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Abstract. Lymphedema is a chronic disease that causes swelling in the soft tissues, mostly
taking place in the extremities. This research focuses on the treatment of lymphedema through
compression, which is widely applied to reduce the volume of edemas. Although effective at
a clinical level, the use of off-the-shelf stockings with predefined sizes, reduces the efficiency
at the patient-specific level. With the long-term goal of designing patient-specific stockings,
this study aims to develop a real-time simulation tool, able to predict the efficiency of a given
compression stocking for a given patient. For such purpose, the use of standard Finite Element
Method (FEM) falls short due to high computational cost. Therefore, a solution based on Re-
duced Order Modeling (ROM) is developed to compute, in real-time, the hydrostatic pressure
distribution at the location of the lymphatic dysfunction. It is assumed that hydrostatic pressure
improves lymph circulation and increase the drainage capacity. This method enables to design
the most efficient compressive stockings considering the particularities of each patient.

1 INTRODUCTION

The lymphatic system is formed by lymph nodes and lymphatic vessels that collect and carry
lymph fluid through the body. Lymphedema is a chronic disorder of the lymphatic system and
is a debilitating condition that greatly impacts patients’ daily well-being. The lymphatic vessels
are not able to drain the lymph which tends to cause fluid retention (edema). This induces the
swelling of soft tissues, which usually takes place at the extremities, legs and arms [1]. There are
two types of lymphedema: i) the primary lymphedema, which occurs due to genetic disorders
[2] ii) the secondary lymphedema, which results from external factors, such as cancer treatment
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where the lymphatic system is damaged or lymph nodes are removed. This article focuses on
secondary lymphedema in the lower limbs, affecting one over 1,000 individuals [3, 4, 5].

Compression stockings are widely used to promote healthy lymph flow and decrease swelling
in the lower-limb [6, 7, 8, 9]. The application of adequate compression reduces the cross-section
of the vessels, which improves the lymphatic drainage. These stockings typically come in
standardized sizes, which reduces their effectiveness. A patient-specific solution could increase
the effectiveness by taking into account patient-specific features such as the severity of the
lymphedema and the morphology of the patient [10, 11, 12].

We propose a patient-specific approach based on digital twins to study these effects. Digital
twins have been largely developed in different medical fields for diagnosis, treatment decision
and long-term prediction at health outcomes [13, 14, 15]. A digital twin of the lower-limb can
provide valuable information in real-time to design the most effective compression stockings. It
enables to analyze the stress distribution in the soft tissues, which plays a key role in the lymph
drainage. Such complex mechanical problem requires solving nonlinear solid mechanics equi-
librium equations considering many geometrical variables, material parameters and boundary
conditions. It is not affordable to solve a model for each patient applying traditional numerical
tools such as Finite Element Method (FEM) due to the high computational-cost.

The aim of ROM techniques is to replace the original large-dimension numerical problem by
a problem of smaller dimension, which provides a reliable and fast approximation of the solu-
tion [16, 17, 18, 19]. In this study non-intrusive ROM is applied to compute the stresses in the
soft tissues. The ROM is derived through the resolution of several FE models or high-fidelity
models defined by a set of patient-specific parameters. The approach to reduce the full-order
model consists in the projection of the high-fidelity solutions upon a low dimensional space
defined with specially selected basis functions. This is achieved through Proper Orthogonal
Decomposition (POD), which decomposes the high fidelity solution in a linear combination
of a set of coefficients and modes. In order to reconstruct the approximate solution, the POD
coefficients should be predicted using surrogate models. This method is known as Proper Or-
thogonal Decomposition with Interpolation (PODI) [20, 21, 22]. For a new set of parameters
the POD coefficients are interpolated and the approximated solution is computed (online-stage).

The aim of this work is to predict in real-time the hydrostatic pressures in the soft tissues
surrounding the lymphatic vessels. This work focuses on the geometrical variables, whilst
material properties and boundary conditions are kept constant. PODI is applied to estimate the
hydrostatic pressure for a given set of geometrical parameters. The main drawback of non-
intrusive ROMs is the high computational cost of the offline-stage. In this research an adaptive-
sampling method is proposed to solve the full-order model as fast as possible by selecting the
most efficient set of parameters, instead of the widely used static sampling methods such as
Latin hypercube sampling.

The article is structured as follows. Section 2 presents the algorithm to carry out the digital
twin of the lower-limb. In Section 3 a numerical example is presented and the adaptive sampling
algorithm is analyzed. Lastly, the conclusions and future perspective are presented in Section 4.
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Figure 1: Lower-limb definition

2 METHOD

2.1 Finite Element Method

The studied part of the lower limb is limited between the ankle and the tibial tuberosity. This
region is defined geometrically by the global and local minimum of the Area/Heigth curve as
shown in Figure 1. Once the geometry is defined, the mesh of the studied part of the leg is
generated to carry out the FE simulation.

The constitutive behavior of the soft tissues of the lower limb is modeled with a compressible
Neo-Hookean material [23, 24, 25]. The strain energy density function is defined as:

Ψ(CCC) =
λ0

2
(lnJ)2 − µ0 lnJ +

µ0

2
[trace (CCC)− 3] (1)

which yields the following Cauchy stress tensor:

σσσ = λ0 lnJ CCC−1 + µ0

(
III −CCC−1

)
(2)

λ0 and µ0 are the Lamé parameters, J = det (FFF ), FFF is the deformation gradient, CCC is the right
Cauchy-Green tensor and III is the identity tensor.

As this research work focuses on the geometrical aspects, material properties and bound-
ary conditions are kept constant. Two hyperelastic materials are considered, muscle (EM =
33.18 kPa and νM = 0.49) and fat (EF = 17.37 kPa and νF = 0.49) [24]. The bones (tibia
and fibula) are assumed as perfectly rigid and their movement are constrained at the surface
of the bones. We also constrain the vertical displacement of the top and bottom surface of
the model because the compression pressure cannot cause the lengthening or shortening of the
lower leg. Regarding the force boundary conditions, normal and uniform pressure of 3 kPa is
applied over the surface of the leg, corresponding to a standard compression therapy [24, 28].

The FE analysis was carried out using Gridap which is a free and open source FE library
written in Julia [26].
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2.2 Reduced Order Model: PODI

In this research work, PODI is applied to identify the most relevant features. The pro-
posed approach consists in two stages: offline and online stage. In the offline stage, full-
order models are solved (FE Method) for different sets of parameters, µµµ = [µµµ1,µµµ2, ...,µµµNs]

where µµµi = [µ1
i , µ

2
i , ..., µ

Np

i ]. The computed results are saved in the snapshots matrix SSS(µµµ) =
[sss1, sss2, ..., sssNs]. The POD is computed applying singular value decomposition of the snapshots
matrix:

svd(SSS) = ΨΨΨ,ΣΣΣ,V TV TV T (3)

The number of basis (L) is defined using the singular values ΣΣΣ = [σ1, σ2, ..., σNs] to retain
the dominant or the most energetic modes (ΨΨΨ):∑L

i=1 σ
2
i∑Ns

i=1 σ
2
i

< δtol → L (4)

The approximate solution is computed using the POD modes or basis vector (ΨΨΨ) and POD
coefficients αj = SΨj of the most dominant modes:

sssi ≈ s̃ssi =
L∑

j=1

αjΨj (5)

The POD coefficients and the parameters are used to build the surrogate model by applying
an interpolation method. Radial basis function interpolation method enables to estimate α∗

for any parameter during the online stage. Therefore, the solution can be computed using the
interpolated α∗ while running the FE model is avoided.

sss∗ =
L∑

j=1

α∗
jΨj (6)

2.3 Adaptive sampling

The adaptive sampling methods are based on exploration-exploitation dilemma to select new
sampling points. Exploitation consists in placing sampling points in subregions, which have
been identified as demanding for accuracy based on the computed FE solution. It is a very con-
servative method because it selects new samples near the outstanding sample points that already
exist. The main drawback of a full-exploitation method is that it prevents discovering poten-
tial regions where new sample points can be selected. In this research work, a cross-validation
method is used to estimate the sensitivity of each sampling point and more specifically the
Leave-One-Out Cross-validation (LOOCV). There is no clear criterion to select the initial size
Nµ of the sampling-set µµµ [27]. The snapshot matrix SSS is defined by solving the FE model for
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each sample. Then, the reduced order model s∗ is computed removing the sample µi from the
sampling-set as it is explained in Algorithm 1. The LOOCV error is defined as:

eLOOCV (µµµi) = ∥SSS(µµµi)− sss∗−i(µµµi)∥ (7)

which measures the sensitivity of losing one sampling point. High values of eLOOCV indicates
that there is a lack of information or observations near the removed sampling point and in-
troducing sampling points in this region could improve the accurateness of the reduced order
model s∗. Then, the interpolation model of LOOCV error e∗LOOCV is defined using the radial
basis function (RBF) and the computed eLOOCV at the sampling points.

On the other hand, exploration aims to propose new sample points considering the fact that
the observed data is not sufficient. This strategy allows to identify new regions preventing
local clustering. However, it could happen that does not provide sample points at the identified
critical regions or it leads to sample points with poor information. In this work, a discontinuous
distance-based exploration approach is applied. The parameter space is divided into the number
of existing samples applying the Voronoi tessellation. The new sample µnew belongs to the cell
relative to the closest existing samples µ. The distance metric is measured as:

dmin(µµµnew) = minµµµnew(∥µµµnew − µµµ∥) (8)

High values of dmin means that the sample point is far away from the Nµ samples that already
defines the sampling set µµµ.

The goal of adaptive sampling is to find a sampling point with a good trade-off between these
two strategies. The new sampling point should be placed as far as possible from the existing
samples to achieve space filling condition (exploration) and its impact would be the highest
(exploitation). The new sampling point is computed minimizing the following loss function,

L(µµµ) = −e∗LOOCV (µµµ) dmin(µµµ) δ(µµµ) (9)

where L(µµµ) is the egg-holder shape function which is difficult to optimize because there are
many local minima. Different initial points are tried to ensure that the global minimum is found.
The new sample µµµnew is defined by minimizing the loss function through the Adam optimizer.
Algorithm 1 summarizes the proposed adaptive sampling.

3 RESULTS

The adaptive sampling performance is evaluated using a simplified geometry which facilitate
the performance analysis of the proposed methodology. The template leg is deformed based
on two variables µiµiµi = (µ1

i , µ
2
i ) where µ1

i ∈ [−0.20, 0.30] and µ2
i ∈ [−0.05, 0.20]. The

template leg is deformed transversely while the length of the leg is kept constant. To this end
the control points are grouped in two: internal (green color) and external (yellow color) control
points, as showed in Figure 2. The two sets of points are moved in the XY plane based in the
selected parameters µiµiµi to get the target mesh. Figure 2 shows the target mesh computed for
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Algorithm 1 Adaptive sampling algorithm
0: INPUT: SSS, µµµ
0: for µµµi in µµµ do {Exploitation stage}
0: remove sssi(µµµi) from SSS
0: compute ROM → sss∗−i(µµµi)
0: compute error eLOOCV (µµµi)
0: end for
0: interpolation model e∗LOOCV (µ̃̃µ̃µ)
0: distance-based exploration dmin(µ̃̃µ̃µ) {Exploration stage}
0: define loss function L(µ̃̃µ̃µ) = −e∗LOOCV (µ̃̃µ̃µ) dmin(µ̃̃µ̃µ) δ(µ̃̃µ̃µ)
0: minimize L(µ̃̃µ̃µ) → µµµnew

0: update µµµ with µµµnew

0: OUTPUT: µµµ =0

µ = [0.15,−0.02], where 0.15 and -0.02 parameterized the displacement of the external and
internal control points respectively.

Figure 2: Lower-limb definition

With the objective of solving the FE model with the lowest cost possible, the sampling algo-
rithm presented in Algorithm 1 is applied to select µnew. The initial sample size is selected as
N0

µ = 9 and Nc new sampling points are selected applying Algorithm 1. Figure 3 shows graph-
ically the definition of the initial exploitation (e∗LOOCV ), exploration (dmin) and loss (L(µ))
function defined by the initial sampling set. After minimizing the loss function, a new sampling
point is computed.

Every time a sampling point is introduced, the function dmin(µµµ) is updated. However, the
sensitivity function e∗LOOCV is not updated until Nc sampling points are selected. The surface
function L(µµµ) is modified every time a new sampling point is added. The new sampling point
is selected by minimizing L(µµµ). Figure 4 shows the evolution of the loss function while new
sampling points are introduced. After selecting Nc new sampling points, the FE model is solved
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(a) Exploitation (b) Exploration

(c) Loss

Figure 3: Initial exploitation, exploration and loss surfaces (N0
µ = 9)
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(a) 1st sampling point (b) 2nd sampling point (c) 3rd sampling point

Figure 4: Adaptive sampling for Nc = 3

for each parameter combination, while the results of the FE model are used to build the new
ROM.

The number of new sample points Nc is defined by the number of cores available on the
cluster to take advantage of the computational resources available. This procedure is repeated
until reaching the established tolerance. In this benchmark, it was used Nc = 75 cores and a
tolerance of 0.1 % between the solution of the full-order model and the ROM. Following this
criterion, 1,259 samples are required.

Once the sampling and the FEA are achieved, the ROM is defined with the PODI method.
Figure 5 shows the linear combination of modes (Ψj) to compute the approximated solution
(s∗). Considering δtol = 0.01%, L=5 modes is enough to compute the approximate solution.
The ROM computes the displacement in every node which enables to derive the hydrostatic
pressures through Equation 2.

Figure 5: Proper orthogonal decomposition

The performance of the ROM is validated by comparing the solutions provided by the FEA
and the ROM at 200 sampling points different from the ones used to create the ROM. Figure
6 shows the difference between the computed and the estimated hydrostatic pressures. The
maximum error is 1.8 % while the mean error is about 0.1 %, which are sufficiently small. The
developed ROM can be considered as an accurate tool to predict the hydrostatic pressures in the
soft tissues of the lower limb.

The proposed numerical tool provides internal stress distributions (see Figure 7) resulting
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Figure 6: Comparison between full-order model solution and ROM solution

from the compressive therapy, which would be very difficult to estimate otherwise. In contrast
with experimental tests such as elastography [29], the numerical tool enables to study the effect
of different external pressures in a simple way. This advantage reduces the trial and error to look
for the most efficient compressive stocking. This stress distribution is meaningful with respect
to the improvement of lymph circulation. It also helps to design patient-specific stockings
avoiding stress concentrations that can cause discomforts. These suppose a step forward to
increase the efficiency of compressing stockings compared to the off-the-shelf stockings.

Figure 7: ROM solution

4 CONCLUSION

A digital twin of a lower-limb constitutes an essential numerical tool to carry out a patient-
specific design of compression stockings for lymphedema treatment. An approach based on
non-intrusive ROM has been proposed to achieve this objective. To reduce the computational
cost of the offline stage of ROM, an adaptive sampling is proposed together with PODI. This
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algorithm selects the full-order model where information is required to increase the accurateness
of the ROM. This promising approach constitutes a step forward to support doctors and stocking
manufacturers in their search of patient-specific solutions.

Future research into digital twin of the lower limb will consider material properties and
boundary conditions. Furthermore, while other reduced order method such as kernel POD
could be considered, low-cost and non-invasive methods should be studied to parametrize the
lower-limb.
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