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ABSTRACT 

Crack opening governs many transfer properties that play a pivotal role in durability analyses. Instead of trying 

to combine continuum and discrete models in computational analyses, it would be attractive to derive from the 

continuum approach an estimate of crack opening, without considering the explicit description of a 

discontinuous displacement field in the computational model.  This is the prime objective of this contribution. 

The derivation is based on the comparison between two continuous variables: the distribution if the effective non 

local strain that controls damage and an analytical distribution of the effective non local variable that derives 

from a strong discontinuity analysis. Close to complete failure, these distributions should be very close to each 

other. Their comparison provides two quantities: the displacement jump across the crack  and the distance 

between the two profiles. This distance is an error indicator defining how close the damage distribution is from 

that corresponding to a crack surrounded by a fracture process zone. It may subsequently serve in 

continuous/discrete models in order to define the threshold below which the continuum approach is close enough 

to the discrete one in order to switch descriptions. The estimation of the crack opening is illustrated on a one-

dimensional example and the error between the profiles issued from discontinuous and FE analyses is found to 

be of a few percents close to complete failure.  
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I. Introduction 
For many concrete structures, crack opening is a key parameter needed in order to estimate durability. Cracks are 

preferential paths along which fluids or corrosive chemical species may penetrate inside concrete structural 

elements. For structures such as confinement vessels for instance, tightness to gas or liquids is a major 

serviceability criterion that is governed by Darcy’s relation in which permeability of the material is involved. 

The material permeability is strongly related to the amount of cracking in concrete: permeability grows 

significantly as distributed microcracking develops (see e.g. Choinska et al. 2007) and it jumps several orders of 

magnitude upon macrocracking (Sugyiama et al. 1996, Hearn and Lok, 1998). According to Poiseuille’s law, the 

permeability of a cracked structure (with a single crack) is proportional to the square of the crack opening. 

Hence, the prediction of the durability of structural components requires models that describe failure, crack 

locations and crack openings in the present example too when damage has localised. 

• Enhanced continuum and integral damage models are capable of representing diffuse damage, crack 

initiation and possibly crack propagation (Pijaudier-Cabot and Bazant (1987), Peerlings et al. (1996)). 

They regard cracking as an ultimate consequence of a gradual loss of material integrity. These models, 

however, do not predict crack opening as they rely on a continuum approach to fracture.  

• Fictitious crack models are based on an explicit description of the discontinuity within the material 

(e.g. cohesive crack model of Hillerborg et al. (1976)). They relate the crack opening to the stress level 

and they are based on the linear elastic (or plastic) fracture mechanics. Cohesive crack models needs 

proper algorithms for crack propagation, and more importantly they are not capable of describing crack 

initiation.  

Ideally, the prediction of durability that involves inception of failure, crack location, propagation and crack 

opening would require to merge the continuum damage approach and the discrete crack approach into a single, 

consistent, computational model bridging the continuous and discrete approaches. Bridges between damage and 

fracture have been devised in the literature (see e.g. Mazars and Pijaudier-Cabot (1996), Planas et al. (1993)). 

They rely on the equivalence between the dissipation of energy due to damage and the energy dissipated in order 

to propagate a crack. Given the energy dissipated in the damage process, the equivalent crack length is 

computed, knowing the fracture energy. Generally, the entire energy that is dissipated in the fracture process 

zone is “converted” into a crack length (Mazars and Pijaudier-Cabot (1996)). Some part of this energy may be 

dissipated in the process zone outside from the crack and it follows that the crack length is probably 

overestimated, and the crack opening is overestimated too.  



The strong discontinuity approach initiated by Simo et al. (1993) and widely used over the last decade (e.g. 

Oliver et al. (2002), Oliver et al. (2004), Larsson et al. (1998)) offers the possibility of merging in the same 

formulation a continuous damage model for the bulk response and a cohesive model for the discontinuous part of 

the kinematics. It is certainly a combination of continuum – discrete modelling that is sound from a theoretical 

point of view and appealing from the point of view of the physics of fracture. The issue in combining the 

continuum based model for crack initiation and then a discrete crack model for propagation is, however, the 

threshold upon which one switches from one analysis to the other. Usually, it is considered that the discontinuity 

appears when damage, stresses or strain energy reach a certain threshold fixed beforehand, which remains 

arbitrary (Comi et al. (2007), Simone et al. (2003)). As we will see further, one of the outcome of the present 

paper is to provide an indicator on the basis of which the appearance of a discontinuity during a damage process 

can be defined, with a given accuracy.  

Instead of trying to combine continuum and discrete models in computational analyses, it would be attractive to 

derive from the continuum approach an estimate of crack opening, without considering the explicit description of 

a discontinuous displacement field in the computational model. This derivation could be based on some post-

processing of the distribution of strain and damage in the considered structure. The main purpose of this paper is 

to present such an estimate of crack opening derived from a continuum model description. First, we recall the 

continuum approaches that will be considered: the (integral) non local damage model and the gradient damage 

model. Nonlocal models are known to possess shortcomings such as spurious boundary effects on fracture 

propagation (Jirasek et al. (2004)) or incorrect initiation of damage at a crack tip (Simone et al. (2004)). Still 

these defects in the model formulation do not alter their ability to capture a fully localised (mode I) crack. The 

estimate of crack opening is discussed in the second part. We start from an analytical expression of a regularized 

strong discontinuity and compare the induced strain field with results from the continuum based model. The 

comparison of the strain profiles provides the crack opening, and at the same time some indication of the quality 

of the estimate. Results obtained according to the integral and gradient damage models are illustrated on the one 

dimensional example of a tension bar. 



II. Non local damage approach 

1. Damage model 
The scalar isotropic damage model due to Mazars (Mazars and Pijaudier-Cabot (1989)) will be used in the finite 

element computations for representing the progressive failure. In this model the stress (σ) – strain (ε) 

relationship is expressed as follows: 

( ) εσ :1 CD−=           (1) 

where D is the damage scalar variable and C is elastic stiffness of the material. Damage is a combination of two 

components:  which is damage due to tension based loads and which is damage due to compression:  tD cD

cctt DDD αα +=           (2) 

tα  and cα  depend on the strain tensor. In the case of a uniaxial tensile loading 1=tα  and 0=cα . In this paper, 

we shall be interested damage due to tension loads only, and then Eq. (2) reduces to: 
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+iε  denotes the positive part of the principal strain iε .  

This constitutive relation exhibits strain softening and two regularization techniques shall be considered in order 

to avoid mesh dependency and ill-posedness of the governing equations of equilibrium.   

2. Integral non local model 
In the non local damage model, the effective strain (Eq. (5)) is substituted by the average equivalent strain eqε in 

the equations governing the growth of damage (Pijaudier-Cabot and Bazant (1987)). The non local average is 

defined as 
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Several weight functions exist in the literature, we choose the most often used, i.e. the Gaussian function: 
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where  is the internal length of the model, a new model parameter compared to the classical – local – 

constitutive model. 

cl

3. Gradient enhanced model 
The second class of regularized model used in this paper follows the same principle, except that the nonlocal 

variable derives from a Helmholtz equation. The non local equivalent strain eqε replaces its local counterpart. It 

is defined as:  
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where iε is a regularized principal strain that is solution of the equation  

εεε =∇− 2c            (9) 

where c  [m] provides a characteristic size to the model. Actually, this gradient enhanced regularization 

technique is a particular case of the integral approach with a specific, Green weight function that can be written 

in the 1D case (Peerlings et al. (2001)), as: 
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One can observe that the slope at the centre (x=s) of the Green function GFφ  is finite but non zero, whereas for 

the Gaussian function Gφ  this slope is zero. Therefore, the Green weight function is sharper at the centre, it 

decreases more rapidly providing less weight for neighbours of point x than the Gaussian weight function. 

III. Estimation of crack opening 
Let us consider the case of a 1D bar loaded in tension. The bar of length L is clamped at  and a constant 

velocity v is applied at the other end ( ). We assume that the loading history is such that failure occurs at 

point  (Fig. 1a) and we look at the ultimate failure state, after the separation of the bar in two pieces, now 

0=x

Lx =

0xx =



assumed to be free of load. Note that for simplicity, the crack location is assumed to be known in our approach. 

The displacement field will be constant piecewise with a step at the crack position 0xx = . 

The displacement profile (see Fig. 1b) is described according to a strong discontinuity formulation: 

( ) [ ] ( 00, xxHUxxusd −= Γ )

)

          (11) 

where subscript  stands for strong discontinuity,  is the Heaviside function and [  is the displacement 

jump across the crack. From Eq. (11), we may derive the strain field (see Fig. 1c) with the classical symmetric 

gradient operator : 
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where ( )xδ  is the Dirac function. According to the above regularized damage models, discontinuous 

displacements may not necessarily exist, or may represent a limit case that is reached upon infinite strain. Hence, 

trying to compare the strain field in the bar to a discontinuous strain field may be a difficult task. An 

approximation may be to compare the profiles of the variable that controls the damage growth instead of 

comparing the strain itself. According to the non local model, this profile is continuous. If it is close to represent 

a strong discontinuity, then the distribution of the non local effective strain ( )0, xxeqε  should be close to the 

distribution of effective strain that results from the displacement jump [ ]U .  

In order to perform this comparison, an effective strain distribution ( )0,~ xxsdε  and a non local effective strain 

distribution [ ]( Uxxsd ,, 0 )ε   (see Fig. 1d) are computed according to the same procedure as in the non local 

damage model. 

 



 

Figure 1:  Ultimate state of failure of a 1D bar. (a) Loading system of with a default at  and corresponding 

displacement field (b), effective strain field (c) and regularized effective strain (d). 
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where ( )xφ  is the weight function. Note that in the present case of a 1D bar, the effective strain sdε~ is equal to 

the strain sdε . Substituting Eq. (12) into Eq. (13), and using the properties of the Dirac function, we get: 
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which is a non local measure of the local displacement jump which has the shape of the weighting function.  

 



The distribution ( 0, xxeq )ε  is generally obtained numerically whereas [ ]( )Uxxsd ,, 0ε  is known analytically, 

except for the amplitude of the discontinuity [ ]U . Imposing equality between both regularized effective strains 

distributions at the location of the crack (which is supposed to be known beforehand), one obtains: 
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and the amplitude of the discontinuity – the crack opening – is derived from this condition (Eq. 15). One could 

have chosen another condition for computing [ ]U , for instance by minimization of the difference between both 

profiles. It will not change fundamentally the results if the effective non local distribution is close [ ]( )Uxxsd ,, 0ε . 

In fact, it should affect the numerical values of the displacement jump when the two nonlocal profiles are not 

close to each other. In other words, it will influence the values of the jump [ ]U  prior to failure is reached.  

 

Now the distributions [ ]( )Uxxsd ,, 0ε  and ( )0, xxeqε  can be compared and from this comparison, an error 

indicator can be computed that measures how far from complete failure a given distribution of damage is, and as 

a consequence the confidence that one may have into the calculation of the displacement jump [ . First, an 

absolute error field  is defined: 
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Then, an average relative error is evaluated by integrating the absolute error over the bar and normalizing it with 

the integral of the continuum non local strain:  

[ ]( )
[ ]( )

( )∫

∫

Ω

Ω

Δ

=Δ
dsxs

dsUxs

Ux
eq

r

0

0

0
,

,,

,
ε

         (17) 

This error indicator defines how close the effective non local strain profile is from that corresponding to a 

discontinuous displacement distribution. It provides some information on the failure process and at the same 

time it is an indicator of accuracy of the crack opening estimate: if it is small, it means that complete failure is 

almost reached, and that the estimate of the crack opening is close to the real displacement discontinuity. This 

error indicator may subsequently serve in continuous/discrete models in order to define the threshold below 

which the continuum approach is close enough to the discrete one in order to switch descriptions. 

To summarize, we obtain from the comparison of the continuum based non local effective strain and the strong 

discontinuity based non local effective strain two quantities: (1) the displacement discontinuity (the crack 



opening), and (2) the error associated to the computation of this jump. The error is defined locally at each point 

of the bar, and globally after some averaging and normalisation. Note that in the absence of localised damage, 

the error in Eq. (17) is expected to be very high. This is just the consequence that distributed damage is the 

opposite of localised damage (and cracking) and in the first case, a crack opening does not really exist.  

We are going now to apply this scheme to computations performed with the regularized damage models. The 

integral and gradient damage models will also be compared by means of their capacity to represent the 

discontinuity jump at failure accurately. In the comparisons, we have set Gφφ =  in the derivations of the 

regularized strain fields according to the integral and gradient models. For the gradient model, the weight 

function is different. It is explicitly known in the 1D case, but it is not the case in a general 3D calculation. 

Instead of computing the effective strain distribution that results from the Fredholm equation (Eq. 9) in which 

the local effective strain is a dirac δ function, we compute a new average, integral, effective strain from the local 

strain distribution obtained according to the gradient model with the weight function Gφφ = . Then, we compare 

it to the average distribution [ ]( Uxxsd ,, 0 )ε  computed with the same weighting function. Therefore, the 

comparison of effective strains distributions that provide the estimate of crack opening is indirect compared to 

that in the integral formulation, but again, if the local strain distribution is discontinuous, the two averaged fields 

should be very close to each other. 

IV. Numerical Examples 
We solve numerically the model problem defined in Fig. 1a. The length of the bar is L=1m. The location of 

maximum strain and damage (crack position) is forced in the finite element located at the centre of the bar by 

setting a defect (smaller Young’s modulus ) in this element. Damage will be first triggered in this element by 

a larger strain than elsewhere. The material parameters of the damage model are provided in Table 1 and Fig. 2 

shows the material response in tension. 

weE

7.37=E  GPa 4
0 10−=DY  

31=weE  GPa 1=tA  

0=υ  20000=tB  

Table I. Material parameters for finite element computations. 

 



 

Figure 2: Stress-strain relation for the chosen set of material parameters  

 

In order to exhibit the influence of the internal length and consequently of the size of the fracture process zone 

(FPZ), we have used two values of the internal length in the integral model:  cl mlc 18.0=  for the small FPZ 

(SFPZ) and for the large FPZ (LFPZ). The c  parameter in the gradient enhanced approach was 

calibrated such that the integral and gradient models give the same FPZ width, that is, the same width of both the 

damage profiles. We obtained  for the small FPZ and for the large one. Two finite 

element meshes are considered too: a coarse mesh of 31 elements and a fine mesh of 61 elements. 

mlc 28.0=

2 005.0 mc = 2 012.0 mc =

1. Integral and gradient damage responses 
The global response is shown for the gradient model in Fig. 3a and for the non local model in Fig. 3b. These 

computations have been performed with the smallest value of the internal length in both non local models and 

for the fine and coarse meshes. We can observe that finite element results are not sensitive on the mesh size, 

which means that FE convergence with respect to the finite element size has been reached (for both large and 

small internal lengths). It is worth noting that due to the shape of the weight function (less sharp), the FE 

convergence is reached for a smaller number of finite element in the case of the integral approach. An arc-length 

technique has been used to reproduce such a global response which exhibits snap-back. 



 

Figure 3: Global response for the integral approach (a), for the gradient approach (b) for two meshes and for the 

smallest internal length.  The global response (c) for the fine mesh, the two regularization techniques and the two 

FPZ sizes. 

 

Fig. 3c illustrates the differences between the gradient and integral approaches. Keeping the same size for the 

FPZ according to both models provides a difference between the load deflection curves. Conversely, Jason et al. 

(2004) calibrated the gradient model in order to obtain the same load v.s. displacement response as for the 

integral model. In this case, 
c

lc  is approximately 2.55. 

We plot damage and strain profiles in the post-peak regime for several ratios of the load to the peak load in the 

post-peak regime. Fig. 4 shows the corresponding evolution of damage profiles. As soon as damage starts to 

increase the width of the damaged zone is roughly twice the internal length (of the integral model) and it remains 

constant throughout the fracture process. Although the FPZ width has been calibrated to be the same for both 

regularization techniques, one can observe that the gradient model presents sharper peaks on the damage profiles 

compared to the integral approach.  



 

Figure 4: Evolution of damage for the small FPZ with the gradient (a) and the integral (b) approaches, and for 

the large FPZ with the gradient (c) and the integral (d) approaches. Thick curves corresponds to damage 

profiles almost at complete failure, when the load is 1% of the peak load.  

 

Fig. 5 shows the strain profiles along the bar that correspond to the damage profiles in Fig. 4. There is a 

consistent difference between the integral and the gradient approaches on these curves. The width of the strain 

profile is smaller according to the gradient approach than that of the integral approach. This is more clearly 

illustrated with the largest value of the internal length – comparing Fig. 5c and 5d. The strain profile is sharper 

according to the gradient approach, and this provides the difference observed on the load – displacement 

responses obtained with the two models. These differences can be regarded also as the consequences of a sharper 

equivalent weight function according to the gradient approach compared to the Gaussian function used in the 

integral model. 

 



 

Figure 5: Strain profiles evolution during loading for the small FPZ with the gradient (a) and the integral (b) 

approaches and for the large FPZ with the gradient (c) and the integral (d) approaches. 

2. Estimation of crack opening 
We are now going to compare the computed regularized effective strain profiles with the profiles derived from 

the strong discontinuity analysis, derive the estimate of the crack opening and compute the distance between the 

two profiles which is a failure indicator, or equivalently an error indicator on the accuracy of the crack opening 

estimate. We consider first a state of damage which is close to complete failure. The ratio of the load to the peak 

load is 0.01 and the corresponding damage profiles are those drawn with a thick curve in Fig. 4. Figure 6 shows 

this comparison for the smallest internal length. By definition, the profiles coincide in the centre of the bar, the 

location with the highest value of damage and effective regularized strain, and the displacement jump [ ]U  is 

computed from this condition. The profiles deduced from FE computations are wider, but overall, the strong 

discontinuity profiles and the computed profiles are rather close to each other.  

 

 



 

Figure 6: Regularized effective strain profiles from the strong discontinuity approach (Dirac) and from FE 

computations using the integral technique (a) or the gradient technique (b) for the smallest FPZ width.  

 

Figure 7 shows the estimates of the crack opening (Fig. 7a) and the evolution of the error indicator computed 

according to Eq. (17) in the course of the loading history. The load level considered in Fig. 6 corresponds to 

the black dot in Fig. 7. Once the crack is fully opened the increase of its opening is equal to the displacement 

applied at the active end of the bar as no further strain are stored in the material (see Fig. 7a). Therefore the plot 

of the displacement jump versus the imposed displacement tends to the bisecting line. The error indicator (see 

Fig. 7b) is quite large just after the peak load since the macro-crack is not yet clearly formed. If damage would 

have been uniformly distributed along the bar, the error would be even higher. Afterwards, the error indicator 

decreases rapidly to reach a limit value of 4% for the integral approach and 2% for the gradient regularization. 

These values represent the level of ability of such regularized damage models to simulate discontinuous failure 

in terms of kinematic variables. They illustrate also the influence of the weight function. As pointed out in 

section 2, the major difference between the gradient and the integral approach is the weight function. With a 

sharper weight function, the estimate of the crack opening seems to be improved. Still, a limit value of the error 

of a few percent may be acceptable, provided some validation with experimental data is available.  

 

 



 

Figure 7: Crack opening as a function of imposed displacement (a) or maximum strain (c) ; relative error as a 

function of imposed displacement (b) or maximum strain (d). Plots are given for the two regularization 

techniques with the smallest FPZ width. The black dot corresponds to a load level of 1% of the peak load in the 

softening regime. 

 

Fig. 8 shows that the evolution of the crack opening displacement and the quality of the crack opening estimates 

are not really dependent on the size of the FPZ. With a small FPZ (small internal length), snap-back on the load 

displacement response is more severe and limit values of the error are reached for a smaller applied 

displacement. Nevertheless, the results are quite similar. On this figure, the results obtained with the integral 

approach have been plotted. Similar observations could be made according to the gradient approach. 

 



 

Figure 8: Crack opening as a function of imposed displacement (a) or maximum strain (c); relative error as a 

function of imposed displacement (b) or maximum strain (d). Plots are given for the integral damage model and 

for the two sizes of FPZ. 

V. Conclusions 
 

We have presented in this paper a post processing technique for the evaluation of a crack opening displacement, 

or its 1D equivalent, a displacement jump, from failure analyses based on regularized damage models. Instead of 

inserting into the kinematics of the problem the strong discontinuity and the inherent constitutive response, the 

estimate of the crack opening is based on the comparison of two strain distributions: the regularized effective 

strain that derives from a non local (integral or gradient) model and the regularized effective strain that is derived 

from a strong discontinuity that is placed at the expected crack location. By definition, these are two regularized 

continuous fields that can be approached with standard discretization techniques. If these distributions are close 

to each other, it means that the variable that control damage has reached a distribution that is close to that of a 

real crack and it is expected that the corresponding distribution of continuous damage is close to that resulting 

from a discontinuity (crack) in a regularised, non local, analysis. From the comparison between these two 



regularized fields, the amplitude of the displacement jump and an error indicator on these estimate, that defines 

also how far from complete failure the distribution of effective strain is, are computed.  Close to complete 

failure, this post processing technique provides an estimate of the crack opening displacement from a finite 

element computation with an error of a few percent. Although the method is illustrated on a 1D example, it can 

be extended to 2D analysis too (Legrain et al. (2007)). 

The technique applies readily to the integral non local damage model where the regularization is explicit. In the 

gradient model, the calculation of the regularised strain distribution from the strong discontinuity displacement 

field is required. An alternative averaging technique – same as for the integral model – has been devised in order 

to compare effective strain distributions.  The comparison between results obtained according to the non local 

integral and gradient damage models show that both approaches provide results that are similar. The quality of 

the crack opening estimate depends on the weight function that enters in the non local expression. The gradient 

approach is equivalent to a non local average with a sharper distribution, lending less weight to neighbouring 

points compared to the Gaussian distribution in the classical integral approach. As a consequence, the gradient 

approach provides better limit values of the quality for a formed crack than with the integral model.  

Note that when damage is fully developed, the profiles of damage start to enlarge slightly according to the two 

models. This spurious feature has been already observed by Geers and co-workers (1998) who devised a possible 

remedy and restricted the non local averaging process to zones where damage grows. This modification of the 

non local damage model is expected to provide a better description of complete failure and should result into an 

error indicator on the quality of the crack opening estimate that is improved. This point remains to be 

investigated, along the quality of the crack opening estimate performed with existing models in which the 

internal length is changing in the course of damage, and of course validation using experimental data.  
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