
The 9th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2024

3–7 June 2024, Lisboa, Portugal

DEEP LEARNING MODEL ORDER REDUCTION FOR THE
AUTOMOTIVE INDUSTRY
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Summary. This manuscript compares the model order reduction capacity of POD with the
one of more modern techniques as β variational autoencoders in the wake of the Windsor body
at ReL = 2.9× 106. A β VAE with 20 latent dimensions which are 89.72% orthogonal between
themselves recovers 96.75% of thw flow energy while 20 POD modes barely recover the 40%.

1 INTRODUCTION

When a car is exposed to lateral wind gusts, the yaw angle of the incident velocity increases,
leading to an intensification of the suction at the vehicle’s rear and elevated drag forces. This
effect is particularly relevant in square-back vehicles, as their drag force is completely driven
by the pressure on their back face. This work focuses on building a surrogate model for the
changes in the aerodynamic performance with the yaw angle of a simplified square-back vehicle,
the Windsor body.

Surrogate models are data-driven computational methods widely used across various scien-
tific and engineering disciplines to approximate complex systems or functions. These models
act as simplified substitutes for both experimental procedures and computationally intensive
simulations, offering faster yet sufficiently accurate results [23]. Surrogate models are primarily
employed to estimate optimal solutions or serve as essential tools for performance evaluation
in the early stages of development, as they significantly reduce the resources needed for design
exploration [18,26].

Given the complexity and high dimensionality of the original model, surrogate models are
typically constructed in a reduced space [26]. Dimensionality reduction can be achieved through
algebraic methods such as proper orthogonal decomposition (POD) [20] and its variants [24],
or by employing deep learning techniques. Examples of autoencoder-based applications in the
field of fluid dynamics include [1,5,6,10,14,21,22,25,27]. The rising popularity of autoencoders
for model order reduction is due to their ability to capture the non-linear behavior of dynamical
systems with a higher compression capacity than any POD-based methodology [4, 5, 22,25].

The aim of this study is to develop a similar CNN-based β variational autoencoder for model
order reduction to the one implemented by Eivazi et al. [5] in a simplified urban environment
to prove the capabilites of this methodology in such a common flow in the automotive industry.
The rest of the manuscript includes a section describing the methodology, including the dataset
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Figure 1: Geometry of the Windsor body and the working plane where the data is interpolated to
develop the model. The plane is perpendicular to the vertical axis and is located at z/L = 0.186.

description, a numerical definition of POD and the architecture used for the β VAE, and finally
the comparison between the compression capacity of the β VAE and POD for that case.

2 METHODOLOGY

This section describes the methods used in the manuscript, including the Windsor body
dataset employed to test the methodology, a mathematical description of POD and the selection
of the most significant modes, together with a description of the model used to add the energy
from the truncated modes.

Dataset description

The test dataset consists of the turbulent wake behind the Windsor body, a simplified square-
back vehicle illustrated in Figure 1, at a Reynolds number of ReL = U∞L/ν = 2.9× 106. Here,
U∞ is the free-stream velocity magnitude, L is the model length, and ν denotes the fluid’s kine-
matic viscosity. The data was generated through wall-modeled large eddy simulations conducted
at yaw angle of δ = 10◦. The simulations involved numerically solving the spatially filtered
incompressible Navier-Stokes equations (Equation 1 and Equation 2) using SOD2D (Spectral
high-Order coDe 2 solve partial Differential equations) [11,12], a spectral element method (SEM)
code designed for low-dissipation.
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In these equations, xi represent the spatial coordinates (i.e., x, y, and z), ui (i.e., u, v, and
w) are the velocity components, and p is the pressure. The kinematic viscosity and fluid density
are denoted by ν and ρ, respectively. Filtered variables are represented by an overline (·). The
right-hand side of Equation 2 represents the sub-grid scale (SGS) stresses, with its anisotropic
part given by:
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Tij −
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3
Tkkδij = −2νsgsSij (3)

where the large-scale rate-of-strain tensor Sij is calculated as Sij =
1
2 (gij + gji), with gij =

∂ui/∂xj and δij being the Kronecker delta. The equations are closed using the local formulation
of the integral length-scale approximation (ILSA) [19] as the SGS viscosity (νsgs).

The run was extended for 60 convective time units, t = 60L/U∞, after the initial transient
phase was completed. A total of 660 snapshots were collected during this period. The data
used for model evaluation was interpolated onto the red plane shown in Figure 1. This plane is
perpendicular to the vertical axis and positioned at z/L = 0.186. For a detailed description of
the numerical methodology, domain, and grid used in the simulations, as well as validation, the
reader is referred to previous work by Eiximeno et al. [9].

Proper Orthogonal Decomposition (POD)

In this work, Proper Orthogonal Decomposition (POD) is employed as the baseline dimen-
sionality reduction technique due to its efficiency in capturing an infinite-dimensional process
with a finite number of modes [15]. POD is based on identifying a set of deterministic functions
that represent the dominant features of the system, allowing for the decomposition of a field
F (X, t). This decomposition can be expressed as:

F (X, t) =
N∑
i=1

ai(t)Φi(X), (4)

where N denotes the number of functions used to decompose the field. POD requires the
spatial mode basis to be orthonormal, i.e.,∫

X
Φi1(X)Φi2(X)dx =

{
1 if i1 = i2
0 otherwise

(5)

and optimal, meaning that the first Nr vectors are those that reconstruct the dataset with
the minimum possible error.

In this study, Singular Value Decomposition (SVD) is the chosen method for performing
POD. SVD decomposes the initial snapshot matrix, X , into the left singular vectors, U , the
singular values, S, and the right singular vectors, V , as follows:

X = USV T . (6)

Each column of U contains a spatial mode, Φi(X), and each column of V provides the
temporal evolution of the corresponding mode’s coefficient, ai(t). The singular values, organized
in a diagonal matrix, represent the energy contribution of each mode in descending order. The
larger the singular value, the more energy the mode contains. The POD analysis in this work
was conducted using pyLOM [7], a high-performance computing (HPC) enabled reduced order
modeling code that implements a parallel and scalable algorithm for singular value decomposition
[8].
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Variational autoencoders (VAE)

Kingma and Welling [17] introduced an extension to standard autoencoders (AEs), known
as variational autoencoders (VAEs), which allows for the mapping of input data into a smooth
and informative latent space distribution. This approach addresses the limitations of standard
AEs, particularly their fixed and non-informative latent space, which hinders the generation of
new data. In this study, a Gaussian distribution is employed, where the input data is projected
via E into a mean vector µ and a standard deviation vector σ. The latent space is sampled
using a normally distributed random variable ε, such that z = µ+σ ⊙ ε. The loss function for
a variational autoencoder includes a penalization term from the latent space, calculated using
the Kullback-Leibler (KL) divergence, DKL:

L(x) = Lrec −
β

2

d∑
i=1

(
1 + log(σ2

i )− µ2
i − σ2

i

)
(7)

The term β is served as a regularization for the KL divergence used to disentangle the obtained
latent vectors. In this work β = 1 × 10−3. The VAE architecture used in this study is shown
in Figure 2. The input data consists of snapshots of streamwise velocity in a plane located
at z/L = 0.186, with nx = 384 points in the horizontal direction and ny = 256 points in the
vertical direction. The baseline architecture is adapted from previous works on autoencoders
designed to compress fluid flow data [2, 5, 10,25]. All of these studies utilized five convolutional
layers to capture flow features. For the present application, using a filter with a kernel size
that reduces the input data dimensions proved to yield more robust results than pooling layers
for dimensionality reduction. Therefore, to halve the output data dimensions at each layer,
a kernel size of (4 × 4) with a padding of 1 and a (2 × 2) stride is applied. The first layer
employs a filter size of 16, which doubles at each subsequent layer to retain data patterns. After
the final convolutional layer, the extracted features are flattened and fed into a fully-connected
layer of length l = 512 to facilitate a smooth dimensionality reduction. The final step of the
encoder involves mapping the features into two parallel fully-connected layers of dimension d,
representing the mean µ and variance σ of the latent distribution. In this work, d is set to
d = 2. The sizes of the filter, the fully-connected layer, and the latent space are chosen as the
minimum required to achieve coherent reconstructions of the streamwise velocity.

The decoder is symmetrically designed, with fully-connected layers receiving input from the
latent distribution. The data is then reshaped to match the output of the encoder’s final con-
volutional layer. Five transposed convolutional layers are employed to progressively reconstruct
the original data by increasing the spatial dimensions. In this study, the hyperbolic tangent
(tanh) function is used, as it performed best with the data under consideration. All layers in
the model are initialized using the Xavier uniform initialization scheme [13].

The reconstruction loss Lrec is defined as the mean-squared error (MSE), and the model
parameters w are updated using the Adam optimization algorithm [16]. To ensure convergence
of the loss function, the model is trained for 300 epochs with a learning rate lr, which follows a
decay schedule starting from 5× 10−4:

lri =
lri−1

1 + 1× 10−4 · i (8)

where i denotes the current epoch number. To prevent overfitting of w, an early stopping
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Figure 2: Encoder (a) and decoder (b) architectures. The output size of each layer is in-
dicated under the corresponding block in the format (Height × Width × Channels). The
color coding for each layer is as follows: 2D-convolution layer , 2D-transpose convolution layer ,

fully-connected layer , reshape , and tanh activation function .
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Figure 3: Comparison between the original flow (left), the autoencoder reconstruction (center)
and POD reconstruction (right)

mechanism is applied based on the total loss L(x), halting training when no further improvement
is observed [3].

Eighty percent of the snapshots collected were used to train the autoencoder, while the
remaining 20% served as a validation set to evaluate potential overfitting to the training data.

3 RESULTS

Figure 3 compares the reconstruction of one snapshot of the streamwise velocity with the
original dataset using the autoencoder with 20 latent dimensions and the reconstruction with 20
PODmodes, effectively showcasing the high compression capacity of the variational autoencoder.
The 20 latent dimensions of the variational autoencoder recover up to 96.75% of the total flow
energy while the 20 POD modes barely reach the 40% of the flow energy.

Thanks to the regularization parameter β it was possible to obtain a near-disentangled latent
representation of the fluid flow as the determinant of the correlation matrix of the latent vectors
is of 89.72%.

4 CONCLUSIONS

This work provides additional evidence of the capacity of variational autoencoders for model
order reduction. The model can be further extended for more flow conditions to create a surro-
gate model between them. However, one should note that the core of this methodology is the
usage of spatial convolutional layers and is restricted to flows that can be meshed with a regular
grid. The future work by the authors in this topic will be directed on methodologies that avoid
the need of having a regular grid and can extend the model to additional flow conditions.
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