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Summary. The receptivity of a two-dimensional boundary layer flow developing on a flat
plate with a super-elliptical leading edge to incoming disturbances in the presence of a discrete
roughness element (DRE) is studied by direct numerical simulation. The DRE is a truncated
cylinder with height k and fixed diameter. Its height is varied to cover a parameter space de-
fined by the ratio of the element height to the local boundary layer displacement thickness k/δ∗

and the Reynolds number based on the element height, Rekk. Under the conditions simulated,
in the absence of externally-imposed disturbances, steady flows are recovered. Two sources of
disturbances are then considered: a localized volumetric forcing analogous to a suction/blowing
strip that introduces plane monochromatic Tollmien-Schlichting (T-S) waves upstream of the
DRE, and synthetic isotropic free-stream turbulence (FST) imposed as an inlet condition up-
stream of the leading edge. Two different dimensionless temporal frequencies of the T-S waves,
F = 90 × 10−6 (ω = 0.21) and F = 120 × 10−6 (ω = 0.29), two DRE heights, k = 0.3δ∗

(Rekk = 50) and k = 0.5δ∗ (Rekk = 138) and the turbulence intensities Tu = 0.03% and
Tu = 0.3%, are combined in multiple test-cases and analysed through the amplification factor
of the resulting disturbances.

1 INTRODUCTION

In the search of the aviation industry for more efficient aircraft that reduce the carbon
footprint of commercial flights, the improvement in aerodynamic efficiency is a key goal that
can be achieved by minimizing the aerodynamic drag of the wings. In this sense, the most
important contribution to aerodynamic drag is produced by skin friction due to turbulent flow.
Hence, special efforts are put into the delay or suppression of the processes that lead to the flow
transition to turbulence, increasing the fraction of the wing surface that is under laminar flow
conditions. The design of such natural laminar flow strategies requires a deep understanding
of the complete physical processes that lead to transition. Following Morkovin [1], the relevant
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laminar-turbulent transition scenarios in boundary layer flows are initiated with the penetration
or inception of flow disturbances within the boundary layer, in a process named receptivity.
This can occur through wall imperfections (discontinuities or roughness), leading-edge curvature,
vibrations, free-stream disturbances that impinge the aerodynamic surface, and generally via a
combination of two or more of them. The receptivity process determines the nature, spatial
structure and amplitude of the initial boundary-layer disturbances, prior to their amplification
by hydrodynamic instability mechanisms.

The receptivity of two-dimensional boundary layers in incompressible flows has received con-
tinuous attention for several decades, as it constitutes the simplest configuration of relevance
to transition on wings. Modal instability in two-dimensional boundary layers under favorable
and moderately-adverse pressure gradients is dominated by Tollmien-Schlichting (T-S) waves.
Their relatively small growth rates result in a linear growth phase that may extend over a sig-
nificant portion of the airfoil before non-linear phenomena become relevant, which explains the
broad success of transition prediction methods based on the accumulated amplification, like the
e-to-the-N method[2, 3], for this kind of flows. However, despite of the relatively simple linear
amplification phase, these methods rely on experimental calibration of the transition N-factor
to account for the impact of free-stream turbulence intensity, wall roughness and other aspects
related to receptivity.

With the aim of minimizing the impact of surface discontinuities in flat-plate experiments,
Lin et al. [4] introduced the so-called “modified super-elliptic leading edge” geometry which
results in a smooth continuous surface joining the leading edge to the plate with zero curvature
at the joint. They used this geometry to study experimentally the receptivity to externally-
controlled acoustic disturbances. For the same geometry, [5] or [6] did numerical analyses of
the receptivity to inflow disturbances of different types. The latter analyzed the boundary-
layer receptivity to three-dimensional vortical perturbations, triggering a streaky pattern of the
disturbance streamwise velocity inside the boundary layer for the zero-frequency streamwise
vorticity, and getting T-S modes for the high-frequency spanwise vorticity modes.

While the receptivity process is significantly weaker, it is recognized that free-stream turbu-
lence can penetrate in the boundary layer even in the absence of wall discontinuities, irregularities
or vibration, due to its weak non-parallelism. Jacobs and Durbin [7] or Brandt et al. [8], went
further in the modeling of the inlet perturbations and studied the transition of boundary layers
after imposing isotropic free-stream turbulence at the inlet boundary, where the turbulence in-
tensity and the turbulence integral length scale are used as control parameters. In both works
the turbulent inflow is constructed using the continuous spectrum of the linearized Navier-Stokes
equations [9], together with analytical models of the turbulent kinetic energy spectrum.

The receptivity to free-stream disturbances is remarkably increased by the presence of surface
imperfections and roughness; early works illustrate that the presence of a discrete roughness ele-
ment (DRE) of small but comparable size to the local boundary layer thickness can enhance the
penetration of external disturbance so as to render the effect of boundary-layer non-parallelism
negligible. The experimental work of Plogmann et al. [10] introduced the classification of the
roughness elements according to the height of the element k relative to the local displacement
thickness δ∗, as small (k/δ∗ < 0.2), when they produce linear receptivity with k; medium
(0.2 < k/δ∗ < 1.0), that generate non-linear receptivity and a qualitative change in the steady
flow topology in the form of a horseshoe-shaped vortex upstream of the roughness element; and
large (k/δ∗ > 1.0), which produce bypass transition just around or shortly downstream of the
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roughness element. The numerical study made by Bucci et al. [11] included isotropic free-stream
turbulence and studied the effect that several DRE and turbulence parameters have on the dy-
namics of a two-dimensional incompressible boundary layer over an infinite flat plate. It was
concluded that the roughness Reynolds number (Rekk), the aspect ratio of the roughness ele-
ment (η), the ratio between the roughness height and the boundary layer displacement thickness
(k/δ∗), and the free-stream turbulence intensity (Tu) altogether have an impact on the stability
and transition of two-dimensional boundary layers. Turbulence intensities between 0.06% and
0.09% produce a meaningful destabilizing effect on the wake of the roughness element. The work
by Bucci et al. [11] also proposed the development of a more sophisticated transition diagram
than the one proposed by von Doenhoff [12], where only k/δ∗ and Rekk are considered. In
Weingartner et al. [13] the analysis is focused on a flow visualization study of isolated roughness
elements with different η and Rekk. In sub-critical regimes (Rekk ≲ 750) all the aspect ratios
produced a varicose (symmetric) disturbance pattern, while it was sinuous (anti-symmetric) in
the range of 0.7 ⩽ η ⩽ 1.2. The influence of a small discrete roughness element on the evolution
of two-dimensional T-S waves was studied experimentally in [14], where a disturbance source
in placed upstream of the roughness element. The results showed a weak flow distortion and
scattering of the wave into oblique ones for k/δ∗ = 0.2 and a quadratic variation of the wave
scattering with respect to k for a roughness height well below the displacement thickness.

Most works in the literature that address two-dimensional boundary layers either consider the
leading-edge or the discrete roughness element in the presence of incoming vortical disturbances,
but not both simultaneously. Further, most works studying the impact of DREs consider either
the limit cases of small or large roughness heights, while the range of medium-height elements
(k between 20% and 70% of the boundary-layer displacement thickness) is underrepresented in
the literature. The combination of synthetic free-stream turbulence and the analysis of its effect
on the receptivity in the presence of a leading-edge and a roughness element is also a missing
point in the literature. Only the recent work by Vincentiis et al. [15] combines these aspects for
a swept-wing case with a three-dimensional boundary layer. Including all these features in the
same work could help to give more detail and depth to the transition diagram by Von Doenhoff
et al. [12]. This is the objective of the present work.

This work addresses the receptivity analysis of incompressible, nominally two-dimensional
boundary layers to free-stream turbulence, discrete roughness elements and their interaction,
using direct numerical simulations. The geometry studied is a semi-infinite flat plate with a
modified super-ellipse as a leading edge. A cylindrical discrete roughness element is introduced
on the flat plate at streamwise locations contained between the first and the second branch of the
neutral instability curve for plane T-S waves, and with heights that cover the range from small
to large roughness regimes. Synthetic free-stream turbulence is imposed at the inlet following
the methodology proposed by Schlatter [16]. Finally, a volumetric forcing term is used to mimic
the effect of a suction/blowing slot or a vibrating ribbon and excite plane T-S waves upstream
of the DRE. This methodology allows to study the interaction of different relevant aspects of
the receptivity process in the same computational set-up.

2 METHODOLOGY

Direct numerical simulations (DNS) are carried on using the Spectral Element Method im-
plemented in the open-source code Nek5000 [17], in which the order of the polynomial used to
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Figure 1: General view of the computational domain and mesh, including the DRE (at x = 115). The
number of elements in the spatial mesh is reduce to ease its visualization.

approximate the velocity and pressure fields within each element takes the form PN − PN−2,
respectively. Unless stated otherwise, the polynomial order is chosen as N = 7 for the simu-
lations presented herein. Following the custom practice in hydrodynamic instability, separate
simulations are performed for the computation of the base flows (two-dimensional or three-
dimensional steady flows) and the three-dimensional linear disturbances developing upon them.
Parabolized stability equations (PSE) calculations are also performed to compute the neutral
curve for Tollmien-Schlichting (T-S) waves that is used as reference for placing the discrete
roughness element.

2.1 Base geometry and numerical domain

The geometry of interest is shown in figure 1. A semi-infinite flat plate is considered in which
the leading edge has the shape of the modified super-ellipse (MSE)(y

b

)2
= 1 −

(
a− x

a

)p

, (1)
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p = 2 +
(x
a

)2
, (2)

and a and b are the major and minor semi-axes of the ellipse respectively. The modified super-
ellipse reduces the geometrical discontinuity in the junction between the leading edge and the
flat plate, with the aim of minimizing its influence on the boundary layer receptivity to free-
stream incoming disturbances. The aspect ratio is taken as AR ≡ a

b = 6. The minor semi-axis
b is used to non-dimensionalize all lengths throughout the paper.

The downstream length of the computational domain is defined based on the displacement
thickness of the two-dimensional boundary layer that develops on the upper side of the flat
plate. An initial estimate of the domain length is done assuming the Blasius self-similar solution
for a zero-pressure-gradient boundary layer, and obtaining the x−coordinate corresponding to
a Reynolds number based on the displacement thickness Reδ∗ ≈ 1100, which is downstream of
the second branch of the neutral curve for T-S waves for most of the relevant frequencies. This
estimation is later compared with the actual base flow computation.
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2.2 Base flow computation

Base flow solutions are computed by solving the unsteady incompressible Navier-Stokes equa-
tions using Nek5000. Other than the downstream extension, the computational domain mimics
the one used by Schrader et al. [6]: to reduce the computational cost, the computational do-
main used in Nek5000 is shortened in its lower half. The inlet, top and bottom boundaries,
that would need to be located at a far distance to accommodate the flow displacement exerted
by the solid, are instead truncated at a relatively short distance, as shown in figure 1. Veloc-
ity distributions are imposed as Dirichlet conditions at the truncated domain boundaries, that
were computed using a numerical simulation on a much larger domain. The minor semi-axis
b of the super-ellipse and the free-stream velocity U∞ are taken as reference quantities for the
dimensionless form. The kinematic viscosity is chosen such that the reference Reynolds number
Reb = U∞b/ν = 2400.

No slip is imposed at the solid walls, while periodic boundary conditions are set for the
spanwise direction. The outlet boundaries have a special treatment, minimizing the dependency
of the solution on the length of the lower part and ensuring that the flow field is symmetric
over the upper and the lower surface of the flat plate. The solution proposed in [18] solves that
issue, as it defines natural boundary conditions at both outlet boundaries, imposing an ambient
pressure profile in the lower half. This pressure profile is obtained from the steady base flow
obtained for the upper-half of the domain, taking the pressure profile at the same x location as
the lower boundary.

2.3 Isotropic free-stream turbulence

Synthetic free-stream turbulence (FST) is modeled here using a similar procedure to Schlatter
[16], which models in-flight or wind-tunnel turbulence conditions described by a prescribed
turbulent kinetic energy spectra E(k), where E is the portion of the TKE associated with the
spatial wavenumber k. The method is based on the continuous spectrum of vorticity perturbation
solutions of the linearized Navier-Stokes equations for uniform flow, which can be written as a
superposition of Fourier modes on the three spatial directions and time:

u(x, y, z) =
∑

k=(ω,γ,β)

A(k)û(ω, γ, β)ei(ℜ{α(ω,γ,β)}x+γy+βz−ωt), (3)

where u is the velocity perturbation vector, k is the wave-vector; α, γ, and β are the wave-
numbers in the streamwise, wall-normal and spanwise directions respectively, i.e. k =

√
α2 + β2 + γ2;

ω is the time frequency, A(k) are the amplitudes and û are the normalized eigenfunctions of the
continuous spectrum.

The isotropic turbulence is generated by dividing the wavenumber space k into Ns concentric
shells. The magnitude of the radius of each of them is the wavevector magnitude k and it is
associated to an amplitude within the the modeled turbulence spectrum E(k):

A(k) =

√
2E(k)∆k

Nv
, (4)

where ∆k defines the discretization of the wavenumber space and Nv is the number of indepen-
dent vectors of magnitude k considered. In this work, the homogeneity is achieved by picking
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Nv = 20 points regularly distributed as the vertices of a regular dodecahedron, which is increased
by adding a second dodecahedron symmetric to the original with respect to the γ-plane. Each
dodecahedron is rotated a random angle to ensure that the turbulence is isotropic.

The amplitudes for the chosen wavenumbers match the the von Kármán energy spectrum:

E(k) = Tu2U2
∞LI

1.606(kLI)4

(1.350 + (kLI)2)17/6
, (5)

where LI is the integral length scale, U∞ is the free-stream velocity and Tu is the turbulent
intensity.

In this work, the synthetic FST is imposed as a boundary condition at the inlet and upper
and lower boundaries, and considers the turbulent spectrum between kmin = 0.23 and kmax = 3,
divided in 80 shells, which includes a relevant range of frequencies according to preliminary PSE
computations that will be introduced below. The range of turbulence intensity considered in the
study lies between 0% (no inflow FST) and 0.3%. The integral length scale chosen is LI = 2.0
to ensure that scales with the maximum energy of the von Kármán spectrum lay on the range
of the spectrum generated.

2.4 Discrete roughness element

A cylindrical discrete roughness element (DRE) is added to upper side of the flat plate
geometry. Its geometrical features and location are based on the experiments by de Paula et
al. [14]. A reference case is considered in which the DRE is located at a streamwise position
corresponding to a Reynolds number based on the displacement thickness Reδ∗ = U∞δ∗(x)/ν =
920 and the height of the DRE k = 0.3δ∗.

A matrix of cases is defined by varying the height of the roughness element. Two dimensionless
parameters are monitored, namely Rekk = Ukk/ν, where Uk is the flow velocity at the DRE
height in the “clean” configuration (i.e. without the roughness element) and the ratio k/δ∗. The
DRE heights chosen for this work are within the medium-height range defined in the literature,
i.e. k = 0.3δ∗ and k = 0.5δ∗, with Rekk = 50 and Rekk = 138 respectively.

2.5 Forced Tollmien-Schlichting waves

Tollmien-Schlichting waves are excited in the flow field with the application of a volumetric
forcing term f(x, y, t) applied to the y-momentum equation and given by the expression

f(x, y, t) = Af · exp

(
−
(
x− xc
sx

)2

−
(
y − yc
sy

)2
)

cos(ωt), (6)

where Af is the amplitude of the forcing term, with a value of 0.8% of the free-stream velocity;
xc and yc are the coordinates of the forcing strip; sy = δ∗c and sx = 2.5sy. The streamwise
coordinate xc is set to correspond to Reδ∗ = 700 and yc = 1, which places the actuator on the
wall surface. The dimensionless circular frequency ω is defined as ω = RebF , where F is the
dimensionless frequency typically used in the characterization of T-S waves: F = 2πfν/U2

∞.
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Figure 2: Evolution of the Reynolds number based on the displacement thickness Reδ∗ along the flat-
plate chord.

3 RESULTS

3.1 Base flow without roughness element

A two-dimensional simulation of the “clean” flat plate geometry with super-elliptic leading
edge, but without the roughness element, free-stream turbulence or T-S waves is carried out to
assess the quality of the computational mesh, evaluate the development of the boundary layer
flow, and define the location of the actuator xc and discrete roughness element, which are based
on the displacement thickness distribution.

Figure 2 shows the Reynolds number based on the displacement thickness distribution δ∗(x)
corresponding to the numerical simulation, compared to the self-similar Blasius distribution.
The presence of the leading edge leads to a departure of the flow from the self-similar one: first,
the streamlines are curved following the super-ellipse until x = 6, which is the junction between
the LE and the flat plate. The displacement thickness is only computed for x > 6. Second, the
curvature of the streamlines and non-parallelism leads to a velocity maximum at the end of the
boundary layer, that then reduces on the wall-normal direction towards the free-stream value.
To take this into account, the boundary layer thickness is computed as:

δ∗(x) =

yu,max∫
0

(
1 − U(x, y)

U(x, yu,max)

)
dy. (7)

This definition converges monotonically towards the parallel-flow definition (where yu,max → ∞)
as the boundary layer develops.

As shown by figure 2, the computed base flow has a small deviation from the Blasius self-
similar solution. The actual Reδ∗ distribution is used to locate the actuator and the roughness
elements. Following De Paula et al. [14], the actuator generating T-S waves is located at
Reδ∗ = 700, corresponding to xc = 65, and the DRE at Reδ∗ = 920, corresponding to x = 115.
Based on the computed Re∗δ distribution, the outlet boundary is placed at L = 200, to ensure a
Reδ∗ ≥ 1100 at the end of the domain.
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Figure 3: PSE results for T-S waves on the 2D boundary layer. Left: spatial growth rate −αi. Right:
N−factor. The vertical dashed lines show the location of T-S actuator and the baseline DRE, for reference.

3.2 Amplification of T-S waves by the 2D boundary layer

Prior to the receptivity analysis involving free-stream turbulence and a DRE, PSE calcula-
tions are performed using a well-validated code [19, 20]. The calculations are initiated at x = 6,
where the flat plate section starts, making it unnecessary to account for the wall curvature near
the leading edge. The results for plane T-S waves are shown in figure 3. The left panel shows
the spatial growth rate. Plane T-S waves are found to be linearly unstable already at x = 6,
presumably as a consequence of the base flows streamlines curvature stemming from the leading
edge geometry. This region of upstream instability is located well upstream the expected loca-
tion of the first branch of the neutral curve for the Blasius boundary layer, that occurs around
Reδ∗ ≈ 500 (x ≈ 30 for the present flow), and for notably higher frequencies. This amplification
rate is reduced one order of magnitude from x = 6 to x = 65, where the T-S actuator is located
in the DNS set-up, and the unstable frequency range becomes considerably narrower and for
lower frequencies, consistent with what is expected for a Blasius boundary layer.

The right panel in figure 3 shows the integrated amplification in terms of the N-factor:

N(x, ω) =

x∫
xn

−αi(x
′, ω)dx′, (8)

where xn is the coordinate where the T-S wave becomes unstable for each ω. For those frequen-
cies that are unstable at the beginning of the integration domain for PSE calculations, xn = 6.
The N-factor contours show that the high-frequency waves that are unstable near the leading
edge are quickly damped downstream. Conversely, the comparatively lower frequencies that are
typical of Blasius boundary layer instability remain amplified until the domain outlet.

Overall, the N-factor computed in this domain remains below N = 2.5, which corresponds to
very small accumulated amplifications and are adequate for a study of the receptivity processes.

DNS calculations were performed including the plane T-S waves at two relevant frequencies,
F = 90 × 10−6 (ω = 0.21) and F = 120 × 10−6 (ω = 0.29), as perturbations of the Linearized
Navier-Stokes equations convected downstream by the precomputed base flow.

8
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Figure 4: Amplification factor of the the components of the perturbations generated by the forced
T-S waves in different scenarios. The vertical dashed lines show the location of T-S actuator and the
baseline DRE. Left: Amplification factor of the streamwise velocity, Nu. Right: Amplification factor of
the wall-normal velocity, Nv.

3.3 Receptivity of the 2D boundary layer to a discrete roughness element and
forced T-S waves

A new set of DNS calculations are carried out for cases including a DRE with two different
roughness heights, k = 0.3δ∗ (Rekk = 50) and k = 0.5δ∗ (Rekk = 138). The resulting flow field
serves as the base flow for computations with the Linearized Navier-Stokes equations where T-S
waves are introduced as previously described.

Figure 4 shows the differences in the amplification factors of the perturbations for the cases
of interest after a significant period of time. More precisely, the maximum of the absolute value
of the velocity components in the wall-normal direction is taken for each x-coordinate position.
Afterwards, it is normalized with a reference value taken at x = 80. The results are plotted
to compare the effect over the perturbation field of the reference frequencies and roughness
element heights. Both velocity components have similar behaviour in terms of their respective
amplification factor, and ”clean” configurations show opposite behaviours for each T-S wave
frequency, as the amplitude grows for the case at F = 90 × 10−6 (ω = 0.21) and decays for the
T-S wave at F = 120 × 10−6 (ω = 0.29).

Focusing on the cases with a T-S wave at F = 90 × 10−6 (ω = 0.21), the ”clean” case and
the case with DRE of k = 0.5δ∗ (Rekk = 138) increase in amplitude, with a slight increase
of the growth rate downstream of the DRE for the DRE case. The DRE case with k = 0.3δ∗

(Rekk = 50), on the other side, shows a gradual decrease in amplitude all along the domain
length.

The cases including a T-S wave at F = 120 × 10−6 (ω = 0.29) have a negative growth rate
for the ”clean” and k = 0.3δ∗ (Rekk = 50) configurations, with a bigger decline in amplitude
downstream of x ≈ 170 for the case with a DRE. The addition of a DRE with k = 0.5δ∗

(Rekk = 138) causes a great impact on the behaviour of the wave, which is growing in amplitude
along the whole domain.
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Figure 5: Amplification factor of the the components of the perturbations generated by the isotropic FST
in different scenarios. The vertical dashed lines show the location of T-S actuator and the baseline DRE.
Left: Amplification factor of the streamwise velocity Nu. Right: Amplification factor of the wall-normal
velocity Nv.

3.4 Receptivity of the 2D boundary layer to isotropic free-stream turbulence

For the study of the receptivity of the boundary layer developed over the flat plate to isotropic
free-stream turbulence, two turbulence intensities of Tu = 0.03% and Tu = 0.3% are considered.

The same analysis as for the case with T-S waves was done for the case with isotropic FST,
taking the streamwise position x = 40 as the reference for normalization.

In these cases, there is a great difference in the behaviour of each velocity component, as
the amplification factors are greater than 1 for the streamwise velocity component, while the
amplitude of the wall-normal component is decreasing in most of the domain length.

Comparing the cases under ”clean” configuration, the FST with Tu = 0.03% has a smaller
value of Nu overall, although both turbulence intensities show a positive growth rate. The
addition of a DRE with k = 0.5δ∗ (Rekk = 138) seems to have a stabilizing effect, as the
amplitudes decay along the whole domain length.

4 CONCLUSIONS

The simulations carried out during the present work served as a basis to establish a matrix
of test cases that allowed the analysis of the receptivity of a two-dimensional boundary layer
developed over a flat plate. The parameters under consideration for the analysis were the
dimensionless circular frequency for the cases including a T-S actuator on the flat plate surface,
the turbulence intensity of isotropic free-stream turbulence introduced as an inlet condition and
the height of a DRE placed on the flat plate surface, at a reference streamwise location.

The preliminary results served as a guide for the location and size of the discrete roughness
element and gave initial estimations of the stability of the T-S waves developing over a base flow
and of the most convenient frequencies to be included in the synthetic FST.

From the analysis of the amplification factor of the perturbations generated by the T-S
actuator, it is concluded that the addition of the smaller DRE, with k = 0.3δ∗ (Rekk = 50),
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to the case at low frequency, F = 90 × 10−6 (ω = 0.21), stabilizes the perturbation field. On
the other side, the higher DRE, with k = 0.5δ∗ (Rekk = 138), has a destabilizing effect for the
perturbations obtained from the T-S wave at F = 120 × 10−6 (ω = 0.29).

Finally, the addition of isotropic FST at the inflow of the ”clean” case with very low values
of Tu increases the amplitude of the perturbations in comparison with addition of the T-S
actuator. In these scenarios, the presence of the DRE with k = 0.5δ∗ (Rekk = 138) stabilizes
the perturbations shifting the sign of their growth rates and reducing their amplitudes in general.
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