitutive model(s) are nonlinear,
he pseudo-time is included in the set of parameters µ.

Following the approach advocated by the second author in Ref. [27] for periodic structures, we shall derive the
esired reduced-order equations from the stationary conditions of the following three-field energy functional:

Π =

M∑
e=1

(
Π e

int (d
e)−Π e

ext (d
e, be, t̂ e

)− π e(de, ue, λe)
)
−

∑
I∈ j l

Π̄I (uI , t̄ I ). (12)

Here, Π e
int stands for the strain energy term, Π e

ext denotes the contribution due to the work done by body forces
and surface tractions acting on the lateral surface (for each subdomain Ω e, e = 1, 2 . . . M), whereas Π̄I (I ∈ j l )
is the part due to surface tractions acting on the end interfaces . The term π e, on the other hand, is the interface
or dislocation potential of subdomain Ω e, defined as the work done by the interaction forces λe

f over the interface
gap introduced in Eq. (7), i.e.:

π e
= λeT

f (de
f − Deue), e = 1, 2 . . . M. (13)

The stationary condition of Eq. (12) gives

δΠ =

M∑
e=1

(
δΠ e

int − δΠ e
ext − δπ e)

−

∑
I∈ j l

δΠ̄I = 0, (14)

where

δΠ e
int = δdeT Fe

int , e = 1, 2 . . . M (15)

δΠ e
ext = δdeT Fe

ext , e = 1, 2 . . . M (16)

δΠ̄I = δuT
I F̄I , I ∈ j l . (17)

Here, Fe
int ∈ R3ne

and Fe
ext ∈ R3ne

are the FE nodal vectors of internal and external forces, respectively (the latter
due to body forces and lateral surface tractions, and both expressed in the subdomain reference system), whereas

1 We consider that each of these end boundaries are either strictly displacement boundaries or traction boundaries.
2 For instance, if the fictitious interfaces are numbered consecutively, then j = {1, N }.
7
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F̄I ∈ R3lI stands for nodal external forces, expressed in the interface reference system, due to the surface tractions
applied on the fictitious interfaces at the end of the beam ΓI (I ∈ j l ). Introducing the preceding equations into

q. (14), and expanding the variation of the interface potential (13), we get, upon gathering the terms involving
ariations of the unknowns of the problem (δde, δλe, and δue), the following variational equations:

M∑
e=1

δdeT (Fe
int(d

e)− Fe
ext − λe)

= 0, (18)

M∑
e=1

δλe
f

T (de
f − Deue) = 0, (19)

M∑
e=1

δueT DeT λe
f −

∑
I∈ j l

δuT
I F̄I = 0, (20)

hich are to be met for all δde, δλe
f , and all δue and δuI compatible with the Dirichlet boundary conditions. The

arenthetical terms in Eq. (18) and Eq. (19) represent equilibrium and compatibility, respectively, at subdomain
evel, whereas Eq. (20) encapsulates the equations of equilibrium at interface level.

emark 3.1. The three-field energy functional (12) is based on the Localized Lagrange Multiplier (LLM) method,
roposed by Park et al. in Refs. [28,33]. The reasons for favoring this method over other partitioning techniques
ere laid out by the second author in Ref. [27] for the case of periodic materials — and the same reasons apply to

he general case addressed here. First and foremost, the LLM allows one to seamlessly deal with non-conforming
artitions (non-conformity here is to be understood in a broader sense, that is, not only as non-matching grids, but
lso in terms of the spaces spanned by the modes at the common boundaries3). Using the LLM approach brings
nother valuable advantage, which is that, since the displacement of the fictitious interfaces is assumed independent
f the displacement of the subdomains, we can introduce an independent modal approximation for the displacement
f such interfaces. The amplitude of such modes will become the coarse-scale degrees of freedom of the final
educed-order model (this will be explained in detail in Section 6.1).

. Offline training stage

As customary in any model reduction endeavor, the first step in the construction of the HROM is the training
tage, in which the full-order (fine-scale) FE equilibrium equations are solved for a representative sample of
he parameter space, denoted by Dtrain

= {µ1, µ2 . . . µP} ⊂ D. The resulting solutions are stored in snapshot
atrices, which will be then processed via the SVD in order to determine dominant spatial modes. As opposed

o standard reduced-order models, however, here we are not interested in determining global modes, but rather
n capturing local patterns of behavior in terms of displacements and forces, characteristic of each subdomain

e. Accordingly, the solutions for each input parameter are to be stored separately, with one snapshot matrix per
subdomain. More specifically, three groups of snapshot matrices are required to construct the proposed HROM,
namely, nodal displacements:

Ae
d =

[
de(µ1) de(µ2) · · · de(µP )

]
, e = 1, 2 . . . M; (21)

stresses at the Gauss points of the mesh:

Ae
σ =

[
Se(µ1) Se(µ2) · · · Se(µP )

]
, e = 1, 2 . . . M; (22)

nd interface forces:

Ae
λ =

[
λe

f (µ1) λe
f (µ2) · · · λe

f (µP )
]
, e = 1, 2 . . . M. (23)

n Eq. (22), Se
∈ R6me

gs is the vector formed by gathering in a single column the Cauchy stresses σ ∈ R6 at all
the me

gs Gauss points of the finite element mesh of Ω e. Regarding the interface forces in Eq. (23), if the full-scale
equations are solved using a standard domain decomposition method, this variable is a natural byproduct of the
formulation. If, by contrast, the problem is addressed without exploiting the coarse decomposition, this variable has
to be determined from the nodal residual at subdomain level.

3 In our case, since the modes of each domain are obtained independently from one another, the spaces spanned by the modes of two
contiguous subdomains at a common boundary are not guaranteed to coincide, hence the non-conformity.
8
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5. Low-dimensional approximations

5.1. Overview

Once we have at our disposal the snapshot matrices described in the foregoing, the next step in the construction
of the HROM is the approximation of the nodal unknowns appearing in the variational Eqs. (18) to (20) (subdomain
displacements de subdomain interaction forces λe

f and interface displacements uI ) as a linear combination of
precomputed global basis vectors or modes. In this regard, we adopt and extend, to the case of arbitrary partitions,
the approach proposed by the second author in Ref. [27] for periodic structures, according to which each of these
variables admits the following linear expansions:

Subdomain displacements: de
= Φeqe

=

Rigid body  
Φ̂

e q̂e
+

Deformational  
Φ̃

e q̃e
, e = 1, 2 . . . M (24)

Subdomain interaction forces: λe
f = Ψ e

f re
=

Resultant  
Ψ̂

e
f r̂e
+

Self-equilibrated  
Ψ̃

e
f r̃e

, e = 1, 2 . . . M (25)

Interface displacements: uI = VI aI =

Rigid body
V̂I âI +

Fluctuations
ṼI ãI , I = 1, 2 . . . N . (26)

Here, Φe, Ψ e
f and VI are the basis matrices corresponding to domain displacements, interaction forces and interface

displacements, respectively, while qe, re and aI are the corresponding amplitudes. Note that each variable is further
ecomposed into two components, with their corresponding basis matrices and amplitudes. The basis matrices
dentified by a hat over the corresponding letter are matrices which solely depend on the geometry of the subdomains
nd the corresponding FE discretizations, namely: the subdomain and interface matrices of rigid-body modes, Φ̂

e

nd V̂I , respectively, and the matrix of resultant modes Ψ̂
e
f (to be defined later). On the other hand, the matrices

dentified by a tilde over the symbol — namely, the subdomain deformational modes Φ̃
e
, the interface fluctuation

odes ṼI , and the subdomain self-equilibrated modes Ψ̃
e
f — are empirical matrices, in the sense that they are derived

from the data collected during the training stage, more specifically, from the snapshot matrices given in Eqs. (21)
and (23), as we shall explain later. We further impose the following orthogonality conditions to each decomposition:

Φ̂
eT MeΦ̃

e
= 0, e = 1, 2 . . . M (27)

Ψ̂
eT
f Me−1

f f Ψ̃
e
f = 0, e = 1, 2 . . . M (28)

V̂ T
I M̄I ṼI = 0, I = 1, 2 . . . N , (29)

here Me
∈ R3ne

×3ne
and M̄I ∈ R3lI×3lI denote the geometric nodal mass matrices4 of subdomain Ω e and interface

I , respectively; whereas Me
f f is defined by

Me
f f =

[
Me

f1f1
0

0 Me
f2f2

]
, e = 1, 2 . . . M, (30)

Me
fi fi
∈ R3le

i ×3le
i being the block matrix of Me corresponding to the interface boundary DOFs f e

i (i = 1, 2).

emark 5.1. Orthogonality conditions between nodal displacements, in Eqs. (27) and (29), are established in
erms of their corresponding geometric mass matrices because the inner product associated to the geometric mass

atrix is the discrete counterpart of the L2-inner product. A similar reasoning applies to Eq. (28): the L2 inner
roduct for surface tractions on a given boundary surface translates into a discrete inner product defined in terms
f the inverse of the geometric mass matrix. We prove these two statements in Appendix A, Propositions A.1 and
.2.

In what follows, we provide further details on decompositions (24), (25) and (26), with emphasis on how to
etermine the empirical components of each decomposition from the snapshot matrices introduced in Eqs. (21) and
23).

4 The definition of Me is given in Eq. (A.2) of Appendix A.
9
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5.2. Subdomain displacements

Decomposition in Eq. (24) into rigid-body and deformational or straining components is a standard one in
Localized-Lagrange partition methods, see e.g. [28]. The expression for the rows of the matrix of rigid-body modes
Φ̂

e
∈ R3ne

×6 corresponding to the j th node reads:

[Φ̂
e
] j =

⎡⎣1 0 0 0 [Xe
j ]3 −[Xe

j ]2

0 1 0 −[Xe
j ]3 0 [Xe

j ]1

0 0 1 [Xe
j ]2 −[Xe

j ]1 0

⎤⎦ j = 1, 2 . . . ne
; e = 1, 2 . . . M, (31)

where Xe
j ∈ R3 denotes the coordinates of the node in the local reference system of subdomain Ω e. Notice that we

have placed the translations modes as the first 3 columns of the matrix. Thus, the first 3 entries of q̂e
∈ R6 represent

translations along the local axes of domain Ω e, while the remaining entries represent infinitesimal rotations around
its centroid.

The orthogonal projection matrix that maps nodal displacement vectors onto the column space of the rigid body
modes Φ̂

e
, denoted by span(Φ̂

e
), is given by

Ŝe
:= Φ̂

e
(Φ̂

eT MeΦ̂
e
)−1Φ̂

eT Me, e = 1, 2 . . . M (32)

(orthogonality is defined in terms of the geometric mass matrix Me, as demanded by condition in Eq. (27)).
Accordingly, the operator defined by

S̃e
:= I − Ŝe

, e = 1, 2 . . . M (33)

maps displacement vectors onto the orthogonal complement of span(Φ̂
e
) ∈ Rne

, which is nothing but the subspace
of deformational displacements of domain Ω e. It may be inferred, thus, that the matrix of deformational modes
appearing in decomposition (24), Φ̃

e
∈ R3ne

×pe
, will be a linear combination of the columns of S̃e Ae

d , or to put it
alternatively, the column space of the desired matrix will be a subspace of the column space of the snapshot matrix:

span(Φ̃
e
) ⊆ span(S̃e Ae

d), e = 1, 2 . . . M. (34)

However, at this juncture of the discussion, we cannot specify which particular subspace is to be chosen, because
the choice depends on the as yet unaddressed self-equilibrated interface force modes Ψ̃

e
. The procedure for finally

computing the domain deformational modes Φ̃
e

will be explained later on, in Section 5.3.1.

5.3. Interaction forces

The matrix of resultant modes Ψ̂
e
f ∈ R3(le

1+le
2 )×6 appearing in Eq. (25) is defined in terms of the rigid-body modes

of the subdomain as

Ψ̂
e
f = Me

f fΦ̂
e
f = Me

f1f1
Φ̂

e
f1
+ Me

f2f2
Φ̂

e
f2
, e = 1, 2 . . . M. (35)

As argued in Ref. [27], enriching the modal basis for interaction forces with these resultant modes allows the
reduced-order model to exactly capture the transmission between subdomains of the resultants and moment resultants
of arbitrary body forces and lateral surface tractions, even if the training sample Dtrain does not consider such forces.

In analogy to Eqs. (32) and (33), we introduce the orthogonal projection matrices

Ĥe
:= Ψ̂

e
f (Ψ̂

eT

f Me−1

f f Ψ̂
e
f )−1Ψ̂

eT

f Me−1

f f , e = 1, 2 . . . M (36)

and

H̃e
= I − Ĥe

, e = 1, 2 . . . M (37)

which map nodal interface force vectors onto span(Ψ̂
e
f ) and its orthogonal complement, respectively — orthogo-

e−1

nality in this case is defined in terms of the norm induced by M f f , as required by condition (28).

10
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c

Algorithm 1: Weighted (truncated) Singular Value decomposition (from Ref. [27])

1 Function [U, S, V ] =WSVD(A, M, T O L):
Data: A ∈ Rn×m , M ∈ Rn×n (positive definite), tolerance 0 ≤ T O L ≤ 1
Result: U ∈ Rn×r , S ∈ Rr×r , V ∈ Rm×r (r ≤ min(n, m)), with UT MU = V T V = I r×r ,

S(i+1,i+1) ≥ S(i,i) > 0, such that A = USV T
+ E, ∥E∥M ≤ ϵ∥A∥M

2 M̄ ←chol(M) // Cholesky decomposition of M, i.e. M = M̄T M̄

3 A← M̄ A
4 [Ū, S, V ]← SVD(A,TOL) // Truncated SVD of A.

5 U← M̄−1Ū

The term “resultant modes” refers to the fact that the resultants and moment resultants (with respect to the
entroid of the domain) of a given interface force vector λe

f and its projection Ĥe
λe

f are identical. Indeed, by virtue
of Eqs. (35) and (36), we have that5:

Φ̂
eT

f Ĥe
λe

f = Φ̂
eT

f Me
f fΦ̂

e
f (Φ̂

eT

f Me
f fΦ̂

e
f )−1Φ̂

eT
f λe

f = Φ̂
eT

f λe
f , e = 1, 2 . . . M. (38)

Conversely, the self-equilibrated modes are so named because their resultants and moment resultants with respect
to the centroid of the subdomain are zero:

Φ̂
eT
Ψ̃

e
= Φ̂

eT

f Ψ̃
e
f = 0 (39)

(this readily follows from Eqs. (25), (28) and (35)). Thus, operator H̃e
allows one to extract the self-equilibrated part

of any nodal interface vector. In particular, the matrix of self-equilibrated modes Ψ̃
e
f appearing in decomposition

(25) will be a linear combination of H̃e Ae
λ — the self-equilibrated component of the snapshot matrix given in

Eq. (23). We may determine this linear combination by means of the weighted SVD (see Algorithm 1):

[Ψ̃
e
f , •, •] = WSVD(H̃e Ae

λ, Me−1

f f , ϵλ), e = 1, 2 . . . M (40)

where 0 ≤ ϵλ ≤ 1 is a user-prescribed tolerance.6 Alternatively, rather than applying the decomposition to the whole
matrix of snapshots, one may calculate the modes corresponding to different blocks of the matrix (for instance, the
blocks associated to each training test), and then orthogonalize the set of modes using again the SVD (this is the
strategy followed in the numerical example discussed in Section 9.3.2).

5.3.1. Relation between deformational and self-equilibrated modes
Let us calculate the work performed by the self-equilibrated modes Ψ̃

e
∈ R3ne

×pe
over a subdomain nodal

displacement de; by using Eq. (24), this work is expressible as

Ψ̃
eT

de
= Ψ̃

eT (
Φ̃

e q̃e
+ Φ̂

e q̂e
)
= (Ψ̃

eT
Φ̃

e
)q̃e

, e = 1, 2 . . . M, (41)

where we have exploited the fact that, by virtue of Eq. (39), the term involving rigid-body displacements vanishes.
This expression indicates that the deformational modes Φ̃

e
are work conjugate to the self-equilibrated modes. The

matrix appearing in the rightmost term of the above equation will be denoted henceforth by

He
:= Ψ̃

eT
Φ̃

e
= Ψ̃

eT

f1
Φ̃

e
f1
+ Ψ̃

eT

f2
Φ̃

e
f2
. (42)

In Ref. [27], it is demonstrated that, in order to cast the coarse-scale problem solely in terms of the coarse-scale
DOFs a — one of the premises of the present work —, it is necessary that this matrix He be invertible. We
shall enforce this invertibility condition, as well as condition (34), by following the procedure outlined in Box
5.1. Essentially, it consists in determining Φ̃

e
as a linear combination of the deformational component of the

displacement snapshots (denoted by Ãe
d , see step 1), i.e., Φ̃

e
= Ãe

d c. The vector of coefficients c, on the other

5 The resultants and moment resultants of a system of nodal forces are calculated by multiplying the transpose of the rigid-body modes
and the vector of nodal forces, see e.g. [27]

6 Notice that, in using Me−1
as weighting matrix, the resulting modes becomes orthogonal in this matrix, that is: Ψ̃

eT
Me−1

Ψ̃
e
= I .
f f f f f f

11
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hand, is obtained from the projection of Ψ̃
e
f onto Ãe

d(f e, :) (step 3). Physically, this is equivalent to choose Φ̃
e

as
the deformational displacement modes that contribute the most to the work done by the interaction forces. If the

imension of the projected subspace happens to be less than the number of interface deformational displacement
odes (Φ̃

e
f ), this implies that some of the force patterns in Ψ̃

e
f does not correspond to any displacement of the

nterface boundaries; accordingly, in such circumstances, in order to guarantee the invertibility of He, we discard
he less significant mode in Ψ̃

e
f (the one with the smallest singular value, see step 4), and repeat the procedure.

iven Ae
d (matrix of displacement snapshots, see Eq. (21)) and Ψ̃

e
f (self-equilibrated modes, computed in expression

40)), find Φ̃
e

such that span(Φ̃
e
) ⊆ span(S̃e Ae

d)) and He
= Ψ̃

eT
Φ̃

e
is invertible.

1. Compute the deformational component of Ae
d :

Ãe
d = S̃e Ae

d (43)

2. Determine the SVD of the row block of Ãe
d corresponding to the interfaces (DOFs f e)

[Ua, Sa, V a] = SVD( Ãe
d(f e, :), 0)

3. Obtain the SVD of the coefficients of the projection of Ψ̃
e
f onto span(Ua):

[Uu, Su, V u] = SVD(U T
a Ψ̃

e
f , 0) (44)

4. If ncol(Uu) = pe
= ncol(Ψ̃

e
f ) (here ncol(•) denotes number of columns), then go to step 5; otherwise,

make Ψ̃
e
f ← Ψ̃

e
f (:, 1 : pe

− 1) and return to step 3.
5. Compute

B = Ãe
d(Sa V a)Uu (45)

6. Orthogonalize B with respect to Me by applying the weighted SVD (see Algorithm 1):

[Φ̃
e
, •, •] = WSVD(B, Me, 0) (46)

Box 5.1: Computation of deformational modes Φ̃
e

(for a given subdomain Ω e, e = 1, 2 . . . M)

6. Fictitious interface displacements

6.1. Coarse-scale DOFs

We focus now on Eq. (26), which is the modal expansion of the fictitious interface displacements. Matrix
VI ∈ R3lI×sI in Eq. (26) is the matrix of displacement modes of interface ΓI , whereas aI ∈ RsI stands for the
corresponding amplitudes (I = 1, 2 . . . N ). Following the proposal in Ref. [27], we shall assign to aI the role of
coarse-scale DOFs (or generalized displacements) associated to the fictitious interface ΓI , whose centroid will be
accordingly conceptualized as a coarse-scale node (as in a typical beam finite element formulation). Likewise, the
global vector of coarse-scale DOFs will be formed by stacking in a single column the coarse-scale DOFs of all
interfaces:

a =

⎡⎢⎢⎢⎣
a1
a2
...

⎤⎥⎥⎥⎦ . (47)
aN

12
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To facilitate the formulation, the fictitious displacements associated to a subdomain Ω e, see Eq. (6), are written
using the following compact notation:

ue
= V eae, e = 1, 2 . . . M (48)

where

V e
:=

[
V e

1 0
0 V e

2

]
=

[
VI 0
0 VJ

]
, ae

=

[
ae

1
ae

2

]
=

[
aI
aJ

]
(49)

ith I = T (e, 1) and J = T (e, 2) (e = 1, 2 . . . M). Lastly, we introduce two Boolean operators Le and L̄ I

elating the global vector of coarse-scale DOFs with the coarse-scale DOFs of domain Ω e and fictitious interface

I , respectively:

ae
= Lea, (e = 1, 2 . . . M), aI = L̄ I a. (I = 1, 2 . . . N ). (50)

.2. Interface rigid-body modes

In analogy to the case of subdomain displacements, interface displacements in Eq. (26) are also orthogonally
ecomposed into a rigid-body component, V̂I âI , and a deformational component, ṼI ãI . Notice that the latter may be
nterpreted as spatial fluctuations with respect to a hypothetical plane cross-section configuration. For this reason,
e shall also refer to ṼI ãI as the vector of interface fluctuations. The matrix of rigid-body modes V̂I ∈ R3lI×6 is
iven by (for a given node j):

[V̂I ] j =

⎡⎣1 0 0 0 [Y e
j ]3 −[Y e

j ]2

0 1 0 −[Y e
j ]3 0 [Y e

j ]1

0 0 1 [Y e
j ]2 −[Y e

j ]1 0

⎤⎦ j = 1, 2 . . . lI ; I = 1, 2 . . . N (51)

here Y e
j ∈ R3 denotes the coordinates of the node in the local reference system attached to the interface ΓI (which

ecall it is located at its centroid).

emark 6.1. The matrix of rigid-body modes V̂I is to be invariably included in the modal expansion of fictitious
nterface displacements, for otherwise pure rigid-body rotations could not be represented exactly. This means that,
t the very least, each coarse-scale node has 6 DOFs (as in a typical finite element beam formulation): 3 translations
nd 3 rotations (the latter referred to the centroid of the fictitious interface).

.3. Interface fluctuation modes

Let us turn now our attention to the determination of what we have called the matrix of fluctuation (or fluctuating)
odes ṼI (I = 1, 2 . . . N ). The operator that extracts the fluctuating component of a given nodal displacements of

I is defined by

P̃I = I − P̂ I , I = 1, 2 . . . N , (52)

here

P̂ I = V̂I (V̂ T
I M̄I V̂I )−1V̂ T

I M̄I , I = 1, 2 . . . N . (53)

Note that P̃I in Eq. (52) is the interface counterpart of the subdomain operator S̃e
, defined in Eq (33), which

as used to purge the rigid-body component from the domain displacement snapshots Ae
d determined in the training

tage. However, in this case, there is no such a thing as a snapshot matrix of interface displacements onto which to
pply this operator. Rather, the fluctuation component of a given interface displacement is to be determined from

he deformational modes of the subdomains modes sharing the interface, as explained in what follows.
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Algorithm 2: Intersection of subspaces

1 Function U =INTS(A, B, M, ϵ f ):
Data: Matrices A ∈ Rn×m , B ∈ Rn×p, M ∈ Rn×n (positive definite). 0 ≥ ϵ f ≥ 1 (threshold for

defining intersection, e.g. ϵ f = 10−6 )
Result: U ∈ Rn×r , r ≤ min(m, p), with UT MU = I and span(U) = span(A) ∩ span(B)

2 if M ̸= I then M ←chol(M) // Cholesky decomposition of M
3 A← M A; B← M B
4 [Y A, ·, ·]← SVD(A) // Thin SVD of A. Y A is the matrix of left singular vectors

5 [Y B, ·, ·]← SVD(B)
6 [Z, S, ·]← SVD(Y T

AY B) // S is a vector containing the singular values, which are the cosines of the

principal angles

7 Find r such that Sr+1 < 1− ϵ f .
8 U← M−1Y A Z(:, 1 : r ) // Z(:, 1 : r ) is the block matrix of Z formed by columns 1, 2 . . . r

Indeed, consider an interface ΓI shared by two subdomains Ω e and Ω g (so that I = T (e, 2) = T (g, 1)).
uppose that the deformational modes of both subdomains, Φ̃

e
and Φ̃

g
, have been already obtained by the procedure

escribed in Box 5.1. The nodal displacements of ∂Ω e
2 and ∂Ω

g
1 referred to the mesh of the common fictitious

nterface ΓI are given by

u−I = De−1

2 de
f2
, u+I = Dg−1

1 dg
f1
, (54)

espectively (matrices De
2 and Dg

1 were defined in Eq. (8)). Furthermore, according to Eq. (24), de
f2
∈span([Φ̂

e
f2
,Φ̃

e
f2

])
nd dg

f1
∈ span([Φ̂

g
f1
, Φ̃

g
f1

]). Since Φ̂
e
f2

and Φ̂
g
f1

are entries of rigid-body modes, its fluctuating components are zero,
nd therefore, it follows that

P̃I u−I ∈ span(Φ̆
−

I ), where Φ̆
−

I := P̃I (De−1

2 Φ̃
e
f2

), (55)

P̃I u+I ∈ span(Φ̆
+

I ), where Φ̆
+

I := P̃I (Dg−1

1 Φ̃
g
f1

), (56)

hat is, the fluctuating components of u−I and u+I reside in the span of the fluctuating components of the
orresponding subdomain deformational modes, denoted by Φ̆

−

I and Φ̆
+

I , respectively. We seek modes common
o both subspaces, or more formally, we seek an orthogonal basis matrix W̃I for the intersection of both subspaces:

span(W̃I ) = span(Φ̆
−

I ) ∩ span(Φ̆
+

I ). (57)

he operations required for computing a basis matrix for the intersection subspace are represented here by the
unction

W̃I = INTS(Φ̆
−

I , Φ̆
+

I , M̄I , ϵ f ), I = 1, 2 . . . N (58)

escribed in Algorithm 2. The calculations are based on the concept of principal angles between two subspaces [34].
ne first computes orthogonal basis matrices for both subspaces (lines 4 and 5 in Algorithm 2), and then determines

he SVD of the coefficients of the projection of one subspace onto the other (line 6). As the basis matrices are
rthogonal, the resulting SVD has singular values ranging between 0 and 1 — these are the cosines of the principal
ngles. Strictly speaking, the dimension of the intersection subspace is equal to the number of singular values equal
o one. Nevertheless, we relax this condition and consider that the intersection is determined by those singular
alues above 1− ϵ f , where ϵ f ≈ 0 is a user-prescribed threshold.

.3.1. Well-posedness considerations
The reader may have noticed that, although our goal was to determine the basis matrix of fluctuation modes

ṼI — the one appearing in the approximation of fictitious interface displacement in Eq. (26) — we have used a
ifferent letter (W̃I ) for representing the output of the intersection operation in expression (58). This has been done
n anticipation of the fact that not all the fluctuation modes common to the domains sharing the interface can be

ncluded in the approximation of the fictitious interface displacements.
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The rationale behind this restriction is as follows. Suppose that we have determined, for a given domain Ω e, the
deformational modes Φ̃

e
as well as the candidates for fluctuation modes of the corresponding fictitious interfaces

W̃ e
1 = W̃I and W̃ e

2 = W̃J , where I = T (e, 1), J = T (e, 2). Let us suppose for the sake of argument that
col(W̃ e

1 ) = ncol(W̃ e
2 ) = ncol(Φ̃

e
) = pe, that is, there are as many fluctuation modes for each interface as

eformational modes pe (empirically, we have found that this is almost always the case). Next suppose we set to
ero the rigid-body displacements of the subdomain, as well as the displacements of one of the fictitious interface,
ay ΓI . In doing so, the displacement of the other interface boundary ∂Ω e

2 becomes describable by pe variables (the
mplitude of the subdomain deformational modes, q̃e), while the displacement of the associated fictitious interface
J becomes parameterized by a total 6+pe (these extra 6 DOFs are associated to the interface rigid-body modes V̂I ).
his means the fictitious interface Γ J has 6 more independent modes than the boundary ∂Ω e

2 whose displacement it
ntends to approximate. As a consequence, since the unknowns of the coarse-scale model are the amplitudes of the
ctitious interface modes, including all the columns of W̃J in the model would result in a system of coarse-scale
quilibrium equations with more unknowns that linearly independent equations.

It follows from the foregoing argumentation that a necessary condition for ensuring well-posedness of the coarse-
cale model is that the number of modes for a given fictitious interface cannot be higher than the number of
eformational modes of the domains sharing the interface. This implies that the number of fluctuation modes of
nterface ΓI , s̃I := ncol(ṼI ), shared by subdomains Ω e and Ω g is bounded by

0 ≤ s̃I ≤ min(pe, pg)− 6, I = T (e, 2) = T (g, 1). (59)

If min(pe, pg) = 6, i.e., if one of the domains have only 6 deformational modes, then the fictitious interface
haring the two domains cannot have any fluctuation mode (s̃I = 0), and will move accordingly as a rigid body — or
n other words, the fictitious interface will remain unstrained during the deformation of the contiguous subdomains.

For cases in which min(pe, pg) > 6, on the other hand, one is confronted with the task of determining a matrix
ṼI with s̃I columns, and of the form ṼI = W̃I c, c being a matrix of coefficients. Not all choices of c are admissible,
ecause, as demonstrated by the second author in Ref. [27] for the case of periodic structures, the column space of

ṼI must contribute effectively to the work done by the interaction forces of both subdomains; this amounts to state
hat

rank(Ψ̃
eT

f2
De

2VI ) = rank(Ψ̃
gT

f1
Dg

1 VI ) = 6+ s̃I , I = T (e, 2) = T (g, 1), (60)

here VI = [V̂I , ṼI ]. To meet the above conditions, we have adapted, to the case of general partitions, the selection
ethod proposed in Ref. [27] for periodic structures; the involved operations for a interface ΓI shared by subdomains
e and Ω g (so that I = T (e, 2) = T (g, 1)) are synthesized here by the function

ṼI = FLUCMODES(Φ̃
e
f2
, Φ̃

g
f1
, Ψ̃

e
f2
, Ψ̃

g
f1
, V̂I , M̄I , De

2, Dg
1, ϵ f ), (61)

escribed in Algorithm 3. In essence, the procedure parallels that employed in Box 5.1 for determining deformational
odes, in the sense that the algorithm computes the fluctuation modes that contribute the most to the work done

y the interaction forces at the interface. Lines 2 and 3 are the steps already outlined for determining the candidate
nterface modes W̃I . In line 4, we compute the interaction force modes which are identical in both ∂Ω e

2 and ∂Ω
g
1 ,

nd then determine the projection of these interaction modes (U) onto the column space of the basis formed by
he rigid-body modes V̂I and the candidate fluctuation modes W̃I (lines 5, 6 and 7) — line 6 serves the purpose of
nsuring that all modes contribute to the work done by the interaction forces, as demanded by conditions (60). Lastly,
ine 8 determines which is the component of U contained on the span(W̃I ), and therewith the desired fluctuation

odes matrix ṼI .

. Coarse-scale model

Now that we have at our disposal the basis matrices for rigid-body and deformational displacements, Φ̂
e

and˜e
, the resultant and self-equilibrated force modes, Ψ̂

e
and Ψ̃

e
(e = 1, 2 . . . M), as well as the displacement

odes of each interface VI = [V̂I , ṼI ] (I = 1, 2 . . . N ), we can proceed to the derivation of the (reduced-order)
oarse-scale equations by substituting the modal expansions given in Eqs. (24) to (26), as well as their variations,
n the variational Eqs. (18) to (20) . Exploiting the arbitrariness of δq̂e, δq̃e, δ r̂e and δ r̃e, and making use of the
ariables defined in Eqs. (47) to (50), we obtain:

Φ̃
eT Fe (q̃e)− Φ̃

eT Fe
− Φ̃

eT
(
Ψ̂

e r̂e
+ Ψ̃

e r̃e
)
= 0, e = 1, 2 . . . M (62)
int ext
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Algorithm 3: Fluctuation modes of a given interface ΓI (shared by domains Ω e and Ω g , so that I =
(e, 2) = T (g, 1))

1 Function ṼI =FLUCMODES(Φ̃
e
f2
, Φ̃

g
f1
, Ψ̃

e
f2
, Ψ̃

g
f1
, V̂I , M̄I , De

2, Dg
1, ϵ f ):

Data: Φ̃e
f2
, Ψ̃

e
f2
∈ R3le

2×pe
: deformational displacements and self-equilibrated interaction forces modes

at ∂Ω e
2 . Φ̃

g
f1
, Ψ̃

g
f1
∈ R3lg

1 ×pg
: deformational displacements and self-equilibrated interaction forces

modes at ∂Ω
g
1 (lg

1 = le
2 = lI ). De

2, Dg
1 ∈ R3lI×3lI : Matrices relating domain DOFs with fictitious

interface DOFs (see Eq. (8)). V̂I ∈ R3lI×6: rigid-body modes of ΓI . M̄I ∈ R3lI×3lI : geometric
mass matrix of the interface ΓI . 0 ≤ ϵ f ≤ 1: tolerance for determining intersection of subspaces,
typically ϵ f ∼ 10−3)

Result: ṼI ∈ R3lI×s̃I : Matrix of fluctuation modes (here s̃I ≤ min(pe, pg)− 6).

2 Φ̆
−

I ← P̃I De−1

2 Φ̃
e
f2

; Φ̆
+

I ← P̃I Dg−1

1 Φ̃
g
f1

// Fluctuating component of deformational modes, see Eqs. (55)

and (56). Projection operator P̃I = P̃I (V̂I , M̄I ) is defined in Eq. (52).

3 W̃I ← INTS(Φ̆
−

I , Φ̆
+

I , M̄I , ϵ f ) // Candidates for fluctuation modes (see Eq. (58) and Algorithm 2).

4 AI ← INTS(De−1

2 Ψ̃
e
f2
, Dg−1

1 Ψ̃
g
f1
, M̄−1

I , ϵ f ) // Intersection column spaces of interaction forces.

5 G← [V̂I , W̃I ]T AI // Coefficients projection interaction forces onto the column space of [V̂I , W̃I ]
6 [v, •, •]← SVD(G) // SVD of the coefficients (to filter out modes not contributing to the work done

by interaction forces)

7 U← [V̂I , W̃I ]v // Matrix whose column space is equal to the column space of the desired ṼI

8 ṼI ← INTS(U, W̃I , M̄I , ϵ) // We seek here the intersection of the column space of U and of the

candidate modes W̃I . Take ϵ ≈ 0 (say ϵ = 10−6), such that s̃I = ncol(AI ).

Φ̂
eT Fe

int (q̃
e)− Φ̂

eT Fe
ext − Φ̂

eT
(
Ψ̂

e r̂e
+ Ψ̃

e r̃e
)
= 0, e = 1, 2 . . . M (63)

Ψ̃
eT
f

(
Φ̂

e
f q̂e
+ Φ̃

e
f q̃e
)
− Ψ̃

eT
f DeV eae

= 0, e = 1, 2 . . . M (64)

Ψ̂
eT
f

(
Φ̂

e
f q̂e
+ Φ̃

e
f q̃e
)
− Ψ̂

eT
f DeV eae

= 0, e = 1, 2 . . . M (65)

δaT

⎛⎝ M∑
e=1

LeT V eT DeT
(
Ψ̂

e
f r̂e
+ Ψ̃

e
f r̃e
)
−

∑
I∈ j l

L̄T
I V T

I F̄I

⎞⎠ = 0, ∀ δa ∈ V. (66)

qs. (62) and (63) are the equilibrium equations for each subdomain, while Eqs. (64) and (65) represent
ompatibility conditions between the subdomain interface boundaries and their corresponding fictitious interfaces.
n the other hand, Eq. (66) is the variational equation corresponding to the equilibrium of the fictitious interfaces.
ote that the variations of the global vector of coarse-scale DOFs are constrained to lie in an (as yet) unspecified

est space V ⊂ Rs , where s :=
∑N

I=1 sI is the total number of coarse-scale DOFs.
For notational compactness, it proves convenient to define the following reduced-order matrices:

Ĥ e
:= Ψ̂

eT Φ̃
e
= Ψ̂

eT
f1

Φ̃
e
f1
+ Ψ̂

eT
f2

Φ̃
e
f2
, e = 1, 2 . . . M (67)

Ĝe
:= Ψ̂

eT Φ̂
e
= Ψ̂

e
f1

T Φ̂
e
f1
+ Ψ̂

e
f2

T Φ̂
e
f2
, e = 1, 2 . . . M (68)

T e
:= Ψ̃

eT
f DeV e

=

[
Ψ̃

eT
f1

De
1V e

1 Ψ̃
eT
f2

De
2V e

2

]
, e = 1, 2 . . . M (69)

T̂ e
:= Ψ̂

eT
f DeV e

=

[
Ψ̂

eT
f1

De
1V e

1 Ψ̂
eT
f2

De
2V e

2

]
, e = 1, 2 . . . M. (70)

With these matrices at hand, (along with He, defined previously in Eq. (42)), and taking into account thatˆeT Fe
int = 0 (the work done by internal forces over rigid-body displacements is zero) and Φ̂

eT
Ψ̃

e
= 0 (condition

f self-equilibrating force, see Eq. (39)), Eqs. (62) to (66) adopt the form

Φ̃
eT Fe (q̃e)− Φ̃

eT Fe
−

(
Ĥ eT r̂e

+ HeT r̃e
)
= 0, e = 1, 2 . . . M (71)
int ext
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7

Fig. 3. Graphical description of the downscaling (“coarse-to-fine”) matrix Ue of a given subdomain Ω e (defined in Eq. (80)). This matrix
maps the vector of coarse-scale DOFs (ae

= [aeT

1 , aeT

2 ]T ) onto its fine-scale counterpart (de
= [deT

1 , deT

2 , . . . deT

ne ]T ), where de
i ∈ R3 is the

nodal displacement at the i th fine-scale node. The transpose of this matrix, UeT
, on the other hand, acts as upscaling (“fine-to-coarse”)

operator for external forces, see Eq. (94).

−Φ̂
eT Fe

ext − ĜeT r̂e
= 0, e = 1, 2 . . . M (72)

He q̃e
− T eae

= 0, e = 1, 2 . . . M (73)

Ĝe q̂e
+ Ĥ e q̃e

− T̂ eae
= 0, e = 1, 2 . . . M (74)

δaT

⎛⎝ M∑
e=1

LeT
(

T eT r̃e
+ T̂ eT r̂e

)
−

∑
I∈ j l

L̄T
I V T

I F̄I

⎞⎠ = 0, ∀ δa ∈ V. (75)

.1. Downscaling “coarse-to-fine” operator

In the system of Eqs. (71) to (75), there are four set of variables at subdomain level (q̃e, q̂e, r̃e, r̂e) and one
global variable a ∈ Rs (the vector of coarse-scale DOFs). We demonstrate in what follows that, since He

∈ Rpe
×pe

is invertible by construction for all domains Ω e (see Box 5.1), it is possible to arrive at a coarse-scale equilibrium
equation solely in terms of the vector of coarse-scale DOFs a .

We begin our demonstration by showing that, for all domains e = 1, 2 . . . M , there is a downscaling, “coarse-
to-fine” operator Ue

∈ R3ne
×se

, graphically represented in Fig. 3. Indeed, as He is invertible, we can solve the
compatibility equation (73) for q̃e:

q̃e
= He−1

T eae, e = 1, 2 . . . M. (76)

If we next replace the preceding equation into the other compatibility expression, see Eq. (74), we get, upon factoring
the terms multiplying ae:

Ĝe q̂e
+

(
Ĥ e He−1

T e
− T̂ e

)
ae
= 0, e = 1, 2 . . . M. (77)

From Eq. (68) and Eq. (35), it follows that Ĝe
∈ R6×6 is a geometric matrix that depends on the area and moment

of inertia of the subdomain interfaces; it can be readily shown that this matrix is invariably invertible, and therefore
17
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Eq. (77) can be solved for q̂e, leading to

q̂e
= Ĝe−1

(
T̂ e
− Ĥ e He−1

T e
)

ae, e = 1, 2 . . . M. (78)

nserting Eq. (76) and Eq. (78) into Eq. (24), and factoring out ae, we finally arrive at the desired downscaling
operator Ue:

de
= Ueae

=
[
Ue

1 Ue
2

] [ae
1

ae
2

]
, e = 1, 2 . . . M (79)

here

Ue
i := Ũe

i + Ûe
i , e = 1, 2 . . . M, i = 1, 2; (80)

nd

Ũe
i = Φ̃

e P̃e
i , e = 1, 2 . . . M, i = 1, 2, (81)

Ûe
i = Φ̂

e P̂e
i , e = 1, 2 . . . M, i = 1, 2, (82)

P̃e
i = He−1

T e
i , e = 1, 2 . . . M, i = 1, 2, (83)

P̂e
i = Ĝe−1

(
T̂ e

i − Ĥ e He−1
T e

i

)
, e = 1, 2 . . . M, i = 1, 2. (84)

As can be seen in Eq. (80), the downscaling operator Ue
i at the coarse-scale node i (i=1,2) is the sum of two

atrices, one corresponding to the deformational component, Ũe
i , defined in Eq. (81), and another one corresponding

o the rigid-body component, Ûe
i defined in Eq. (82). In both cases the operators are the product of the corresponding

asis matrix (deformational Φ̃
e
∈ R3ne

×pe
and rigid-body Φ̂

e
∈ R3ne

×6), and a reduced-order matrix, independent
f the size of the underlying mesh, namely P̃e

i ∈ Rpe
×se

i in Eq. (83) and P̂e
i ∈ R6×se

i in Eq. (84).

.2. Coarse-scale residual vector

We move now to the subdomain equilibrium equation (72); solving this equation for r̂e, we obtain:

r̂e
= −Ĝe−T

Φ̂
eT Fe

ext , e = 1, 2 . . . M. (85)

eplacing both the above equation and Eq. (76) into Eqs. (71) and (75), we get, upon rearrangement:

Φ̃
eT Fe

int (a
e)−

(
Φ̃

eT
− Ĥ eT Ĝe−T

Φ̂
eT
)

Fe
ext − HeT r̃e

= 0, e = 1, 2 . . . M (86)

δaT

⎛⎝ M∑
e=1

LeT
(

T eT r̃e
− (T̂ eT Ĝe−T

Φ̂
eT

)Fe
ext

)
−

∑
I∈ j l

L̄T
I V T

I F̄I

⎞⎠ = 0, ∀ δa ∈ V. (87)

The above system of equations only depends on the amplitude of the self-equilibrated modes r̃e (e = 1, 2 . . . M)
nd on the coarse-scale DOFs vector a . Thus, to arrive at the desired coarse-scale equilibrium equation in terms
olely of a , we have to eliminate r̃e from the above system of equations. This can be done by firstly solving Eq. (86)
or r̃e, and then inserting the resulting expression into Eq. (87). By using the definitions of the downscaling operators

Ue and Ũe, given previously in Eqs. (80) and (81), and after some straightforward (but lengthy) manipulation, it
an be shown that the coarse-scale variational equilibrium equation can be written as

δaT R∗(a) = 0, ∀ δa ∈ V, (88)

here the coarse-scale residual vector R∗ ∈ Rs is given by

R∗(a) :=

Coarse-scale internal forces  
F∗int(a) −

Coarse-scale external forces  
(F∗ext + F̄∗) . (89)

or the reader’s convenience, the definitions of the coarse-scale internal forces (F∗int ) and the coarse-scale external
orces (F∗ext and F̄∗) appearing in the above equation are given in Box 7.1.
18
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1. Coarse-scale vector of internal forces

F∗int (a) =
M∑

e=1

LeT F∗eint (ae) (90)

where Le is the Boolean (assembly) operator defined in Eq. (50), while F∗eint is the contribution to F∗int of
domain Ω e, which in turn is given by

F∗eint := ŨeT Fe
int = P̃eTF e

int =

[
P̃e

1
TF e

int
P̃e

2
TF e

int

]
, e = 1, 2 . . . M, (91)

where

F e
int := Φ̃

eT
Fe

int , e = 1, 2 . . . M (92)

( P̃eT
was defined in Eq.(83)).

2. Coarse-scale vector of body/lateral forces

F∗ext =

M∑
e=1

LeT F∗eext (93)

where

F∗eext := UeT Fe
ext =

[
P̃e

1
T F̃ e

ext
P̃e

2
T F̃ e

ext

]
+

[
P̂e

1
T F̂ e

ext
P̂e

2
T F̂ e

ext

]
, e = 1, 2 . . . M (94)

and

F̃ e
ext := Φ̃

eT
Fe

ext; F̂ e
ext := Φ̂

eT
Fe

ext , e = 1, 2 . . . M (95)

( F̂ e
ext ∈ R6 is thus the vector of resultants and moment resultants, with respect to the centroid of the domain,

of the FE external forces Fe
ext ).

3. Coarse-scale vector of traction loads (which is only nonzero at the DOFs of the fictitious interface ΓI , I ∈ j l ,
where surface traction loads are imposed ):

F̄∗ =
∑
I∈ j l

L̄T
I F̄∗I , where F̄∗I := VI

T F̄I . (96)

Notice that the first 6 entries of F̄∗I are the resultants and moment resultants of the nodal forces applied on
the boundary interface ΓI .

Box 7.1: Coarse-scale nodal forces in terms of its fine-scale counterparts.

Remark 7.1. Inspection of Eq. (91) and Eq. (94) in Box 7.1 reveal that the transpose of the displacement
ownscaling operators Ũe and Ue play the role of upscaling (fine-to-coarse) operators for the nodal internal forces
nd body/lateral external forces, respectively.

.3. Dirichlet boundary conditions

The coarse-scale prescribed displacements aI ∈ RsI at the end node I ∈ j r may be determined from its fine-scale
counterpart v̄ I (specified in the parameterization of the problem, see expression (11)) by solving the least-squares
problem min

aI
∥VI aI − v̄ I∥M̄I

; the solution of this problem reads

T ¯ −1 T ¯ ¯
aI = (VI MI VI ) VI MI v I , I ∈ j r . (97)

19
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If the prescribed displacement is of the form v̄ I = V̂I α I , with α I ∈ R6, then, by virtue of the orthogonality between
rigid-body modes V̂I and fluctuation modes ṼI (see Eq. (29)), it follows from Eq. (97) that

aI =

[̂
aI
ãI

]
=

[
α I

0

]
, I ∈ j r . (98)

Denoting by r ⊂ {1, 2 . . . s} the list of prescribed coarse-scale DOFs, and by l its complementary set, we can state
that the space of test displacements V appearing in the variational equation (88) is given by all δa ∈ Rs of the
form δar = 0 and δal arbitrary. The nonlinear coarse-scale equilibrium problem may thus be formulated as follows:
given the input parameter µ ∈ D, find a ∈ Rs , with ar(µ) = α(µ), such that

R∗l (a;µ) = 0. (99)

7.4. Tangent stiffness matrix

The expression for the coarse-scale, tangent stiffness matrix may be deduced from Eqs. (79) and Eq. (90) as
follows:

K ∗ :=
∂ F∗int

∂a
=

M∑
e=1

LeT K ∗e Le (100)

here

K ∗e :=
∂ F∗eint

∂ae
= ŨeT

K eŨe
, e = 1, 2 . . . M, (101)

K e being the standard FE tangent stiffness matrix of domain Ω e:

K e
:=

∂ Fe
int

∂de , e = 1, 2 . . . M. (102)

This expression can be further expanded by using Eq. (91); this leads to

K ∗e =

[
P̃eT

1 Ke P̃e
1 P̃eT

1 Ke P̃e
2

P̃eT

2 Ke P̃e
1 P̃eT

2 Ke P̃e
2

]
, e = 1, 2 . . . M, (103)

here

Ke
:= Φ̃

eT
K eΦ̃

e
, e = 1, 2 . . . M. (104)

t should be noticed that the sub-matrices in Eq. (103) have by construction full rank. Indeed, by using Eq. (83),
e can write the sub-matrices in Eq. (103) as

K ∗ei j = P̃eT

i Ke P̃e
j = T eT

i (He−T Ke He−1
)T e

j , e = 1, 2 . . . M; i = 1, 2; j = 1, 2. (105)

he parenthetical term has full rank because both Ke
∈ Rpe

×pe
and He

∈ Rpe
×pe

are full rank — the former thanks
o the deformational character of the basis matrices Φ̃

e
, and the latter because by construction, see Box 5.1, it is an

nvertible matrix. On the other hand, T e
i ∈ Rpe

×se
i , whose expression is given in Eq. (69), is also a full rank matrix

y virtue of condition (60).

.5. Hyperreduction

Examination of the coarse-scale nodal force vectors defined in Box 7.1 indicates that the computational
omplexity of the problem still scales with the size of the underlying finite element mesh. More specifically, the
omputational bottlenecks are present in the evaluation of F e

int in Eq. (92), which is involved in the construction
f the coarse-scale internal forces, and the terms F̃ e

ext , F̂
e
ext in Eq. (95); and F̄∗I in Eq. (96), which are involved

n the construction of the coarse-scale external forces.
In the latter case, since F̃ e

ext , F̂
e
ext and F̄∗I are by hypothesis independent of the nodal displacements, one can

vercome the bottleneck by introducing a separate parametric representation of the corresponding nodal force vector,
20
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and then precomputing the projection of the corresponding spatial patterns. For instance, if we express the vector
of fine-scale external/lateral nodal forces as

Fe
ext (µ) = Λe β(µ), e = 1, 2 . . . M, (106)

(here Λe is the matrix of force patterns), and then insert the above into Eq. (95), we get

F̃ e
ext = (Φ̃

eT
Λe)β(µ); F̂ e

ext = (Φ̂
eT
Λe)β(µ), e = 1, 2 . . . M. (107)

he matrices Φ̃
eT
Λe and Φ̂

eT
Λe may be precomputed in the offline stage, and, in doing so, the operation count

or the evaluation of the coarse-scale vector F∗ext in the online stage becomes independent of the size of the finite
lement mesh of each subdomain Ω e.

The above described methodology, however, cannot be used for the internal force term F e
int , since the vector of

E nodal internal forces Fe
int bears in general a nonlinear relationship to the nodal displacements de (and therefore

o the input parameter µ). To evaluate the term F e
int in an efficient, mesh-independent manner, we shall use the

yperreduction approach proposed by the second author in Ref. [27], which essentially consists in finding an optimal
ubature (i.e., 3-dimensional quadrature) for the projected internal forces. Indeed, the expression for the projected
nternal forces F e

int in terms of the Cauchy stress vector σ ∈ R6 is given by

F e
int = Φ̃

eT
Fe

int = Φ̃
eT
∫
Ωe

BeT
σ dΩ =

∫
Ωe

(BeΦ̃
e
)T σ dΩ , e = 1, 2 . . . M, (108)

here Be
: Ω e
× R6×3ne

denotes the global FE strain–displacement matrix relating the (infinitesimal) strain vector
∈ R6 to the vector of nodal displacements de (i.e: ε = Bede). Thus, the integrand in Eq. (108) is the product of

wo functions: BΦ̃
e
, which lies in a subspace of dimension equal to the number of deformational modes, pe, and

he Cauchy stresses, which if the constitutive relationship is moderately nonlinear, lives in a subspace of dimension
e
∼ O(pe). This implies that the integrand resides in a subspace of dimension O(pe2

), and therefore, ce
∼ O(pe2

)
oints should suffice for accurately evaluating the integral. For instance, it is shown in Ref. [27] that, if the problem
s linear, and therefore, γ e

= pe, F e
int can be exactly evaluated using a cubature rule with ce

= (pe
+1)pe/2 points.

The selection of the integration points (among the set of Gauss points of the mesh of each domain) is carried
ut here by the7 Empirical Cubature Method (ECM), proposed by the second author in Ref. [30], and further
efined in [27]. The method takes as inputs the matrix of stress snapshots Ae

σ defined in Eq. (22) — from which
t determines a basis matrix for stresses Θe

∈ R6me
gs×γ e

using the SVD —, the deformational basis matrix Φ̃
e
, as

ell as information of the underlying FE mesh of each subdomain Ω e (such as the Gauss weights); and returns
reduced set of integration points (with indexes Ze

⊂ {1, 2 . . . me
gs}), along with their associated positive weights

{ωg}
ce

g=1. The reader interested in the details of the selection procedure is referred to Ref. [27], appendix A. It
should be pointed that the determination of the points and positive weights may be also conducted by the Empirical
Quadrature Method proposed by Patera and co-workers in [36] (Patera’s method is based on linear programming,
while the ECM relies on sequential least-squares minimization steps).

Once the set of points and positive weights have been computed for each subdomain (in the offline stage),
the vector of coarse-scale internal forces at the i th node (i = 1, 2) of element e, see Eq. (91), can be efficiently
calculated in the online stage by as a weighted sum of the integrand at the selected points Ze, i.e.:

F∗eint i =

ce∑
g=1

ωe
g(B∗e

T

i σ )Ze(g), i = 1, 2; e = 1, 2 . . . M, (109)

where the notation (•)Ze(g) means that the variable is evaluated at the Ze(g)-th Gauss point of the mesh, whereas

B∗ei := BeŨe
i , e = 1, 2 . . . M, i = 1, 2. (110)

This matrix may be regarded as an “inter-scale” strain–displacement matrix, for it maps the coarse-scale nodal
displacements of node i (ae

i ) onto the fine-scale strains ε at a given point of the domain. Likewise, for the

7 Conceptually, the ECM is akin to the Discrete Empirical Interpolation Method (DEIM) [35]. In fact, the DEIM may be used as well to
approximate the vector of internal forces. However, we favor the ECM because, as argued in [30], it ensures that the resulting reduced-order
stiffness matrix inherits the spectral properties (positive definiteness) of its full-order counterpart.
21



A. Giuliodori, J.A. Hernández and E. Soudah Computer Methods in Applied Mechanics and Engineering 407 (2023) 115913

a
F
o
v

fi
a
t
s
v

8

t
i

coarse-scale tangent stiffness matrix (see Eq. (103)), we can write

K ∗ei j =

ce∑
g=1

ωe
g(B∗e

T

i Ce B∗e)Ze(g), i, j = 1, 2; e = 1, 2 . . . M, (111)

where Ce
∈ R6×6 denotes the constitutive tangent matrix.

Remark 7.2. It is worth noting that this way of computing the coarse-scale internal force vector and stiffness
matrices is formally identical to that employed in the evaluation of internal forces in a standard FE method with
solid elements, the only difference being that, on the one hand, the strain–displacement matrices are no longer the
gradient of the FE shape functions (but the inter-scale matrices given in Eq. (110)) and on the other hand, the weights
are not the element Jacobians times the Gauss weights (but are determined by the ECM). This greatly facilitates
the implementation of this type of coarse-scale element in a standard 3D FE code, and, furthermore, allows one to
use existing 3D stress–strain constitutive laws. This latter aspect is specially advantageous when confronted with
the analysis of composite beams, for one need not worry about introducing homogenization hypotheses in order to
derive a “generalized” constitutive matrix (as done in standard composite beam theories, see for instance Ref. [37],
pag. 166).

Remark 7.3. In using this hyperreduced-order approach, the Cauchy stresses are only calculated at the set Ze of
selected Gauss points (Se

Z). For post-processing purposes, however, one can recover the stresses at all the Gauss
points of the mesh (Se) by least-squares fitting (using the stress basis matrix Θe), i.e.:

Se
= Θe(ΘeT

Z Θe
Z)−1ΘeT

Z Se
Z. (112)

8. Consistency analysis

We begin the numerical assessment of the proposed HROM by examining its consistency,8 i.e., its ability to
reproduce, in the limit of no data compression, the same solutions used for training it.

8.1. Case with 6 training tests

To this end, we study two distinct prismatic structures, made up by repeating M = 100 times along the global
x-axis the “slices” shown in Fig. 4 (rectangular and U-shaped cross-sections). The material in both cases is isotropic
nd behaves linearly, with Young’s Modulus E = 70000 MPa, and Poisson’s ratio ν = 0.3. We carry out dµ = 6
E training tests, characterized by the following boundary conditions: no external forces, zero displacements on
ne of the end of the beam (v̄1 = 0), while the other end9 is subjected to rigid-body displacements of the form
¯

j
N = V̂N µ j ( j = 1, 2 . . . 6), where µ j

∈ R6 is given by [µ j ]i = 10−2δi j , δi j being the Kronecker delta. Thus, in the
rst three tests ( j = 1, 2, 3), the end cross-section undergoes translations of magnitude 10−2 m along the reference
xes (we shall refer to these tests as axial, shear-y and shear-z tests); the remaining three tests ( j = 4, 5, 6), on
he other hand, correspond to rotations of the end cross-section, of magnitude 10−2 rad, around its centroid (we
hall call these tests torsion, bending-y and bending-z tests). The deformed shapes (amplified so as to facilitate the
isualization) of these 6 training tests are shown in Figs. 4c to 4.h.

.1.1. Coarse-scale model
Since the problem is linear, and there is no truncation on the SVDs at subdomain level, these dµ = 6 training

ests give rise to pe
= 6 self-equilibrated and deformational modes for each subdomain Ω e (e = 1, 2 . . . M). For

llustration purposes, we show in Fig. 5 the deformed shapes corresponding to the 6 deformational modes10 of

8 Consistency here is to be understood in the terms established in Ref. [38], according to which “an approximation is said to be consistent
if, when implemented without data compression, it introduces no additional error in the solution of the same problem for which data were
acquired”.

9 We are tacitly here assuming that the nodes are consecutively numbered.
10 Mode 1 is clearly the axial tension/compression mode; mode 2 displays the typical out-of-plane warping caused by torsion; modes 3

and 4 may be identified as pure bending modes, while modes 5 and 6 exhibit the characteristic cubic warping of shear deformation.
22
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Fig. 4. Prismatic structures employed for assessing the consistency of the proposed multiscale HROM technique. (a) Rectangular cross-section
subdomains discretized into 432 trilinear hexahedral elements. (b) U-shaped cross-section subdomains discretized into 708 trilinear hexahedral
elements. (c) to (h) (Amplified) deformed shapes of the FE tests employed for training (prescribed displacements on both ends). (c) Axial
test. (d) Shear-y test. (e) Shear-z test. (f) Torsion test. (g) Bending-y test. (h) Bending-z test.

the subdomain at the middle, Ω (50), for the rectangular cross-section. In regards to the interface modes, the well-
posedness considerations encapsulated in expression (60) dictate that the fictitious interfaces can only move as rigid
bodies, with no fluctuations; therefore, each coarse-scale node has 6 DOFs (three translations and three infinitesimal
rotations, as in a standard beam element formulation). Lastly, concerning the hyperreduction stage (reduction in the
number of integration points, described in Section 7.5), the ECM chooses among the FE Gauss points of each
subdomain a total of 21 integration points for each subdomain.11 In summary, the coarse-scale representation of the
prismatic beams depicted in Fig. 4 is formed by M = 100 (2-node) elements of equal length, featuring 6 DOFs
per node and 21 integration points per element. Imposition of displacement boundary conditions in the coarse-scale
model is trivial: a1 = 0 ∈ R6, and aN = µ j

∈ R6 ( j = 1, 2 . . . 6). Once the coarse-scale problem is solved for the
global vector of DOFs a , the associated rigid-body and deformational fine-scale displacements (denoted by d̂

e
and

d̃
e
, respectively) are recovered by means of the coarse-to-fine operators defined in Eq. (79), namely d̃

e
= Ũeae

and d̂
e
= Ûeae (e = 1, 2 . . . M).

8.1.2. Deformational and rigid-body displacement errors
The relative L2 error measures employed here for comparing HROM and FE solutions are given by

ede f
=

√∑M
e=1(d̃

e
FE − d̃

e
)T Me(d̃

e
FE − d̃

e
)∑M

e=1 d̃
eT

FE Me d̃
e
FE

, (113)

11 As noted by the second author in Ref. [27], in a linear elastic problem, the number of points required for exactly integrating the internal
forces is equal to the number of independent entries of the reduced stiffness matrix (see Eq. (104)), which in this case, as the matrix is
symmetric, is (6+ 1)6/2 = 21 points.
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Fig. 5. Deformed shapes of the deformational modes corresponding to the subdomain Ω50 (located at the middle of the beam) for the case
f rectangular-cross section.

Table 1
Rectangular cross-section beam. Deformational, rigid-body and total displacement errors defined in Eqs. (113), (114) and (115), respectively,
for the 6 training tests with rigid-body displacements prescribed one end while the other end remains fixed.

Axial Shear-y Shear-z Torsion Bending-y Bending z

Deformational error (ede f ) 2.96 · 10−12 1.43 · 10−10 1.30 · 10−11 1.71 · 10−12 4.46 · 10−12 5.53 · 10−11

Rigid-body error (erb) 9.61 · 10−5 2.71 · 10−4 2.51 · 10−4 1.08 · 10−3 9.23 · 10−4 9.90 · 10−4

Total error (etot ) 9.61 · 10−5 2.71 · 10−4 2.51 · 10−4 1.08 · 10−3 9.23 · 10−4 9.90 · 10−4

Table 2
U-shaped cross-section beam. Deformational, rigid-body and total displacement errors defined in Eqs. (113), (114) and (115), respectively,
for the 6 training tests, for the 6 training tests with rigid-body displacements prescribed one end while the other end remains fixed.

Axial Shear-y Shear-z Torsion Bending-y Bending z

Deformational error (ede f ) 2.33 · 10−11 2.38 · 10−10 6.87 · 10−10 2.56 · 10−11 1.28 · 10−10 4.58 · 10−11

Rigid-body error (erb) 1.74 · 10−2 2.04 · 10−2 1.36 · 10−3 0.34 5.62 · 10−3 6.34 · 10−2

Total error (etot ) 1.74 · 10−2 2.04 · 10−2 1.36 · 10−3 0.34 5.62 · 10−3 6.34 · 10−2

erb
=

√∑M
e=1(d̂

e
FE − d̂

e
)T Me(d̂

e
FE − d̂

e
)∑M

e=1 d̂
eT

FE Me d̂
e
FE

, (114)

and

etot
=

√∑M
e=1(de

FE − de)T Me(de
FE − de)∑M

e=1 deT

FE Mede
FE

. (115)

Here d̃
e
FE , d̂

e
FE and de

FE = d̃
e
FE + d̂

e
FE are the deformational, rigid-body and total FE nodal displacements of

subdomain Ω e. Thus, ede f in Eq. (113) conveys how accurate is the HROM in capturing the deformational part of
the displacements of all the M domains (and therefore the stresses), whereas erb in Eq. (114) gives information on
the quality of the approximation in terms of rigid-body displacements — which does not affect the stresses. The
other error measure, etot includes both contributions.

In Tables 1 and 2 we display these error measures for the 6 training tests for the rectangular and U-shaped
ross-section beams, respectively. A glance at the values of the total displacement error etot in both tables indicates
hat, in terms of fine-scale, nodal displacements, the proposed multiscale HROM is not consistent with the FE model
sed for training it. Indeed, even though we have not truncated either the SVDs for interaction forces nor the SVDs
or stresses in the hyperreduction stage, the HROM fails to recover the same fine-scale, nodal displacements used
or training it. In the case of the rectangular cross-section problem (Table 1), these errors are all below 0.1%, yet
n the U-shaped profile case (Table 2) they attain values up to 34% (torsion test).
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Fig. 6. (a) FE and (b)HROM deformed shapes (amplified by 100) corresponding to the torsion test, along with the corresponding Von Mises
tress contour plot. Total number of DOFs and integration points in the FE model: 4.32 · 105 and 8 · 101 · 708 = 572064. Total number of
OFs and integration points in the HROM: 6 ·102 = 612 and 21 ·101 = 2121. Rightmost graph: norm of the displacement of the longitudinal
ber located at the intersection between the flange and the web. Results computed with the FE model and the HROM.

On the other hand, inspection of the other error values ede f and erb reveals that this lack of consistency is to be
xclusively attributed to errors in capturing the rigid-body component, for the deformational error ede f is negligible
n all cases (it ranges between 1.5 ·10−9 and 3 ·10−12). In other words, we can assert that, at least for this particular
raining set, our HROM is consistent in terms of deformational displacements, and therefore, in terms of stresses

yet it errs in predicting rigid-body displacements. The situation is illustrated in Fig. 6, where we display the
eformed shapes (amplified by a factor of 100) corresponding to the U-shaped cross-section torsion test for the FE
odel and the HROM, along with their corresponding Von Mises contour plots.12 The deviations in terms of rigid

body displacements can be appreciated in both the gaps between subdomains in the HROM plot (see enlarged view
of the end with prescribed rotations), but most importantly, in the “inverted convexity” of the graph of the deflection
of the longitudinal fiber located at the intersection between the flange and the web, displayed in the rightmost graph
in Fig. 6. It should be emphasized that, despite these gross displacement errors, the Von Mises stress contour plots
provided by the FE model and the HROM are identical.

8.1.3. Discussion
The fact that the proposed HROM multiscale scheme is not fully consistent with the full-order model used to

train is to be attributed to the kinematical constraints dictated by the well-posedness considerations discussed in
Section 6.3.1. Indeed, in the case at hand, these constraints translate in the fictitious interfaces only undergoing rigid-
body displacements. This is in sharp contrast with what occurs with the interface boundaries of the subdomains,
which do experience straining of one or other type, as evidenced by the warped and distorted shapes of the
deformational modes depicted in Fig. 5. This inevitably introduces a gap between fictitious interfaces and subdomain
boundaries, and as a consequence, the interface potential in the energy functional given in Eq. (12) cannot be driven
to zero for all the subdomains — as it does occur in the FE model, where there is node-to-node compatibility and
therefore the gap between subdomains is zero.

Less obvious is the reason why these unavoidable inter-domain gaps are due almost exclusively to errors in
capturing the rigid-body component of the nodal displacements. A plausible rationale is that the strain potential
Π e

int in Eq. (12) depends only on the deformational component, while the interface potential π e depends on both
deformational and rigid-body components. Thus, an inaccurate description of the deformational part would be taxing
in both terms, whereas inaccuracies in the rigid-body part only affects the interface potential. This might explain
why the method tends to furnish accurate prediction in terms of deformational displacements (and thus stresses),
but not rigid-body displacements.

12 The Cauchy stresses at the Gauss points are recovered from the stresses at the selected 21 integration points by least-squares fitting
(see Eq. (112)).
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Table 3
Rectangular cross-section beam. Deformational, rigid-body and total displacement errors defined in Eqs. (113), (114) and (115), respectively,
for the case with 7 training tests.

Axial Shear-y Shear-z Torsion Bending-y Bending z Torque

Def. error (ede f ) 1.39 · 10−7 2.93 · 10−12 1.43 · 10−10 1.64 · 10−11 5.53 · 10−12 5.52 · 10−11 1.00 · 10−7

RB error (erb) 1.89 · 10−3 9.61 · 10−5 2.71 · 10−4 2.51 · 10−4 9.23 · 10−4 9.90 · 10−4 1.91 · 10−3

Total (etot ) 1.89 · 10−3 9.61 · 10−5 2.71 · 10−4 2.51 · 10−4 9.23 · 10−4 9.90 · 10−4 1.91 · 10−3

Table 4
U-shaped cross-section beam. Deformational, rigid-body and total displacement errors defined in Eqs. (113), (114) and (115), respectively,
for the case with 7 training tests.

Axial Shear-y Shear-z Torsion Bending-y Bending z Torque

Def. error (ede f ) 3.45 · 10−11 7.30 · 10−11 5.42 · 10−10 1.87 · 10−9 3.57 · 10−10 8.98 · 10−11 8.92 · 10−11

RB error (erb) 2.22 · 10−3 1.74 · 10−2 1.39 · 10−3 1.36 · 10−3 5.62 · 10−3 5.36 · 10−3 2.95 · 10−3

Total (etot ) 2.22 · 10−3 1.74 · 10−2 1.39 · 10−3 1.36 · 10−3 5.62 · 10−3 5.36 · 10−3 2.95 · 10−3

8.2. Case with 7 training tests

Let us examine now what occurs in terms of consistency when the number of deformational modes per subdomain
s greater than 6. To this end, we incorporate in the training set used in the preceding consistency analysis an
dditional test in which one of the ends is fixed (v̄1 = 0) while the other end is subjected to a torque applied at

the centroid of the cross section, of magnitude Tend = 100 Nm. In the FE model, this torque is represented by the
ector of nodal forces F̄N = M̄N V̂N (V̂ T

N M̄N V̂N )−1γ , where

γ = [0 0 0 Tend 0 0]T . (116)

ote that, in imposing this system of nodal forces in the FE model, the vector of resultant forces and resultant
oments becomes V̂ T

N F̄N = γ , as required. Likewise, for the coarse-scale model, the first 6 entries of nodal force
o be imposed on the free end (F̄∗N ) is, according to Eq. (96)b, equal to γ . The remaining entries, if any, are to be
et to zero, by virtue of the orthogonality between rigid-body and fluctuation modes (see Eq. (29)).

In the case of the rectangular cross-section beam, the incorporation of this training test results in a variable
umber of deformational modes along the beam. From subdomain Ω1 (which is the one on the fixed end) to
ubdomain Ω68, the number of deformational modes remains equal to 6, while for the remaining subdomains, it
ncreases up to 7 modes. This variability is reflected also in the number of coarse-scale DOFs per node. Indeed,
oarse-scale elements from e = 1 to e = 68 has 6 DOFs per node, and from e = 70 to e = 100 7 DOFs per node;
lement e = 69, on the other hand, is a “transition” element, with 6 DOFs in one node, and 7 DOFs in the other.
his seventh DOF is the amplitude of the fluctuation mode automatically selected by Algorithm 3 from within the
pace spanned by what we have called the displacement fluctuation candidates.

In the case of the U-shaped cross-section beam, on the other hand, the number of deformational modes turns out
o be equal to pe

= 7 for all domains (e = 1, 2 . . . 100). The number of DOFs per coarse-scale node is also equal
o 7 for all nodes except for the one on the fixed end, which is equal to 6.

The L2 error measures Eqs. (113) to (115) for these 7 tests, using the new kinematics are displayed in Tables 3
nd 4, for the rectangular and U-shaped cross-section beams, respectively. Two things deserve notice in these
ables. Firstly, the accuracy in terms of deformational displacements is significantly higher (between 4 and 8 order
f magnitudes more accurate) than the accuracy in capturing rigid-body counterpart. Note that this is the same
rend observed in the 6-tests problem, and thus provides confirmation to the conjecture made in the discussion of
ection 8.1.3. Secondly, in the case of the U-shaped cross-section beam, comparison of the rigid-body errors for the
tests with prescribed displacements in Tables 2 and 4 reveals that the enrichment of the coarse-scale kinematics
ith an additional DOF has notably increased the quality of the coarse-scale approximations in terms of rigid-body
isplacements. For instance, in the test with prescribed rotation around the axis of the beam (test labeled “torsion”),
rb has dropped from 34% to 0.136%. This increase of accuracy can be further appreciated in Fig. 7, where we
how the same plots displayed previously in Fig. 6, but now with the new kinematics — indeed, the gaps between
26
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Fig. 7. (a) FE and (b)HROM deformed shapes (amplified by 100) corresponding to the torsion test, along with the corresponding Von Mises
tress contour plot. Total number of DOFs and integration points in the HROM: 6+ 7 · 102 = 720 and 28 · 101 = 2828. Rightmost graph:
orm of the displacement of the longitudinal fiber located at the intersection between the flange and the web. Results computed with the
E model and the HROM.

ubdomains are now imperceptible, and besides, the convexity of the graph of the displacement of the corner fiber
oes coincide with that predicted by the FE model.

. “Characteristic” coarse-scale elements

.1. Definition

The deformational and interaction force modes computed from the training tests discussed in the foregoing encode
nformation regarding, not only how loads applied on one end are transmitted through the prism to the other end,
ut also the local effects caused by the particular way these loads are applied (in the case at hand, as prescribed
ranslations and rotations of the end cross-sections). Now we are interested in extracting the modal information
hat solely concerns the transmission of loads, thus ignoring local effects. The coarse-scale element resulting from
hese modes will be referred to as the “characteristic or representative” element, and will be akin to the 1D finite
lements derived from classical beam theories — in the sense that it will depend only on the geometry and material
omposition of the subdomain it intends to represent. Later on, in Section 9.3.4, we shall see how to enrich the
inematics of this coarse-scale element to account also for local effects.

To quantify how accurate is a given coarse-scale element in transmitting loads, we shall examine the error incurred
y the coarse-scale model in predicting the resultants and moment resultants at each interface; to this end, we define
he global error measure:

ϵ f
=

√∑N
I=1 ∥V̂

T
I λ

F E,e
fi
− F∗eint i (1 : 6)∥2∑N

I=1 ∥V̂
T

I λ
F E,e
fi
∥2

, (I = T (e, i)). (117)

Here F∗eint i (1 : 6) denotes the first 6 entries of the coarse-scale internal forces at the i th node (i = 1, 2) of element
e, defined in Eq. (91) (these entries are the resultants and moment resultants computed by the coarse-scale model).
Likewise, V̂ T

I λ
F E,e
fi

stands for the resultants and moment resultants computed from the FE interaction force vector
F E,e
fi

. For completeness, we define a similar measure in terms of displacements:

ϵa
=

√∑N
I=1 ∥P̂ I d F E,e

fi
− âI∥

2∑N
I=1 ∥P̂ I d F E,e

fi
∥2

, (I = T (e, i)), (118)

where P̂ I d F E,e
fi

denotes the translations and rotations of the I th interface computed from the vector of FE
F E,e ˆ ˆ
displacements d (the operator P I was defined in Eq. (53)), while aI are its counterpart in the coarse-scale
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Table 5
Rectangular cross-section beam. Error measures defined in Eqs. (117) (ϵ f , for the resultants and moment
resultants) and (118) (ϵa , for the cross-section translations and rotations), for the 6 training tests described
in Section 8.1 (see Fig. 4). The coarse-scale model is constructed using the same basis matrices for all slices
— more specifically, the modes of subdomain Ω50 determined in the consistency analysis of Section 8.1.

Axial Shear-y Shear-z Torsion Bending-y Bending z

Resultants (ϵ f ) 0.49 · 10−2 1.04 · 10−2 1.38 · 10−2 1.47 · 10−2 1.37 · 10−2 1.03 · 10−2

RB disp. (ϵa) 0.24 · 10−2 0.36 · 10−2 0.44 · 10−2 0.65 · 10−2 0.79 · 10−2 0.63 · 10−2

model. Another prerequisite for a coarse-scale element to be regarded as “representative” is its ability to capture
the stress distribution sufficiently away from the regions where loads are applied. To examine this aspect of the
model, we introduce the following stress error estimation:

Ee
vm =

√
∫
Ωe

∆τ 2 dΩ∫
Ωe

τ F E2
dΩ

, e = 1, 2 . . . M. (119)

Here τ F E
: Ω e
→ R stands for the Von Mises stress computed by the FE model, while ∆τ is the Von Mises stress

that results from the difference between the stresses computed by the FE model and the coarse-scale HROM.

9.2. Rectangular cross-section

We begin our study with the rectangular cross-section beam. The slices which are less tainted with local effects are
that located further from the ends, in this case Ω50 and Ω51. Accordingly, we tentatively take the deformational and
interface force modes determined for subdomain Ω50 in the 6 training tests described in Section 8.1 — the deformed
shapes of such deformational modes were displayed in Fig. 5 — as the characteristic modes of the subdomain. Then
we construct a coarse-scale model of the prism using these modes for all the M = 100 subdomains, and evaluate the
error indicators presented in Eqs. (117) and (118). The results are presented in Table 5. Observe that all values are
below 1.5%, a figure that may be deemed low for engineering standards. Thus, we may claim that the employed
deformational and interaction force modes are indeed “characteristic” of the subdomain,13 in the sense defined
above.

To further corroborate this claim, we examine the extent to which our coarse-scale element is able to predict
the distribution of stresses sufficiently away from the ends of the prism — in this case, “sufficiently away” means
approximately at a distance equal to the height of the cross-section, l = 0.1 m, in accordance to the Principle
of Saint Venant [39]. To this end, in Fig. 8, we plot the Von Mises stress error Ee

vm (e = 1, 2 . . . M), defined
in Eq. (119), for the 6 training tests. It can be seen that the error is maximum at the ends of the prism (around
50%), and decays gradually as we move from the ends. From slices 10 to 90 the stress error for all the 6 tests is
indeed relatively low — between 0.5%, in the axial test, and 5 %, in the y-bending test —, a fact that confirms the
representative nature of the employed coarse-scale element.

Further insight into the quality of the stress approximations can be gained by inspecting in Fig. 9 the contour
plots of Von Mises stress computed by the full-order FE model and the HROM at domain Ω33, in the y-bending
test — according to Fig. 8, this is where the maximum stress error of all tests and subdomains takes place. It can
be appreciated that the stress patterns are qualitatively identical, the only difference being the maximum values
attained in each case — the HROM underpredicts the maximum Von Mises by 1.5%, which is again a relatively
low error for engineering practice.

13 We explore the performance of the modes obtained from neighboring slices, as well as mixing the information of various slices, and
the result was essentially the same in all cases.
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Fig. 8. Rectangular cross-section beam. Von Mises error measure (defined in (119)), for the 6 training tests depicted in Fig. 4. The basis
matrices of all subdomains are equal to the basis matrices obtained for the subdomain at the middle (subdomain Ω50, highlighted in red in
the top of the figure). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 9. Y-bending test. Deformed shape (x 100) and contour plot of Von Mises stress for subdomain Ω33, in MPa. (a) Coarse-scale HROM
results, using the same “characteristic” modes for all the subdomains. (b) Results computed with the full-order FE method.

9.2.1. Comparison with Timoshenko’s “exact” theory
The stresses at the subdomain studied in the foregoing are caused mainly by shear forces14 (in this case in the

z-direction). An immediate implication of this observation is that our beam element is apparently not afflicted by

14 From beam theory considerations, we know that bending moments are zero at a distance from the fixed end equal to 1/3 of the length
of the beam subjected to a prescribed rotation on one end.
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any of the shortcomings that typically beset other classical 1D FE beam formulations with the same kinematics (6
DOFs per node), such as shear locking in standard Timoshenko-based beam elements [37]. This desirable feature
may be attributed to the fact that, in contrast to this classical formulation, in our coarse-scale model the interface
boundaries are not forced to remain planes — recall that it is the fictitious interfaces which remain unstrained. Thus,
our formulation is more in line with the sometimes called “exact” Timoshenko’s beam theory [40] for rectangular
cross-sectional beams, which allows the cross-sections to freely warp when sheared. The resemblance becomes
apparent when comparing the stiffness matrices arising from this Timoshenko’s formulation, and the one provided
by our coarse-scale model. For the sake of brevity, we compare in what follows only the first block matrix of the
diagonal of the element stiffness matrix; for the exact Timoshenko’s beam theory, the expression for this (symmetric)
matrix reads (see Chapter 5 of Ref. [41]):

K e,timosh
11 = E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
L 0 0 0 0 0

12Iz
(1+Φz )L3 0 0 0 6Iz

(1+Φz )L2
12Iy

(1+Φy )L3 0 6Iy
(1+Φy )L2 0

G J
L 0 0

(sym.) (4+Φy )Iy
(1+Φy )L 0

(4+Φz )Iz
(1+Φz )L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 102

⎡⎢⎢⎢⎢⎣
420 0 0 0 0 0

134.2 0 0 0 0.6709
133.4 0 0.6671 0

0.1214 0 0
(sym.) 0.1293 0

0.3534

⎤⎥⎥⎥⎥⎦ . (120)

ere, A = 6 · 10−3 m2 is the area of the cross-section; L = 0.01 is the width of the slice; Iy = 1.8 · 10−6 m4

nd Iz = 5 · 10−6 m3 are the moments of inertia of the cross section; G = E/(2(1 + ν)) = 2.69 · 105 MPa
s the shear modulus; J = 4.51 · 10−6 m4 is the torsion constant15; and Φy = 12E Iy/(G As L2) = 312.0 and

z = 12E Iz/(G As L2) = 112.3 are dimensionless parameters depending on the cross-sectional area in shear, which
ere is set, as customary in rectangular cross-sections [43], to As =

5
6 A. On the other hand, the stiffness matrix

computed by our coarse-scale model is given by (see Eq. (103)):

K ∗e11 = P̃eT

1 Ke P̃e
1 = 102

⎡⎢⎢⎢⎢⎣
420 0 0 0 0 0

134.6 0 0 0 0.6728
130.3 0 0.6516 0

0.1220 0 0
(sym.) 0.1293 0

0.3537

⎤⎥⎥⎥⎥⎦ . (121)

The difference between these two matrices is equal to (in %)⎡⎢⎢⎢⎢⎣
0.0%

0.28% 0.28%
2.38% 2.38%

0.52%
(sym.) 0.24%

0.11%

⎤⎥⎥⎥⎥⎦ (122)

which proves the point made above (all values are below 2.5%).
Given the similarity between the stiffness matrix based on Timoshenko’s theory and the one based on the

proposed multiscale scheme, it is natural to wonder which is more accurate — in comparison with the FE solution,
which is taken as the “exact” solution.16 To resolve this question, we have computed the counterpart of Table 5 when
using the Timoshenko’s stiffness matrix; the results are displayed in Table 6. Comparison of both tables indicate
that, while in displacements they furnish the same level of accuracy, in terms of resultants and moments resultants,
the proposed approach is slightly more accurate; for instance, in the torsion test, our model gives an error of 1.47%,
while the analytical one furnishes 1.96%.

15 We have used the formula J = βab3, where β = (1/3− 0.21b/a(1− b4/(12a4))), a = 0.1 m and b = 0.06 m, see Ref. [42], Table 3.1.
16 We performed mesh refinement analyses to assure that this FE solution is “sufficiently exact”.
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Table 6
Rectangular cross-section beam. Error measures defined in Eqs. (117) (ϵ f , for the resultants and moment
resultants) and (118) (ϵa , for the cross-section translations and rotations), for the 6 training tests described
in Section 8.1. The coarse-scale model is constructed using the element stiffness matrix derived from the “exact”
Timoshenko’s theory, displayed in Eq. (120).

Axial Shear-y Shear-z Torsion Bending-y Bending z

Resultants (ϵ f ) 0.49 · 10−2 1.15 · 10−2 1.66 · 10−2 1.96 · 10−2 1.64 · 10−2 1.14 · 10−2

RB disp. (ϵa) 0.24 · 10−2 0.36 · 10−2 0.43 · 10−2 0.65 · 10−2 0.77 · 10−2 0.63 · 10−2

Table 7
U-shaped cross-section beam. Error measures defined in Eqs. (117) (ϵ f , for the resultants and moment resultants)
and (118) (ϵa , for the cross-section translations and rotations), for the 6 training tests described in Section 8.1.
The coarse-scale model is constructed using the same basis matrices for all slices — more specifically, the 6
modes of subdomain Ω50 determined in the consistency analysis of Section 8.1. Thus, the resulting coarse-scale
element has 6 DOFs per node.

Axial Shear-y Shear-z Torsion Bending-y Bending z

Resultants (ϵ f ) 0.34 · 10−2 0.58 · 10−2 1.05 · 10−2 7.33 · 10−2 1.17 · 10−2 0.57 · 10−2

RB disp. (ϵa) 1.67 · 10−2 5.54 · 10−2 0.36 · 10−2 10.20 · 10−2 0.6 · 10−2 7.83 · 10−2

Fig. 10. U-shaped cross-section. Von Mises error measure (defined in Eq. (119)), for the 6 training tests described in Section 8.1. The basis
atrices of all subdomains are equal to the basis matrices obtained for the subdomain at the middle (subdomain Ω50).

9.3. U-shaped cross-section

9.3.1. Training with 6 tests and one sampled subdomain
To determine the characteristic coarse-scale element associated to the U-shaped cross-section slice, we follow

the same steps described in the foregoing for the rectangular cross-section slice. Firstly, we tentatively select
the 6 deformational and interaction force modes obtained for subdomain Ω50 in the 6 training tests described in
Section 8.1, construct the coarse-scale model of the prism using these modes (resulting in a 2-nodes element with
6 DOFs per node, as in the case of the rectangular cross-section), and then evaluate the error indicators presented
in Eqs. (117) and (118), as well as the Von Mises stress error defined in Eq. (119), for the 6 training tests. Results
are shown in Table 7 and Fig. 10a, respectively.

Inspection of these results immediately reveals that, as opposed to the case of the rectangular cross-section case,
the coarse-scale model constructed using the 6 deformational and force modes of the central subdomain Ω50 is not
able to accurately transmit loads from one end of the beam to the other in all the 6 training tests. Errors are more
pronounced in the case of the torsion test, specially in terms of Von Mises stresses, where deviations with respect to
the FE results reach values up to 150%, see Fig. 10a. To shed light on the cause of the misperformance, we display
in Fig. 10b the evolution along the beam of the twist angle computed from the FE results and from the HROM.
31



A. Giuliodori, J.A. Hernández and E. Soudah Computer Methods in Applied Mechanics and Engineering 407 (2023) 115913

d

i
t
m
p
g
h
o
m
s
fi
d
b
b
e
S
t
t
p
t
8
s

R
m
f

R
o
i

a

o
p
2

Observe that the 6-DOFs coarse-scale model predicts a linear evolution along the beam (i.e., constant twist angle),
whereas the “correct” result (based on FE calculations) is that the curve should exhibit a cubic profile.17

9.3.2. Augmenting the training set (or the analyzed subdomains)
It becomes apparent from the above results that the modal information of the central subdomain Ω50 retrieved

from the 6 training tests with prescribed displacements on both ends, described in Section 8.1, is not sufficient
to capture the torsional behavior of the beam. It is necessary, thus, to enrich the basis matrices with additional
information on how the beam behaves in torsion. The simplest route from the implementational point to view
is to carry out additional (judiciously chosen) training tests, and progressively enrich the modal bases with the
snapshots coming from these tests until meeting the error criteria defined in Section 9.1. For instance, in this case,
we have found that augmenting the training set with two FE tests in which a torque is applied on each of the ends
(while the other end is fixed, as done in the consistency analysis discussed in Section 8.2, see Eq. (116)) leads to a
coarse-scale element that is representative in the sense defined previously. The 8 self-equilibrated and deformational
modes obtained from the corresponding snapshots of slice Ω50, for the 8 training tests (the 6 tests with prescribed

isplacements, plus these two tests with prescribed forces), are displayed in Figs. 11a and 11b, respectively.
Nevertheless, it should be pointed out that it is possible to arrive at the same set of modes solely from the

nformation contained in the 6 training tests with prescribed displacements. This strategy capitalizes on the fact that
he structure we are analyzing is made by tiling copies of the same subdomain along the x-axis, and therefore, the

issing information can be obtained from the snapshots of a group of contiguous subdomains, located in the central
ortion of the beam — rather than focusing on just one slice, as done in the approach described above. The strategy
oes as follows. We begin by selecting a set of subdomains pertaining to the central region of the beam. Here we
ave taken 11 subdomains, from Ω45 to Ω55, but we have empirically found that sets with either less (up to 4)
r more subdomains (provided they are sufficiently far from the ends) furnishes essentially the same coarse-scale
odel. The interface forces and displacement snapshots of these 11 slices for the 6 training tests are stored in the

napshot matrices Aλ and Ad , respectively. The next step is the determination of the self-equilibrated modes Ψ̃ f, by
rst computing the self-equilibrated component of18 Aλ ( Ãλ = H̃Aλ, see Eq. (37)). As explained in Section 5.3, the
esired modes Ψ̃ f are an (approximated) basis for the column space of Ãλ. The level of approximation is determined
y a truncation tolerance ϵλ, which we set here to ϵλ = 10−3 (introducing this truncation is of crucial importance,
ecause otherwise the resulting basis may contain inessential modes representing negligible local effects, or the
ffect of round-off errors). To ensure this level of approximation for all the 6 tests, we separately apply the weighted
VD (see Eq. (40)) to the block matrices of Ãλ associated to each of the 6 tests. This produces 3 modes for

he torsion test, 1 mode for the axial test, and 2 modes for each of the remaining tests. The deformed shapes of
he deformational modes which are work conjugate to these set of self-equilibrated modes (obtained through the
rocedure outlined in Box 5.1) are displayed in Fig. 12. The set of resulting self-equilibrated modes (in this case a
otal number of 12), is then subjected to an additional SVD in order to eliminate redundancies. This finally furnishes
dominant self-equilibrated modes,19 which turn out to span the same subspace as the one engendered by the modes

hown in Fig. 11a — hence the equivalence.

emark 9.1. Although admittedly more elaborate than the one involving one single subdomain, the above explained
ethodology allows the systematization of the determination of the representative modes of each type of subdomain,

or it does not require to find which are the “correct” boundary conditions for the additional tests.

emark 9.2. To alleviate the computational burden associated to the (offline) FE training analyses, subdomains
f different geometry can be processed at the same time in the same prismatic structure. Likewise, manifold
nterpolation techniques can be exploited to derive the basis matrices of a given subdomain from the basis matrices of

17 Least-squares fitting gives the cubic equation (with practically zero error): â4(x) = −0.018x3
+ 0.02699x2

+ 0.001011x ..
18 It should be noted that in this case this step may be skipped, since there are no external forces applied on the selected subdomains,
nd therefore, the nodal interaction forces of each subdomain forms already a system of self-equilibrated forces.
19 A more detailed analysis reveals that the cause of the existence of 4 redundant modes is that the modes of the shear-y and bending-z,
n the one hand, and the shear-z and bending-y tests, span practically the same subspace. In turn, this suggest that, as a rule, it suffices to
erform 4 training tests for determining the characteristic modes of straight beams: 1 for the axial mode(s), 1 for the torsion mode(s), and
either shear or bending tests in both transversal directions.
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Fig. 11. (a) Self-equilibrated modes (Ψ̃ f) obtained from orthogonalization of the FE interaction nodal forces of subdomain Ω50 in 8 different
training tests, namely the 6 training tests with prescribed displacements described in Section 8.1, plus two tests with prescribed torque in
each of the ends of the prism. (b) Deformed shapes of the associated deformational modes (Φ̃ ).

Fig. 12. Deformed shapes of the 6 training tests, along with the deformed shapes of the deformational modes obtained from the snapshots
of subdomains from Ω45 to Ω55. Truncation tolerance ϵλ = 10−3. (a) Torsion test (3 modes). (b) Shear-y test (2 modes). (c) Shear-z test
(2 modes). (d) Axial test (1 mode). (e) Bending-z test (2 modes). (f) Bending-y test (2 modes).

subdomains with similar geometries (without the need of additional FE analyses). These two strategies are discussed
more in detail in Appendix B.

Once we have at our disposal the self-equilibrated (Ψ̃ f) and deformational modes (Φ̃ ), either calculated from
one single subdomain and 8 tests, or several subdomains and only 6 tests, we can proceed with the determination
of the fluctuation modes of the fictious interface, by following the steps outlined in Algorithm 3. The deformed
shapes of the candidate fluctuation modes W̃ , computed in step 3, are displayed in Fig. 13b. On the other hand,
the intersection of the column space of the interaction forces of the two interface boundaries (step 4 in Algorithm
33
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Fig. 13. (a) Interface force modes obtained from the self-equilibrated modes shown in Fig. 11a (through step 4 of Algorithm 3.) (b) Deformed
shapes of the candidate fluctuation modes (W̃ ), obtained from the deformational modes displayed in Fig. 11b (through step 3 of Algorithm

.). (c) Fluctuation mode (Ṽ ) selected from the subspace spanned by the candidate fluctuation modes.

Table 8
U-shaped cross-section beam. Error measures defined in Eqs. (117) (ϵ f , for the resultants and moment resultants) and (118) (ϵa , for the
cross-section translations and rotations), for the 6 training tests with prescribed displacements plus the 2 tests with applied torque (labeled
torque-1 and torque-2). The coarse-scale model is constructed using the same basis matrices for all slices — more specifically, the 8 modes
of subdomain Ω50 determined from these training tests. The resulting coarse-scale element has 7 DOFs per node.

Axial Shear-y Shear-z Torsion Bending-y Bending z Torque-1 Torque-2

Resultants (ϵ f ) 0.34 · 10−2 0.19 · 10−2 1.05 · 10−2 0.01 · 10−2 1.17 · 10−2 0.19 · 10−2 7.24 · 10−11 5.08 · 10−11

RB disp. (ϵa) 1.67 · 10−2 0.50 · 10−2 0.36 · 10−2 0.06 · 10−2 0.6 · 10−2 1.0 · 10−2 0.46 · 10−2 0.66 · 10−2

3), using a tolerance ϵ f = 10−8 gives20 the 7 force patterns shown in Fig. 13a. This means that there can be only
− 6 = 1 fluctuation mode; this fluctuation mode is to be determined from within the subspace spanned by the

andidate modes in Fig. 13b, see step 8 in Algorithm 3. The deformed shape of the mode resulting from this step
s shown in Fig. 13c. The resulting coarse-scale element has, thus 7-DOFs per node, the 7th DOF being precisely
he amplitude of this fluctuation mode. For completeness, we display in Eq. (123) the 7 × 7 block matrix K ∗e11 of

the coarse-scale element derived from this kinematics:

K ∗e11 = P̃eT

1 Ke P̃e
1 = 102

⎡⎢⎢⎢⎢⎢⎣
103.25 0 0 0 0 0 0

17.61 0 −0.45 0 0.09 −36.60
13.80 0 0.07 0 0

0.096 0 −0.0022 −6.383
0.066 0 0

(sym.) 0.35 −0.20
70676.1

⎤⎥⎥⎥⎥⎥⎦ . (123)

20 Higher tolerances gives rise to 8 force patterns, and therefore, kinematics with 8 DOFs. However, we have found that the kinematics
with 8 DOFs per node in tests with free ends tends to give higher errors. This may be due to an imbalance between the number of admissible
configurations of the fictitious interfaces and the subdomain. Indeed, if we use 7 DOFs per node, the number of independent motions of the
fictitious interfaces is equal to 7 + 7 = 14, which is the same number of possible independent configurations of the subdomain (6 rigid-body
modes + 8 deformational modes). However, with 8 DOFs per node, there are more DOFs than possible configurations of the subdomain.
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Fig. 14. U-shaped cross-section beam. Von Mises error measure (defined in Eq. (119)), for the 6 training tests with prescribed displacements
plus the 2 tests with applied torque (labeled torque-1 and torque-2). The basis matrices of all subdomains are equal to the basis matrices
obtained from the subdomain at the middle (subdomain Ω50, highlighted in the top of the figure).

Remark 9.3. The reader familiar with the so-called Vlasov torsion theory for thin-walled cross-section beams
(see e.g. Ref. [37], page 205) may notice the qualitatively resemblance between the fluctuation mode displayed in
Fig. 13c — in which the flanges appear to rotate in opposite directions around the axis of the web — and the
warping mode employed in such a theory. In the light of this resemblance, the 7th DOF in our coarse-scale element
may be interpreted as a warping DOF; likewise, the 7th generalized internal force F∗eint i (7) may be identified with
the “bimoment” appearing in Vlasov theory.

Finally, to demonstrate that this new coarse-scale element with 7-DOFs per node is indeed representative of the
beam behavior of this U-shaped cross-section prism, we present in Table 8 the error indicators given in Eqs. (117)
and (118). Notice that now all values are below 1%. The increase of accuracy in the case of the torsion test with
prescribed displacements is particularly noteworthy: from 7.33% and 10.2% when using the kinematics with 6 DOFs
(see Table 7), to 0.01% and 0.06% with this new kinematics using 7 DOFs. A similar increase in quality is observed
in terms of stresses, as can be appreciated in Fig. 14, where we plot the Von Mises stress error defined in Eq. (119)
for the 8 training tests. At a distance from the ends equal to the height of the cross-section, the Von Mises error
of the 6 tests with prescribed displacements is below 5%. The decay length in the case of the tests with prescribed
forces is slightly higher (the error goes down to 5% at a distance equal to 120% the height of the cross-section).

9.3.3. Longer beam under self-weight
We move now to the assessment of the performance of the representative coarse-scale element derived in the

foregoing in scenarios with different geometry (longer beam) and different external conditions. To this end, we
construct a coarse-scale model of a U-shaped cross-section beam made up of 400 elements (4 m long) fixed on
one end, and subjected to its own weight. Density is taking uniform and equal to ρ = 2700 Kg/m3, and gravity
is assumed to act along the y-axis. Since density is uniform, the vector of fine-scale nodal forces is expressible as
Fe

ext = −MeΦ̂
e
2gρ, g = 9.81 m/s2 being the acceleration of gravity, and Φ̂

e
2 the rigid body mode corresponding

to translations in the direction of the y-axis (see (31)). Its coarse-scale counterpart F∗eext , on the other hand, is
determined by Eq. Eq. (94). The work done by Fe

ext over the deformational modes Φ̃
e

(F̃ e
ext in Eq. Eq. (95))
vanishes by virtue of the orthogonality between rigid body and deformational modes (see Eq. (27)). This means

35



A. Giuliodori, J.A. Hernández and E. Soudah Computer Methods in Applied Mechanics and Engineering 407 (2023) 115913

c

(
f
—
r
·

T
f

a
d
t
a
t
F
d

a
c
F
F

t
n
m
s
s

a
o
d

that F∗eext only depends in this case on the resultant and moment resultant with respect to the centroid of each
subdomain, which in this case is simply given by

F̂ e
ext = Φ̂

eT
Fe

ext =
[
0 −ρgV e 0 0 0 0

]T
, (124)

V e
= 1.475 ·10−5 m3 being the volume of the subdomain. Premultiplication of the above by the upscaling matrices

P̂eT

1 , P̂eT

2 ∈ R7×6 (defined in Eq. (84)) finally furnishes the desired generalized forces at the two nodes of our
oarse-scale element:

F∗eext 1 = W e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−0.5

0
0
0

7.405 · 10−4

−0.6484

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
; F∗eext 2 = W e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−0.5

0
0
0

−7.405 · 10−4

+0.6484

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(125)

here W e
= V eρg is the weight of the subdomain). The equivalence between these two vectors and the fine-scale

orces (self-weight) becomes apparent when inspecting the second entry of these vectors (forces in the y-direction)
they are half the weight of the subdomain. Likewise, the 6th entry represents the equivalent moment with

espect to the z-axis caused by the weight with respect to the interface centroids; the obtained value (7.405
10−4W e) is 11% lower than the value predicted by the standard Euler–Bernoulli beam formulation (which is

W Le/12 = 8.33 ·10−4W ). The other nonzero entry is the 7th generalized force (the “bimoment” alluded to earlier).
his bimoment is responsible of provoking twisting of the cross-section along the beam — the coupling follows

rom the fact that the (4, 7) entry of the stiffness matrix shown in Eq. (123) is nonzero.
The quality of the approximation afforded by this 7-DOFs coarse-scale element can be appreciated in Figs. 15c

nd 15d, where we show the (amplified) deformed shapes, along with the contour plot of the norm of nodal
isplacements, provided by the FE model and the HROM. Notice that the maximum displacement predicted by
he coarse-scale HROM is only 0.122% below of that given by the “exact” FE analysis. The accuracy of the
pproximation can be further appreciated in Figs. 15a and 15b, where we plot the evolution along the beam of
he nonzero generalized displacement and generalized forces, respectively, computed by the HROM, along with its
E counterparts. Observe that both sets of curves are practically indistinguishable (the average error in the case of
isplacements is 0.16%, and in the case of generalized forces, 7.5·10−4 %).

9.3.4. Characteristic modes enriched with “local” modes
Next we address a case in which the ability of the proposed multiscale framework for capturing local effects

in structures distinct from the training structures is showcased — provided of course that these local effects are
present in any of the training scenarios. The structure to be studied is a U-shaped prismatic beam of length 2
m (200 subdomains) subjected to the same boundary conditions used in the training shear-y test (in which one
end is fixed, and the other undergoes a translation in the direction of the y-axis, see Fig. 12b). The goal is to
ccurately determine the Von Mises stress distribution on the ends of the structure, with special emphasis on stress
oncentrations. The deformed shape and Von Mises stress contour plot computed by the FE model are shown in
ig. 16a, and the detailed view of the Von Mises stresses in the first subdomain (the one on the fixed end) in
ig. 16b.

As may be surmised, the characteristic 7-DOFs coarse-scale element described in Section 9.3.2 is not sufficient
o achieve this goal — by construction, the corresponding basis matrices, hereafter denoted by Φ̃

beam
and Ψ̃

beam
f , do

ot contain information about any local effects. This is corroborated in Fig. 16e, where we plot the Von Mises error
easure given in Eq. (119) obtained when this coarse-scale element is used for all the M = 200 subdomains (ob-

erve that the average error on the ends is around 35%); and in Fig. 16c, where we show the distribution of Von Mises
tresses on the first subdomain (the coarse-scale model clearly fails to detect the stress concentrations at the corners).

Due to the local character of boundary effects, it is reasonable to assume that the deformational and force patterns
dopted by the subdomains close to the ends are essentially the same as on the shear-y test with 100 subdomains (the
ne used for training). Accordingly, we can increase the quality of the approximation by enriching the characteristic

eformational and force basis matrices of the subdomains close to the ends (here we have taken the 20 closest
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Fig. 15. 4 m long (400 subdomains) U-shaped cross-section beam fixed on one end and subject to its own weight. The coarse-scale HROM
is constructed using the characteristic element of 7 DOFs per node described in Section 9.3.2. (a) Nonzero coarse-scale DOFs computed by
the FE method and the HROM; more specifically, aI (2) (translation of the interface centroid in the y-direction), aI (4) (twist angle), aI (6)
(rotation angle around the z-axis); and aI (7) (the “warping DOF”, which is the amplitude of the mode shown in Fig. 13c.). (b) Nonzero
generalized forces computed by the FE method and the HROM. (c) Deformed shape (amplified) and contour plot of the norm of nodal
displacements computed by the FE method. (d) Deformed shape (amplified) and contour plot of the norm of nodal displacements computed
by the HROM.

Fig. 16. U-shaped prismatic beam of length l = 2 m (200 subdomains), fixed on one end and with a prescribed translation of 0.01 m on
the other end (in the direction of axis y). (a) Deformed shape (× 50) along with the contour plot of Von Mises stresses (MPa) computed
by the FE model. (b) Detailed view of the Von Mises stresses on the first subdomain (in contact with the fixed end). (c) Same as in (b),
but computed by a coarse-scale model that employs the characteristic element (8 deformational modes and 7 DOFs per node) determined
in Section 9.3.2 (from a beam of length l = 1 m). (d) Same as in (b) and (c), but computed by an “enriched” coarse-scale model. (e) Von
Mises error measure defined in Eq. (119) for all the M = 200 subdomains, for both coarse-scale models (without and with enrichment).
The subdomains with enriched basis matrices are highlighted in the top of the Figure (subdomains 1 to 20, and 181 to 200).

domains to each end, as depicted at the top of Fig. 16e) with the snapshots coming from this very training test. The
enrichment procedure goes as follows. For each Ω e (e ∈ {1, 2 . . . 20, 181, 182 . . . 200}), construct snapshots matrices
of the form Ae

d = [Φ̃
beam

, de′,sheary] and Ae
λ = [Ψ̃

beam
f , λ

e′,sheary
f ], where de′,sheary and λ

e′,sheary
f stand for the FE

nodal displacement and interaction force nodal vectors at the domain Ω e′ in the training structure corresponding to
Ω e (for instance, for e = 199, we have e′ = 99). Then apply the steps outlined in Section 5 for determining the
deformational and interaction force basis for these 40 subdomains. As for the subdomains located on the central
region, simply set Φ̃

e
= Φ̃

beam
and Ψ̃

e
f = Ψ̃

beam
f (e ∈ {21, 22 . . . 180}). The Von Mises error measure (see
Eq. (119)) obtained when this enriched coarse-scale model is used is shown in Fig. 16e. Observe that the enrichment
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Fig. 17. (a) Fiber-reinforced tubular structure. (b) Domain partition into 10 slices. (c) Three different fiber-reinforced “characteristic” slices
esulting from the domain decomposition. (d) FE mesh of subdomain Ω2

c . (e) Elements highlighted in red contain the Gauss points selected
by the ECM for subdomain Ω2

c . (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

has produced an error decrease from 35% to around 3% on the ends, while maintaining the same accuracy level
on the central portion. The increase of quality on the first domain can be qualitatively appreciated by comparing
the stress distributions computed by the FE and the enriched coarse-scale models (Figs. 16b and 16d, respectively);
quantitatively, the maximum stress predicted by the FE analysis is 242.8 MPa, while the enriched coarse-scale
model furnishes 248.0 MPa (only 2.14% above). In terms of computational cost, the number of unknowns in the
coarse-scale model is approximately 450 times less than in the FE model (8 · 40+ 7 · 160 = 1440 DOFs in the 1D
coarse-scale HROM against the 3 · 214 000 = 640 000 DOFs of the 3D FE analysis).

10. Cases with heterogeneous composition, cross-section changes and curvature

We conclude the numerical assessment of the proposed methodology by demonstrating its ability to deal with
prismatic structures displaying several materials, abrupt changes of cross-section and/or curved midlines.

10.1. Fiber-reinforced tubular structure

In this section, we shall analyze the bending behavior, in the small strain regime, of a fiber-reinforced tubular
structure (more specifically, a polymer-covered braided medical “stent”, see e.g. [44]), by developing different
HROMs with customized coarse-scale 1D FE. For this purpose, the domain depicted in Fig. 17a is decomposed
into M=10 slices (see Fig. 17b), resulting in three geometrically different (or “characteristic”) subdomains Ω

eg
c

(eg ∈ {1, 2, 3}), as shown in Fig. 17c; their cross-section dimensions are described in Table 9. Each subdomain is
composed by 10 interweaved fibers of diameter d f = 0.075 mm, whose material is isotropic and behaves linearly,

ith Young Modulus E f = 80000 MPa and Poisson’s ratio ν f = 0.33; these fibers are embedded in an isotropic
material with Young Modulus Em = 5 MPa and Poisson’s ratio νm = 0.4. The FE discretization of each subdomain
results in n = 9601 nodes and m = 48292 tetrahedral elements, as depicted in Fig. 17d for Ω2

c .
Following the procedure described in Section 9, we are interested now in extracting a “characteristic” coarse-scale

lement for each distinct subdomain Ω
eg
c . Note that, in this case, due to the geometric difference between slices,

he rigid body, deformational and force patterns will not be the same for distinct geometric configurations. In order
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Fig. 18. Prismatic structure used for the training stage of the “characteristic” subdomain Ω2
c .

Fig. 19. Deformed shapes (amplified) of the characteristic deformational modes corresponding to Ω1
c .

Table 9
Cross-section dimensions of the three fiber-reinforced tubular slices. dm

out : minimum
outer diameter, d M

out : maximum outer diameter, tm
out : minimum tubular thickness, t M

out :
maximum tubular thickness, and, l: slice length.

dm
out [mm] d M

out [mm] tm
out [mm] t M

out [mm] l [mm]

Ω1
c 2.625 2.625 0.25 0.25 0.785

Ω2
c 1.970 2.625 0.1875 0.25 0.785

Ω3
c 1.970 1.970 0.1875 0.1875 0.785

to exclude local effects induced by the imposition of boundary conditions, a prismatic structure composed of M=40
subdomains is built for each “characteristic” slice Ω

eg
c , and, separately for each case eg = 1, 2, 3, we compute

he deformational and interface force modes for the middle subdomain (Ω20) in the 6 training tests described in
ection 8.1, namely axial, shear-y, shear-z, torsion, bending-y and bending-z tests. Fig. 18 shows, for instance,

he training structure designed for Ω2
c . Moreover, Fig. 19 illustrates the deformed shapes of the characteristic

eformational modes corresponding to Ω1
c . To complete the description, in Fig. 17e we plot the elements which

ontain the set of Gauss points (Ze) selected by the ECM for subdomain Ω2
c , as indicated in Section 7.5.

Note that, as stated in Section 9, since the information is extracted uniquely from subdomain Ω20, the
orresponding basis matrices, denoted by Φ̃

eg ,beam
and Ψ̃

eg ,beam
, do not contain information about any local effects.

fter completing the offline stage, we construct a coarse-scale model of each training structure assigning the
orresponding modes to each “characteristic” element (Ω eg

c ), and evaluate the error comparing the HROM against
he FE results. We found that the error does not exceed 5.5% in any case, which may allow us to claim that the
mployed deformational and interaction force modes are indeed “characteristic” of each subdomain configuration.
otice that, if one aims at improving the performance of this HROM, any of the strategies to enrich the basis

atrices with additional information (see Section 9.3.2) can be followed.
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Fig. 20. Deform shape and norm of displacements computed by the FE method (top) and HROM (bottom) on three fiber-reinforced tubular
structures. The right end is fixed, while the left end is prescribed with a force acting in the y-axis (Fy = −0.01 N).

Due to the versatility of our approach, the three “characteristic” coarse-scale elements derived in the foregoing can
e used in scenarios with different geometries and different external conditions. Therefore, to assess the performance
f the HROM in unseen scenarios, we construct three coarse-scale models of fiber-reinforced tubular structures, each
f them made up of M=20 slices, as depicted in Fig. 20. The first beam is uniquely composed of 20 repetitions
f subdomain Ω1

c ; the second one is composed by 14 repetitions of Ω1
c , followed by 1 subdomain Ω2

c , and then, 5
epetitions of Ω3

c at the right end; the third beam is composed by 20 repetitions of Ω3
c . For each distinct subdomain,

e use the corresponding basis matrices Φ̃
eg ,beam

and Ψ̃
eg ,beam

(eg = 1, 2, 3). We apply the same boundary
onditions to all of them: the right end is fixed, while the left end is prescribed with a force acting in the y-axis
Fy = −0.01 N). The resulting deformed shapes given by both the FE method and HROMs are compared in Fig. 20,
lotting the norm of the displacements on each case. In order to highlight the coarse-scale character of our HROM,
e reconstruct the fine-scale results only in a few selected subdomains. Note that the reconstructed (fine-scale)
isplacements given by the HROM are in good agreement to the FE solutions, even given the fact that the training
eometries were different, and they were not trained under external forces. It should be pointed out that, in this
ase, the number of DOFs is reduced from M · n · 3 = 576 060 to (M + 1) · 6 = 126, yielding a notorious reduction
actor21 of 4571.

0.2. Helical structure with variable cross-section

Finally, we propose to build a coarse-scale model for the linear elastic behavior of a helix with circular
ross-section. As shown in Fig. 21, the global domain is decomposed into M=600 subdomains, resulting in 10
characteristic” slices Ω eg

c (eg = 1, 2, . . . , 10) with equal length l = 10 mm and varying cross-section diameter “d”
such that 40 mm ≤ d ≤ 50 mm). The material is isotropic, with Young’s Modulus E = 70 GPa and Poisson’s ratio
f ν = 0.3. All subdomains are discretized using eight-nodes hexahedral elements, resulting in m = 384 elements
nd n = 627 nodes.

For each “characteristic” slice Ω
eg
c , we create a training geometry composed by a single subdomain Ω

eg
c in the

iddle of a beam filled with straight segments at the ends, allowing us to neglect local effects. In Fig. 22, for
nstance, we show the training geometry designed for subdomain Ω2

c . Separately for each case eg = 1, 2, . . . , 10,
he snapshot matrices collect the results on the central slice Ω

eg
c of the six training test described in Section 8.1. As

utlined in Section 9, we now compute the deformational and interface force modes for each subdomain Ω
eg
c , which

ct as the “characteristic” modes of the coarse-scale elements in the HROM. Then we construct the coarse-scale
ounterpart of each training test and evaluate the results against those computed by the FE method. Similar to the
revious case, the HROM/FE results show discrepancies below 5% in all the tests.

During the online stage, the derived coarse-scale elements are to be used to construct the HROM corresponding
o the case shown in Fig. 21 with M=600 subdomains. Boundary conditions are imposed as follows: displacements

21 In this particular case, the entire offline stage took 75 min in the computer at hand. However, as stated in the introduction, this cost is
amply repaid by the low cost associated to the online stage, which is reduced from 12 min for the standard FE to 12 s for the HROM. Note
that, we might now build many different coarse-scale models (changing the geometry or boundary confitions) and rapidly analyze them.
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Fig. 21. Partitioning of helix into M=600 subdomains, resulting in ten “characteristic” slices Ω
eg
c (eg = 1, 2, . . . , 10) distinguished by distinct

colors.

Fig. 22. Prismatic structure designed for running the six FE tests in the training stage for slice Ω2
c .

n the x and z directions are prescribed at the top end of the beam (aN (1) = 0.01, aN (3) = 0.01), while the bottom
nd is fixed. Fig. 23 plots the Von Mises stress distributions obtained by both the FE method and the HROM, in
hich there are no discernible differences. Once again, aiming at highlight the coarse-scale character of our HROM,

he fine-scale results are only reconstructed in selected subdomains. Notice that, by using the proposed approach,
he high computational cost associated to the FE model can be largely reduced, decreasing in this case the number
f DOFs from M · n · 3 = 1 128 600 to (M + 1) · 6 = 3606 (reduction factor of 312).

1. Concluding remarks

• We have demonstrated that the partitioned variational framework originally put forward in Ref. [27] for

periodic structures is generalizable to any prismatic structure, provided that each subdomain is allowed to
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Fig. 23. Contour plot of Von Mises stress distributions computed by (a) the FE method and (b) the HROM. The results in the coarse-scale
model were only reconstructed in a subset of selected subdomains.

have its own set of basis matrices, tailored to capture the displacement and stresses present in the FE results
used for training the coarse-scale model.
• We have formalized the notion of “representative” or “characteristic” coarse-scale element (the equivalent of

a 1D element in FE beam formulation) of a given 3D subdomain (see Section 9), by providing a rigorous
definition in terms of its ability to transmit loads throughout the prismatic beam (Eqs. (117) and (118)), and
a systematic “data-driven” procedure for determining the basis matrices required for constructing the coarse-
scale model. Furthermore, with the aid of the interpolation procedure described in Appendix B, elements of
different length, or other geometric variations, can be derived from an existing database without the need of
running additional FE training analyses.
• Aside from the typical applications of standard FE beam elements, the proposed partitioned framework offers

the possibility of modeling aspects which are outside the scope of such standard elements, namely: accurate
representations of structures with abrupt changes in cross-section, for both straight (Section 10.1) and curved
midlines (Section 10.2); local enrichment for capturing boundary effects (Section 9.3.4); even the possibility
of recovering, almost exactly, the same 3D FE results used for training the model (Section 8).
• We have shown that it is possible to derive pre-computable downscaling (coarse-to-fine) operators for

displacements (see Eq. (79) and Fig. 3); furthermore, the transpose of this downscaling matrices turn out to
be the upscaling operators for nodal forces. In terms of computational implementation, the existence of such
downscaling operators, along with the hyperreduction scheme based on the ECM for integration of internal
forces (see Section 7.5), allow one to easily accommodate this type of element in existing 3D FE codes for solid
elements. Consequently, the user need not worry about deriving “generalized” constitutive equations relating
generalized forces and generalized strains (as in standard FE beam implementations), simply because there
is no such a thing as generalized strains in our theory: rather, generalized forces are directly related with the
Cauchy stresses at the ECM points (see Eq. (109)), and Cauchy stresses to infinitesimal strains through the
pertinent standard 3D constitutive equations. Lastly, infinitesimal strains at the ECM points are connected
to the coarse-scale DOFs (generalized displacements) by the “inter-scale” strain–displacements defined in
Eq. (110) (which are actually the standard “B”-matrices of 3D solid elements multiplied by the aforementioned
downscaling operator).
• Last but not least, we have seen in Section 8 that the method is not strictly consistent from the “machine

learning” perspective, in the sense that, even if one does introduce any type of truncation in the modal
representations of each subdomain, the fine-scale values recovered from the HROM do not coincide exactly
with the fine-scale results used to train the model. Although the loss of accuracy is insignificant from the

engineering point of view in most cases — stresses are exactly captured, the error lies in the representation of
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rigid-body displacements —, it would be interesting in future research to delve deeper in this aspect, and
try to develop an entirely consistent hyperreduced-order multiscale formulation. We have argued that the
loss of information is due to the fact that incorporating all the fluctuation modes of the interface to ensure
perfect compatibility leads to a coarse-scale problem with more unknowns than equations — that is why, for
instance, we are forced to have 6 DOFs per node for the case of the rectangular cross-section, even though we
know from the FE simulations that such interfaces do strain during the deformation. The challenge is to find
complementary equations able to improve the accuracy without ruining the well-posedness of the coarse-scale
equations. Research in this front is in progress and will be reported in forthcoming publications.
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ppendix A. Orthogonality conditions

roposition A.1. Let U, U ′ : Ω e
→ R3 be two displacement fields of the form U = Ned and U ′ = Ned ′, where

Ne
: Ω e
→ R3×3ne

is the matrix of global shape functions. Then,

⟨U, U ′⟩ =
∫
Ωe

U T U ′ dΩ = dT Med ′ (A.1)

here Me is the geometric mass matrix:

Me
:=

∫
Ωe

NeT
Ne dΩ (A.2)

roof. The proof follows easily from replacing the nodal interpolations U = Ned and U ′ = Ned ′ in the integral
n Eq. (A.1). □

roposition A.2. Let λi , λ
′

i ∈ R3le
i be two nodal interaction forces at the interface boundary ∂Ω e

i . Suppose that
he associated surface tractions t, t ′ : ∂Ω e

i → R3 can be exactly represented in terms of their nodal values using
he same interpolation functions as for the displacements. Then, it can be asserted that

⟨t, t ′⟩ =
∫

∂Ωe
i

tT t ′ dΓ = λT
i Me−1

fi fi
λ
′

i (A.3)

here

Me
fi fi
:=

∫
∂Ωe

i

NeT

fi
Ne

fi
dΓ (A.4)

e e e
here N fi
is the column block of N corresponding to the boundary DOFs fi ).
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Proof. The definition of the FE nodal forces in terms of their associated traction vectors reads

λi =

∫
∂Ωe

i

NeT

fi
t dΓ ; λ

′

i =

∫
∂Ωe

i

NeT

fi
t ′ dΓ . (A.5)

ince we are assuming that tractions are amenable to approximation by the FE shape functions, i.e.: t = Ne
fi

T
and t ′ = Ne

fi
T ′, T , T ′ ∈ R3le

i being the nodal values corresponding to t, t ′, it follows from these expressions and
Eq. (A.5) that

λi =

(∫
∂Ωe

i

NeT

fi
Ne

fi
dΓ

)
T = Me

fi fi
T ; λ

′

i =

(∫
∂Ωe

i

NeT

fi
Ne

fi
dΓ

)
T ′ = Me

fi fi
T ′. (A.6)

herefore,

⟨t, t ′⟩ =
∫

∂Ωe
i

tT t ′ dΓ = T T Me
fi fi

T ′ =
(

Me−1

fi fi
λi

)T
Me

fi fi
Me−1

fi fi
λ
′

i

= λ
′T
i Me−1

fi fi
λ
′

i

(A.7)

s stated. □

ppendix B. Interpolation of subdomain modes

The methodology presented in Section 9 for determining “characteristic” coarse-scale elements requires, in
rinciple, specific FE training tests for each geometrically distinct subdomain. In some cases, it may be possible to
oncoct training structures in which several subdomains are processed at the same time, as illustrated in Fig. B.24a,
hereby partially alleviating the computational burden associated to the corresponding 3D FE analyses.

However, even if such saving measures are adopted, the offline stage may still prove overly costly for routine
tructural analyses. This shortcoming is specially evident when we consider geometric variations such as the width
f the subdomains in straight prismatic beams. Indeed, suppose we have determined the deformational basis matrix22˜ (l0) ∈ R3n×p of a representative coarse-scale element of width l0. With this coarse-scale element at our disposal,
e can model any prismatic beam of length L = nl0 where n is some integer n > 1. However, if L is not a multiple
f l0, such that L = nl0 + l, where n > 1 is an integer and l0 < l < 2l0, then the modeling of the prismatic beam
ould entail, in principle, an additional training campaign for determining the basis matrices of a subdomain of
idth equal to l. As may be surmised, repeating this operation for any possible value of l is simply impractical,

nd may render the proposed approach unattractive if compared with standard beam finite elements — which, after
ll, although demonstrably less accurate, do not require complicated 3D FE analyses to infer their shape functions.

Fortunately, as we argue in what follows, there is no need to perform a battery of FE analyses each time one is
onfronted with a subdomain whose geometry does not coincide exactly with any of the geometries existing in the
ffline database. The key ingredient to avoid such analyses is to perform a special type of interpolation among the
re-computed basis matrices. To illustrate this idea, we shall use the example mentioned above involving the width
f the subdomains, more specifically the case of the rectangular cross-section prismatic, discussed in Section 9.2,
here l0 = 0.01 m. We take this value as the reference width, and then parameterize the coordinates of the mesh
odes of the subdomain as x(α) = (1 + α)X , y = Y and z = Z , where α = 1 − l/ l0, and 0 ≤ α ≤ 1. Then
e determine the characteristic deformational basis matrix Φ̃ (αi ) for m values of the dimensionless parameter α:
= α1 < α2 < . . . < αm−1 < αm = 1. This can be done by either performing 6 FE analyses for each of

he m samples separately, or by performing one single set of 6 tests with the configuration shown in Fig. B.24a.
mpirically, we find23 that all the matrices have the same number of columns as the reference one (i.e. 6 modes):˜ (αi ) ∈ R3n×6.

Now suppose we wish to determine the deformational matrix Φ̃ (α∗) for a width parameter α∗ ̸= αi . This problem
alls into the category of the so-called manifold interpolation problems (see e.g. Ref. [45], Chapter 7). The reason
his problem is dubbed so is because the pre-computed basis matrices {Φ̃ (αi )}mi=1 pertain to a manifold, namely,
he manifold of subspaces of dimension p = 6 of R3n (formally, a Grassmann manifold). The interpolated matrix

22 The same applies for the self-equilibrated basis matrix Ψ̃ f, as well as the stress basis matrix, Θ .
23 This may be explained by the fact that the variation of width (from 0.01 m to 0.02 m) is small in comparison with the transversal

dimensions of the subdomains (h = 0.1 m).
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Fig. B.24. (a) “Training” structure containing subdomains, in its central portion, whose width ranges from l0 to 2l0 (l0 = 0.01 m). The two
emaining subdomains (of width 3h, h being the height of the cross-section) need not be processed — they act as “dummy” structures,
n the sense that they only serve for keeping the studied subdomains sufficiently away from the ends so that their stress states are not
ignificantly disturbed by local effects. (b) First three right-singular vectors (V j , j=1,2,3), computed in Step 2 of Box B.1, versus the width

parameter α, for the case of m = 11 samples. In the case of V 3, we show its spline interpolant v3. Given a new input parameter α∗, we
evaluate v j (α∗), and then determine the interpolated matrix (reshaped as column vector) on the tangent space via Step 3 in Box B.1.

Algorithm 4: Logarithmic map on a Grassmann manifold (from Ref. [46])

1 Function H =GLog(X, Y):
Data: X, Y ∈ Rn×p, where n ≥ p, XT X = Y T Y = I p×p.
Result: H ∈ Rn×p (the image of Y on the tangent space of the manifold at point X).

2 [U, S, V ] ← SVD((Y − X(XT Y ))(XT Y )−1,0) // Here S ∈ Rp is the vector of singular values

3 θ ← atan(S)
4 H ← Udiag(θ )V T

// diag(θ) is a diagonal matrix containing θ ∈ Rp

must preserve this very property, i.e., it must have p = 6 linearly independent columns as well. The procedure
(described in detail in Box B.1 [46]) for ensuring this is to map {Φ̃ (αi )}mi=1 from the manifold onto its tangent
pace at a reference point (we take here Φ̃ (α1)), perform the interpolation in such tangent space, and finally map
he interpolated matrix back to the manifold (in differential geometry, the mappings that go from the manifold to
he tangent space and viceversa are known as the logarithmic mapping and exponential mapping, respectively).

It should be noticed that this procedural steps are similar to the ones advocated in Ref. [31], the only difference
being that we employ here an SVD-based spline interpolant scheme (steps 2,3 and 4), rather than the entry-wise
Lagrangian interpolant suggested in Ref. [31]. The idea of using this SVD-based interpolation scheme, in turn, is
borrowed from Ref. [47]; its performance is illustrated in Fig. B.24b.

To assess the accuracy of this interpolation, we determine the basis matrices for n = 21 distinct widths, and then
se a subset with m matrices (2 < m < n − 1) of such matrices for constructing the spline interpolants — and the
emaining q = n−m matrices for examining the error. Rather than measuring the interpolation error per se, which is
f little interest from a practical point of view, we perform interpolation on the self-equilibrated modes Ψ̃ f as well,
nd then compute the coarse-scale stiffness matrix K ∗(αi ) via expression (103). For batches sizes m = 2, 4, 8, 16,
he relative Frobenius error (between “exact and interpolated matrices) yields: 0.06% (m = 2), 3.5·10−4 % (m = 4),
.72 · 10−5 % (m = 8) and 6.89 · 10−6 % (m = 16). Note that with just two sets of basis matrices (obtained from
ubdomains of width l0 and 2l0), the error (0.06%) is less than the error inherent to the use of characteristic elements
see Table 5). This suggests that, in principle, training with just two subdomains of length l0 and 2l0 may suffice
o deliver reasonably approximate stiffness values for any subdomain of length l0 ≤ l ≤ 2l0. Nevertheless, this
onclusion may not be generalizable to other more complex cross-sections, and thus, it is better to carry out an
rror assessment like the one presented in the foregoing using, at least, 6 different widths.
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Given the deformational basis matrices {Φ̃ (αi )}mi=1 (Φ̃ (αi ) ∈ R3n×p) of subdomains of width li = (1 + αi )l0,
0 = α1 < α2 . . . < αm−1 < αm < 1, find Φ̃ (α∗) for a given α∗ ̸= αi by interpolation on the tangent space of the
Grassmann manifold of p-dimensional subspaces of R3n , taking as reference point Φ̃ (α1).

• Pre-computation of spline interpolants (just once for the given basis matrices {Φ̃ (αi )}mi=1)

1) For all i = 1, 2 . . . m, orthogonalize Φ̃ (αi ) in the Euclidean norm via the SVD: [X i , •, •] =
SVD(Φ̃ (αi ), 0). Then map each X i onto the tangent space at X1 via Algorithm 4:

H i = GLog(X1, X i ), i = 1, 2, 3 . . . m. (B.1)

2) Reshape each H i ∈ R3n×p into a column vector gi ∈ R3n·p (i = 1, 2 . . . m), and store the vectors in a
matrix G = [g1, g2 . . . gm]. Then apply the SVD on G:

[U, S, V ] = SVD(G, 0). (B.2)

3) Construct spline interpolants (i.e., piecewise cubic polynomials) for each column V j ∈ Rm of the
right-singular matrix V = [V 1, V 2 . . . V m]:

v j = spline(α, V j ), j = 1, 2 . . . m (B.3)

where α = [α1, α2 . . . αm].

• Determination of basis matrix Φ̃ (α∗)

4) Using the piecewise cubic polynomials v j ( j = 1, 2 . . . m), determine the column vector g(a∗)
corresponding to the point in the tangent space associated to α∗:

g(α∗) =
m∑

j=1

U j S jv j (α∗). (B.4)

5) Reshape g(α∗) ∈ R3np into a matrix H∗ ∈ R3n×p, and then map H∗ back to the manifold via Algorithm
5:

X∗ = GExp(X1, H∗). (B.5)

6) Finally, apply operator (33) to X∗ to convert it into a purely deformational mode for this geometric
configuration. Then, use the weighted SVD (see Algorithm 1) to make it M-orthogonal; the resulting
matrix will be the desired Φ̃ (a∗).

Box B.1: Computation of characteristic deformational modes via manifold interpolation.

Algorithm 5: Exponential map on a Grassmann manifold (from Ref. [46])

1 Function Y =GExp(X, H):
Data: X ∈ Rn×p, where n ≥ p, XT X = I p×p; H ∈ Rn×p (point on the tangent space of the manifold

at X).
Result: Y ∈ Rn×p, where Y T Y = I (the image of H on the manifold).

2 [U, S, V ] ← SVD(H ,0)
3 Y ← XV diag(cos(S)) + U diag(sin(S))
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