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ABSTRACT  
Knowledge of seabed properties away from investigated locations is often required, for example, when geotechnical 
surveys are sparse or when the field layout changes between investigation and construction phases. In such cases, design 
lines that appropriately incorporate the uncertainty of the seabed properties must be defined to ensure reliable (yet not 
overly costly) design. This paper explores how two different approaches, traditional engineering judgement and advanced 
statistical methods, fare at quantifying the uncertainty of a real offshore site. This is achieved by ‘hiding’ different data 
and ‘scoring’ the predictive performance of the methods against a range of criteria. The work reveals that complex 
geological sites are significantly more challenging to represent than the stationary random fields often examined in 
research and suggests that more advanced approaches incorporating broader data sets are required to reduce uncertainty. 
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1. Introduction 
Geotechnical site investigation, especially in offshore 

developments, is constrained by high costs and tight 
schedules, typically resulting in relatively sparse data 
being available for design purposes. Additionally, it is 
not uncommon for infrastructure to be relocated as 
projects progress, resulting in a degree of misalignment 
between the investigation and construction sites. In this 
context, geotechnical practitioners need to either 
interpolate data between investigated sites or extrapolate 
to unsampled locations, which is a predictive exercise. 

These predictions, which aim to inform design by 
modelling spatial variability, can have a significant 
impact on foundation cost and performance. As such, a 
growing body of research has been published on the topic 
(Uzielli 2022).  

Research on the topic (Wang and Zhao, 2017; Cai et 
al. 2019; Parra-Gomez et al. 2022) often uses data from 
Piezocone Penetration Tests (PCPT). These tests are 
repeatable, cost-effective, and relatively fast, measuring 
near continuous data along vertical profiles, which makes 
them suitable for modelling spatial variability. Current 
research, however, often uses relatively homogeneous 
data (either synthetic or from low variability sites) to 
investigate spatial predictive methods. In contrast, this 
study uses real data from a complex geological site to 
demonstrate the nuances involved when making real-
world predictions.  

This study uses GeoWarp (Bertolacci et al. 2024), a 
new Bayesian hierarchical model designed to predict 
volumes of sediment properties while taking into account 
the nonstationary and anisotropic nature of geotechnical 
data. Our analyses were conducted using a cross-
validation scheme in which hidden qnet profiles (derived 

from PCPT data) were predicted using different arrays of 
PCPT data as input.  

The performance of the predictive model was 
assessed in terms of accuracy (how close the prediction 
is to the actual value) and uncertainty (how ‘sure’ the 
model is of the predicted value). For comparison, a 
simpler statistical analysis using Quantile Regression 
(QR) is included as a point of reference. 

Our study provides tentative answers to the following 
questions: 

1. Can real and unobserved PCPT profiles be 
accurately predicted? 

2. Is there value in implementing advanced 
statistical approaches?  

3. What is the value of acquiring more data? 

2. Dataset 
The dataset used in this study comprised 13 PCPTs 

from a site roughly 105 m by 105 m in plan dimension 
(Fig. 2), located offshore north west Australia.  

In the region where the tests were performed, the 
seabed is composed mainly of carbonate sediments 
(Watson et al. 2019). In the site, as shown in Fig. 1, two 
distinct layers compose the first 20 m of the seabed. The 
first has been described as turbidites (very soft carbonate 
sandy mud) and pelagic sediments (very soft carbonate 
muds). It goes from the seabed surface to a depth that 
varies between 8.5 m and 13 m. The second layer, which 
has been described as debris flow material and is 
composed of carbonate clasts, sands, and clays, goes 
down to 20 m depth. It shows highly variable conditions 
and overall higher cone tip resistance. 

Fig. 2 shows the grid layout used to collect the test 
data. The depth (in m) at which the ‘jump’ to the second 
layer occurs was manually determined and is given in 



 

parentheses under each test marker, while contour lines 
show the approximate location (obtained through 
interpolation) of the transitions between layers.  

 
Figure 1. Profiles of net cone resistance (qnet) used in the 

analysis. 

 
Figure 2. Plan view of the location of the PCPTs and isopachs 

to the second layer. 

This site was selected for this study due to the 
challenges it poses for predictive models, which are 
evident in Figs. 1 and 2 and outlined below: 

• Distinct statistical properties: The seabed 
profile of this site is composed of two layers that 
differ in their mechanical and statistical 
properties. The first layer, primarily pelagic, is 
relatively uniform and can be reasonably 
modelled using a linear trend and a stationary 
Gaussian process, where the variance and scale of 
fluctuation of the process do not vary with depth 
(Valderrama, et al. 2024) in a conventional 
random field framework. The second layer, a 
mass transport deposit, is highly nonstationary 
(i.e., it should be modelled using a stochastic 

process with spatially varying variance and scale 
of fluctuation). 

• Extreme values: The second layer exhibits 
extreme values that manifest at specific depths. 
For instance, PCPT06 displays notably high 
resistances between 13 and 15 metres, followed 
by relatively low resistances between 16 and 17 
metres. These variations, which are discussed 
later, present challenges of predictability in a 
cross-validation scheme. 

• Transition depth: Given the distinct features of 
the units that make up the profile, the accuracy of 
any predictive method greatly depends on its 
ability to predict the transition between these two 
layers. 

• Data resolution: While a relatively ‘data-rich’ 
site by the standards of many offshore projects, 
the grid-like layout of the data leads to the 
minimum distance between any given pair of tests 
to never be less than 33 m. This creates a gap in 
the information that the dataset offers: the data 
suggest high variability in depth, but the tests are 
not close enough to understand the horizontal 
variability.  

3. Statistical models 
Practical geotechnical engineering involves the 

translation of site investigation data into design lines. For 
offshore infrastructure, two design lines are typically 
required: a low estimate for calculating load-bearing 
capacity and a high estimate for determining installation 
requirements. This paper presents two statistically based 
practical approaches for defining these design lines. 

The first approach, which serves as a benchmark, is 
QR, a relatively simple method based on descriptive 
statistics and engineering judgement that nevertheless 
can accommodate changes in the variability with depth. 
The second approach is GeoWarp, a method that can 
account for variability in a statistical model-based 
framework. 

Both approaches can adapt to scenarios with varying 
amounts of data and yield measures of variability, 
making them usable in real-world design applications. 
They also produce best estimates, which can be regarded 
as predictions. Predictions and associated uncertainties 
form the basis of evaluation and comparison of the 
methods’ performance in cross-validation schemes. 

3.1. Quantile Regression (QR) 

In simple terms, QR is a statistical technique that 
extends traditional linear regression analyses. Linear 
regression estimates the conditional mean of a response 
variable, while QR provides estimates for different 
quantiles of the response variable. 

Following  Uzielli et al. (2019) and O’Neill et al. 
(2022a, 2022b), Valderrama et al. (2024) demonstrate the 
use of QR for design line definition in geologically 
complex, layered profiles, using the dataset employed in 
this paper. In the current study, QR was applied to obtain 
three outputs: a low estimate (10th quantile), a best 



 

estimate (50th quantile) and a high estimate (90th 
quantile). 

3.2. GeoWarp 

GeoWarp (Bertolacci et al, 2024) is a hierarchical 
Bayesian modelling framework for inferring the three-
dimensional geotechnical properties of subsea sediments. 
To achieve this, the framework decomposes the modelled 
property into two components: 

1. A vertical mean process (𝝁):  
This component remains constant across the study 
region and is modelled using B-splines. 

2. A deviation process (𝜹):  
This component is used to capture spatially 
dependent deviations of the property from the 
mean and is modelled as a spatial Gaussian 
process. This stochastic Gaussian process has 
expectation zero and a nonstationary covariance 
function. 

The core mathematical expression of GeoWarp is 
given by the following equation, where 𝑌(∙) is the 
modelled property. 

𝑌(𝑥, 𝑦, 𝑧) = 𝜇(𝑧) + 𝛿(𝑥, 𝑦, 𝑧)	 (1)	

The most important feature of GeoWarp is the 
covariance function of the deviation process. For two 
points (𝑥!, 𝑦!, 𝑧!) and (𝑥", 𝑦", 𝑧"), the covariance is given 
by 

Cov4𝛿(𝑥!, 𝑦!, 𝑧!), 𝛿(𝑥", 𝑦", 𝑧")5																																				

													= 6𝜎#"(ℎ!)𝜎#"(ℎ")ℳ$(𝑑!"), (2)
		

where 𝜎#"(ℎ) is the depth-dependent variance of the 
property and ℳ$ is the Matérn correlation function, 
which is a function of the warped Euclidean distance 𝑑!" 
between the two points. The warping of 3-D space allows 
the model to accommodate nonstationarity in the 
correlation scales, both within and between layers 
(Zammit-Mangion et al. 2022). 

While GeoWarp offers advantages over other state-
of-the-art models (Bertolacci et al. 2024), its predictive 
ability naturally depends on the features of the observed 
data. In instances where insufficient information is 
available or spatial correlation in the data is lacking, the 
predictions exhibit “regression to the mean” in that the 
prediction defaults to the mean process.  

GeoWarp is implemented as an R (2023) package that 
uses spatially referenced data, such as qnet profiles, to 
generate a user-defined number of simulations at user-
defined locations.  

In this paper the simulations produced by GeoWarp 
were post-processed to produce three qnet profiles 
representing the low, best, and high estimates at a 
specific location. Fig. 3 illustrates this, presenting a 
statistical analysis of 1000 simulations to derive the three 
profiles. The mean serves as the best estimate, while the 
10th and 90th percentiles offer low and high estimates, 
respectively. These quantities can be used for different 
design purposes. 

3.3. Performance evaluation 

As noted above, the evaluation of predictive 
performance involves assessing both accuracy and 
uncertainty. This assessment can be done using cross-
validation frameworks, where subsets of the observed 
data are kept hidden from the predictive model to test its 
performance at predicting them (Stone 1974). 

 
Figure 3. Typical GeoWarp output at a single horizontal 

location (prediction node). (a) 1000 simulations. (b) 
outputs for performance analyses. 

 Accuracy 

Measuring accuracy entails comparing the model’s 
best predictions with hidden (real) values. In this study, 
accuracy is quantified the root-mean-square error 
(RMSE) metric. This is calculated as 

𝑅𝑀𝑆𝐸 = 6 !
%!
∑ 4𝐹& − 𝐹'D5
%!
!

"
	 (3)	

where 𝑁( is the number of measured data points, 𝑭 =
(𝐹!, … , 𝐹%")′ is the vector of measured values, and 𝑭D =
(𝐹J!, … , 𝐹J%")′ is the vector of predicted values (typically 
chosen to be the prediction mean, labelled "best” in Fig. 
3 (b)). 

 Uncertainty 

For each predicted value 𝑖 = 1,… ,𝑁(,	and for a given 
prediction width 𝛼 ∈ (0,1), both QR and GeoWarp can 
produce prediction intervals [𝐹&)*+,-, 𝐹&

.//,-] that are 
expected to contain the true value with probability 𝛼. For 
example, the 10th and 90th percentiles in Fig. 3 (b) can be 
used to define an 𝛼 = 0.8 (80%) prediction interval.  The 
coverage proportion (CP0) metric used by Lyu et al. 
(2023) assesses whether these intervals empirically 
achieve the nominal width 𝛼.	This is done by counting 
the proportion of observed values that fall within the 
prediction interval. More precisely, 

CP0 =
!
%!
∑ 𝐼&
%!
12! , 𝐼& = T1,0,

𝐹& ∈ [𝐹&)*+,-, 𝐹&
.//,-]

Otherwise
								 (4)  



 

Whether the intervals are appropriate can be assessed 
by calculating DCP0 = CP0 − 𝛼, the difference between 
the empirical and the nominal coverage. Methods that 
produce intervals that are too wide on average will have 
DCP0 > 0, those that are too narrow or that otherwise do 
not contain the true value often enough will have DCP0 <
0, and those with intervals that are an appropriate width 
will have DCP0 ≈ 0. 

4. Prediction exercises 
Three modelling scenarios were investigated to 

answer the three questions motivating this paper: 
• Whether profiles can be accurately predicted was 

assessed by exploring the performance metrics of 
GeoWarp for scenarios in which the input data 
were varied.  

• Whether it’s worthwhile using advanced 
statistical methods was assessed by comparing the 
relative predictive performance of QR and 
GeoWarp. 

• Whether there is value in collecting more data was 
assessed by exploring the impact of increasing the 
amount of data used.  

The following sections present the results of these 
scenarios. In all scenarios, an important concept is the 
representative distance between a predicted PCPT and 
the PCPTs used as input for its prediction. This distance 
was employed in various plots in the following sections. 

 
Figure 4. Representative distance scheme. 

Fig. 4 illustrates a typical prediction scenario, where 
𝑞345 profiles from three PCPTs are used to predict a 𝑞345 
profile at the location of a test concealed from the 
predictive model. The distance from each input point is 
denoted as 𝑦& , 𝑖 = 1,2,3, and the ‘representative distance’ 
𝑦c is defined as the average of these three values. 

4.1. Question 1: Can real profiles be accurately 
predicted? 

To assess prediction accuracy, we adopted a “pick-
three-predict-one” cross-validation approach, in which 
we predict one profile using three profiles as input. The 
targets of the prediction were the inner PCPTs (05 to 09 
in Fig 2), which were predicted using every other 
combination of three PCPTs. This resulted in 1100 
separate predictions. 

The RMSE results (Fig. 5) indicate that for the ‘pick-
three-predict-one’ scenarios, representative distance does 
not appear to correlate with prediction accuracy. 
Counterintuitively, predictions are not consistently more 
accurate when the input PCPTs are closer to the predicted 
PCPT. This may be because GeoWarp defaults to 
predicting the site-wide mean when a dataset lacks 
sufficient data quantity or density to characterise spatial 

variability. In such cases, the model is expected to 
achieve better accuracy metrics for tests that are similar 
to the mean profile – and this expectation aligns with the 
observed results: Fig. 6 provides a summary of the RMSE 
results in the form of boxplots, while Fig. 7 displays a 
comparison of the five predicted tests with a site-wide 
mean. As is clear, accuracy is notably higher for PCPTs 
05, 07, and 08 – each of which is closer to the site-wide 
mean than PCPTs 06 and 09. 

 
Figure 5. RMSE results. 

 

 
Figure 6. RMSE boxplots. 

The low accuracy (high RMSE) of the predictions for 
PCPT06 may be attributed to the test’s unique nature 
(Fig. 1): with features unseen elsewhere in the site, it is 
effectively ‘unpredictable’. Fig. 8 (a) illustrates this – it 
is evident that if the only inputs the model receives are 
PCPTs 01, 04 and 05, accurately predicting the variations 
in PCPT06 between 11 and 18 m depth is nearly 
impossible.  

The outlier PCPT06 is an extreme case, however. 
Consider Fig. 8 (b), where PCPT05 is predicted. While 
the profile is predicted reasonably well, as reflected in the 
relatively low RMSE, there is noticeable smoothing, 
particularly evident in the transition between units. In this 
case, the smoothing may be attributed to limited data 
input and uncertainty about the location of the layer 
change. Given the potential design implications of a 
sharp change in cone resistance, such as for installation, 
this example raises a new question: what defines a good 
prediction? 

If the goal is to predict natural profiles and accurately 
represent geological features at times unpredictable (such 
as layer transitions), then it is crucial to recognise that 



 

relying on a single source of information (e.g., PCPT) 
challenges predictive models with a near-impossible 
task. This limitation could be mitigated by considering 
additional sources of information – for instance, 
geophysical surveying is typically conducted at various 
stages of project development, and such data could 
inform the prior distributions that form the foundation of 
GeoWarp. Other data sources, like borehole logs, should 
also be duly considered – and this is an area of future 
work. 

 
Figure 7. Comparison of the 5 predicted PCPTs and a site-

wide mean profile 

  
Figure 8. Prediction examples. (a) prediction of PCPT06 (b) 

prediction of PCPT05. 

Aside from the potential modelling improvements, it 
is also worth assessing the appropriateness in 
geotechnical applications of metrics like RMSE. RMSE 
provides an idea of the overall quality of a prediction but 
may fail to capture aspects of high impact for 
geotechnical practice. For example, it assigns equal 

penalty to both under- and over-estimation of the 
quantity, which may not be appropriate. Consequently, 
the choice of metrics tailored to geotechnical design 
represents a promising avenue for future research. 

Another key observation from the analysis relates to 
the importance of capturing site variability in the input 
data. To explore this, changes in prediction accuracy 
when PCPT06 is included as one of the three inputs were 
examined. Fig. 9 shows boxplots representing the 
differences – for PCPTs 07, 08, and 09, the accuracy 
slightly improves, and while the finding may not be 
generalisable, it draws attention to the fact that if outliers 
are not captured as part of an investigation, then the 
overall knowledge of the site is poorer, and the predictive 
ability of models (such as GeoWarp) potentially 
decreases. This is also an area of further investigation. 

 
Figure 9. RMSE boxplots for comparing the effect of 

including PCPT06. 

Up to this point, we have focused only on prediction 
accuracy. Fig. 10 shows the relationship between DCP6.8 
and RMSE for all ‘pick-three-predict-one’ analyses. The 
results tend toward negative values that, in some cases, 
reach values as low as -0.5. This implies that the 
predictions contain the true value too infrequently, which 
can arise either because the intervals are too narrow, 
because they are poorly placed, or both. The worst 
coverage is, not surprisingly, achieved on the outlier 
PCPT06. In general, however, the coverage is too low at 
most locations. This may be an artefact of using only 
three PCPT profiles as input (i.e., low variability in the 
inputs yields narrow prediction intervals). A clearer 
understanding would require the inclusion of cases in 
which additional PCPTs are included. 

 
Figure 10. Relation between DCP!.#	and RMSE. 



 

4.2. Question 2: Is there value in implementing 
advanced statistical approaches? 

To address this question, we examined 21 
representative ‘pick-one-predict-three’ cases of the 220 
cases where PCPT08 had been predicted. The choice of 
PCPT08 was motivated by its strategic location within 
the inner investigated ‘box’ (Fig. 2), allowing for both 
interpolation and extrapolation scenarios. Furthermore, 
its off-centre location in the site allows for a wider range 
of representative distances than PCPT05. Finally, while 
still presenting a challenging scenario, PCPT08 exhibits 
a lesser degree of unpredictability in comparison to 
PCPTs 06, 07 and 09.  

The predictions were benchmarked against the 
performance of QR, which, as outlined by Valderrama 
Giraldo et al. (2024) involves the definition of layering 
systems. We adopted a pragmatic layering approach that 
is thought to mirror the methodology typically employed 
by engineers in a design setting. While introducing 
subjectivity, this aligns with the overall objective: to 
evaluate whether advanced frameworks like GeoWarp 
exhibit superior performance compared to other (simpler) 
tools.  

 
Figure 11. Prediction examples with tests 02, 04, and 06 used 

as inputs. (a) GeoWarp. (b) QR. 

Fig. 11 illustrates the outputs for both methods using 
PCPTs 02, 04, and 06 as inputs to predict PCPT08. This 
case highlights GeoWarp's capability to represent depth-
dependent variance (heteroscedasticity) in the data, 
evident when comparing the lower and upper bound from 
both methods: while both approaches predict the layer 
transition ‘jump’ at around 11 m depth, QR provides an 
overly simplified representation of the variability below 
that depth. Despite the impact of data-quantity 
restrictions inherent in the ‘pick-three-predict-one’ 
approach (which possibly causes GeoWarp’s smooth best 
estimate as well), this example suggests that GeoWarp 
provides a more comprehensive representation of site 
variability.  

For the remainder of the cases, the comparison is 
based on their performance metrics. Fig. 12 compares the 
two methods in terms of accuracy, with the vertical axis 

representing RMSE from GeoWarp and the horizontal 
axis representing RMSE from QR. A 1:1 line in the plot 
serves as a reference: points below the line suggest 
GeoWarp performs better, while points above indicate 
QR performs better. Albeit the trend is not particularly 
strong, GeoWarp appears to outperform QR accuracy-
wise. More cases (including those with more input 
PCPTs) would be needed to form a clearer picture. 

 
Figure 12. RMSE comparison. 

Fig. 13 compares DCP6.8, incorporating histograms to 
display the data distribution, which is helpful when 
interpreting data (given that the ideal DCP80 is zero). 
While the QR outputs show a relatively even spread 
between -0.1 and 0.1, the results from GeoWarp are more 
heavily concentrated around values between 0 and 0.1 – 
which suggests better (appropriately conservative) 
performance from GeoWarp (as negative values imply 
overconfident predictions). However, extreme values at -
0.2 and -0.3 in the GeoWarp results indicate instances of 
overconfident (and inaccurate) prediction that warrant 
more research. 

 
Figure 13. DCP!.# comparison. 

While the limitations of the ‘pick-three-predict-one’ 
approach (which are to be addressed through further 



 

research) influenced the results, this section suggests that 
while metric-wise, straightforward statistical methods 
may yield comparable (but slightly inferior) outputs, 
implementing advanced models like GeoWarp provides 
a more thorough representation of a site’s variability. 

Aside from considerations of prediction accuracy and 
uncertainty calibration, GeoWarp also has the capability 
to produce predictive simulations, not just quantiles or 
best-guess predictions. These simulations, which can 
have more realistic statistical properties than prediction 
means, can be used as stand-ins for data at missing in 
follow-up design analyses. 
 

4.3. Question 3: What is the value of acquiring 
more data? 

Moving beyond the ‘pick-three-predict-one’ 
framework, we now consider the value of acquiring more 
data. To do this, we conducted an incremental inclusion 
of data in a predictive exercise focused on PCPT08. We 
systematically expanded the input data, commencing 
with three initial PCPTs (01, 10, and 11), and 
progressively incorporated closer tests until PCPT08 was 
entirely encompassed by the input PCPTs. The 
progression unfolded as follows: the first additional test 
to be introduced was PCPT06, followed by 02, 04, 05, 
07, 09, 12, 13 and 03, giving a total of 10 cases. 

For comparison purposes, QR analyses were also 
conducted for each case. The results for both approaches 
are shown in Fig. 14. The upper plot indicates a trend 
toward improved accuracy with larger input datasets, as 
expected. Interestingly, the incremental improvement 
seems to stall when 6 PCPTs or more are used. 

The results for DCP6.86 are displayed in the lower plot 
in Fig. 14. These show only positive values for cases with 
4 or more input PCPTs, which implies wide prediction 
intervals that slightly overestimate the site's variability. 
This is in contrast to Fig. 10 for the ‘pick-three-predict-
one’ cases where DCP6.86 is consistently negative. Also, 
the behaviour exhibited by the DCP values closely 
mirrors that of RMSE, meaning, firstly, that the values 
also tend to stabilise after the inclusion of the sixth test, 
and secondly, that while the accuracy (RMSE) of 
GeoWarp is better than QR for all cases, the opposite 
holds for DCP6.86, meaning that QR consistently produces 
DCP values closer to zero.  

While these results may be influenced by the 
sequence in which the data was added (making the 
findings somewhat anecdotal) a comparison between the 
first and last cases suggests that given the large 
variability of this site, increasing data allows GeoWarp 
to improve its characterisation of the variability, which in 
turn leads to wider prediction intervals (i.e. an 
acknowledgment of higher uncertainty), and hence larger 
DCP values. However, the observed trend appears to 
plateau after a certain quantity of data is utilized. This 
intriguing finding, which may be site-specific and 
requires further research, suggests a potential 
diminishing return for additional data.  

 
Figure 14. Relation between data quantity and predictive 

performance metrics. 

Further comparison between QR and GeoWarp is 
shown in Fig. 15 by exploring actual prediction intervals 
for the case with all data included. The prediction interval 
from GeoWarp successfully describes the site’s 
variability (and depth-dependent variance), without the 
spread observed at around 17 m in cases with less data 
(Fig. 11). However, GeoWarp still produces a smooth 
prediction (and prediction interval) – while it accurately 
represents the overall behaviour of PCPT08, it misses the 
sharp variations that may be important, for instance, for 
installation assessment. In contrast, the subjective 
outputs from QR arguably address this feature better, by 
showcasing varying depth to Unit 2 and sharp layer 
transitions. 

 
Figure 15. Prediction using all available tests but PCPT08. (a) 

GeoWarp. (b) QR. 

It should be noted, however, that while QR provides 
a single output offering a ‘big picture’ idea of a site’s 
features, GeoWarp is a framework for predicting 3D 
volumes of data. Although not explored in this work, in 
GeoWarp, the inclusion of additional data not only 



 

enhances predictive performance but also enables 
location-specific analyses of uncertainty, which, for 
instance, could inform planning and optimisation of a site 
investigation such that each PCPT location is selected to 
progressively reduce uncertainty (to a certain plateau). 
Ongoing research is dedicated to exploring these 
possibilities. 

5. Conclusions 
This study showcased the predictive performance of 

GeoWarp, a novel Bayesian framework, in a geologically 
complex site, comparing it with the simpler QR method. 
Metrics-wise GeoWarp demonstrated a slight advantage 
over QR in its predictive ability. There are, however, 
some aspects in which GeoWarp offers substantial 
advantages, the main one being that GeoWarp analyses 
the sediments’ spatial structure, which allows an accurate 
representation of the depth-varying variance of 
geotechnical properties.   

The findings also underscored that statistical 
approaches can output predictions in which the 
underlying uncertainty is quantified by prediction 
intervals. Yet, it was shown that predicting unsampled 
locations within natural deposits (particularly those 
influenced by mass transport processes) becomes 
impractical when relying solely on one sparse data 
source. Future research endeavours should focus on 
methodologies enabling the fusion of datasets, such as 
combining PCPT with geophysical surveying and 
borehole logs. In the Bayesian modelling context in 
which frameworks such as GeoWarp are developed, 
leveraging additional datasets to inform prior 
distributions holds the potential to enhance predictive 
accuracy. 
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