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Summary. In recent years, manufacturing has paved the way to enhance structural properties
using 3D printed structures by constructing complex shapes. The properties of such structures
depend on the arrangement of the internal lattices. Honeycomb is one such simple lattice struc-
ture that is widely used by researchers as it exhibits a high strength-to-weight ratio. However,
the elastic properties of the lattice structures are intrinsic functions of the material properties and
the geometric shape. Hence, it is impossible to modulate the elastic properties once constructed.
Recent studies have shown that the active modulation of the elastic properties can be achieved by
incorporating smart materials over the substrate layers of the lattice. The analytical expressions
have been developed for honeycomb/ auxetic honeycomb lattice considering the Euler-Bernoulli
bi-layer beam to determine its elastic properties. The expression is well valid for lattices where
the thickness of the smart material is relatively less compared to the substrate thickness. How-
ever, it does not produce consistent results as the thickness of the smart material increases due
to the shift of the position of the neutral axis, which was earlier assumed to be at the geomet-
ric centre of the substrate beam. This paper presents a modified formulation that considers the
change in the position of the neutral axis as the thickness of the smart material patches varies.
This modification allows the use of the analytical expression for beams with higher thickness
ratios and can be used to understand the impact of forces in shear deformation. In addition, the
variation in the elastic properties has also been investigated for different cross-sectional shapes
such as I-section, T-section, and rectangular cross-section. The formulation presented here is
generic, and the concept can be used in various futuristic multi-functional structural systems and
devices across different length scales.

1 INTRODUCTION

Latticed materials have gained significant interest among researchers in the past few years. Var-
ious 1D/2D/3D shapes are repeated periodically to develop such structures. Unlike conventional
material, where the composition of the material is solely responsible for the overall properties,
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in latticed metamaterial, the pattern of the unit cell also influences the same. The unique pattern
of the structure leads to the development of some properties that may not be observed with con-
ventional material. This group of materials is popularly known as metamaterial. Such materials
can exhibit properties like auxeticity [1], which refers to the unusual behaviour of expanding
along perpendicular directions when stretched rather than contracting like most materials. It
can manipulate band gap characteristics [2, 3], allowing transmission of certain frequencies of
electromagnetic waves. The structure can serve as an effective wave guide [4], confining and
directing the propagation of waves along specific paths. Mechanical metamaterials are subset of
this domain that deals with the mechanical characteristics of the structure. These materials ex-
hibit interesting properties like zero or negative Poisson’s ratio [5], negative compressibility [6],
and vanishing shear modulus [7], which are all exceptions from the common behaviour of nat-
ural materials. Honeycomb is preferred over other structures due to its high strength-to-weight
ratio [8].
Recent studies have shown that it is possible to change the structural properties by varying the
unit cell features. Gibson et.al. [9] did a generic study on the properties of honeycomb and the
dependence on its structural parameters. Closed-form expressions of mechanical properties like
Young’s modulus and Poisson’s ratio were formulated. Several authors tried to alter the geomet-
ric features passively to modulate the properties. Hierarchical structures were used to modulate
the characteristics by adjusting dimension ratios of different hierarchy [10]. A programmable
deformation-dependent stiffness and shape modulation using distant actuation can be generated
using an origami structure [11]. Recent literature also revealed the existence of negative Young’s
modulus and Poisson’s ratio in some structures [12, 13].
However, active modulation of the properties can better impact the development of futuristic
materials as the structure reacts to an unknown externally applied stimulus. Magnetic insertion
can be used within the structure for tuning the geometry and to ultimately have active control
over the macroscopic property of the structure [14]. Moreover, smart materials like piezoelec-
tric material, which changes dimensions in electric fields, can be integrated with the substrate
material [15]. A voltage-dependent metamaterial with a close form expression of the apparent
elastic property was thus developed [16]. Similarly, contactless metamaterial was developed
using magnetostrictive material over the substrate material [17], which provides active control
of structural properties in a contactless fashion. The magnetostrictive material referred to here
changes its dimension in the presence of the magnetic field. However, the current modelling of
smart material-based structures [16, 17] have limitations with the thickness of the smart layer.
The results become inconsistent as the thickness increased beyond some thickness ratio depend-
ing upon the smart material used. This limitation has been corrected in our research paper,
wherein a new model has been proposed that gives a consistent result, thus generalizing the
expression. Further, a study was conducted on the change in the cross-sectional shapes of the
lattice structure, and property variation was observed.
The remainder of the paper is organized as follows: section 2 provides a concise overview and
presents the derivation of the generalized structure. Various cross-sectional shapes are consid-
ered in Section 3, and the structures were analyzed to develop closed-form expression of appar-
ent elastic properties. In Section 4, the focus is on the comparison of the new model with the
existing literature and the variation in the elastic properties as the cross-sectional shape varies.
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Finally, concluding remarks are summarized in Section 5.

2 DERIVATION

A bottom-up approach is used to derive the apparent structural properties. The lattice used here
is a periodic arrangement of a unit cell. Thus, a unit cell is formulated, expanding the idea to
the whole structure. The unit cell comprises the substrate material layered by a smart material
in an unimorph condition, as represented in Fig. 1. The unit cells are assumed to be made up of
Euler-Bernoulli beams, and the displacement in the x− z plane can be represented as

u(x,z, t) = u0(x, t)− zw0
,x(x, t) (1)

w(x, t) = w0(x, t) (2)

Strain equation can be written using Eqn. 1 and Eqn. 2 as

εx =
∂u0(x, t)

∂x
− z

∂2w0(x, t)
∂x2

εy,εz,εxy,εyz,εxz = 0
(3)

Stress in the substrate beam is
σs = Ysεx (4)

Stress in magnetostrictive patch is given as

σm = Ym (εx −dH) (5)

where, Ys is Young’s modulus of the substrate, Ym is Young’s modulus of the magnetostrictive
material, d is the magnetostrictive constant and H is the applied magnetic field intensity.
Potential energy in the unit cell is thus given as

Uc =
1
2

(∫
Vs

σxεxdVs +
∫

Vm

σmεxdVm

)
(6)

Magnetic energy in the unit cell is given as

Um =
Ws

2

(∫ L

0

∫ Tm

Ts
2

µH2dzdx
)

(7)

where, Ws is the width of substrate, Ts is thickness of substrate, Tm is thickness of smart layer
and µ is the magnetic permeability.
Hamilton’s principle is applied to Eqn. 6 and Eqn. 7 to derive the displacement equation for the
two-node and three-DOF hybrid beam in the presence of the magnetic field. This is represented
in matrix form as

{q}6×1 = [K]−1
6×6{F}6×1 (8)
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With the consideration of one end of the beam fixed, appropriate boundary conditions are ap-
plied, and the force matrix (F) and stiffness matrix (K) of the hybrid beam [17] are given as

[
F
]
=



−Fm

0
Mm

Fm

0
−Mm

 ;
[
K
]
=



A 0 −B −A 0 B
0 12C 6CL 0 −12C 6CL
−B 6CL 4CL2 B −6CL 2CL2

−A 0 B A 0 −B
0 −12C −6CL 0 12C −6CL
B 6CL 2CL2 −B −6CL 4CL2

 (9)

The expression of the force vector elements Fm and Mm are given as

Fm =
YmAmdH

2
; Mm =

YmHmdH
2

; (10)

and expression of A, B, C are given as

A =
YsAs +YmAm

L
, B =

YsHs +YmHm

L
, C =

YsIs +YmIm

L3 (11)

where, A is the cross-section area, H is first moment of area, I is second moment of area and the
subscripts s is substrate, m is the magnetostrictive material.
The beam cross-section is assumed to be rectangular. The subsequent discussion considers var-
ious parameters as follows:

kt =
Ym

Ys
; αR =

Tm

TRs
; β =

h
L

; γR =
TRs

L
; Hrat =

H
σ1

(12)

An extensional force P is applied on the ends of the unit cell along direction 1, as in Fig. 1a.
The force is given as

P = σ1L(β+ sinθ)WRs (13)

The constants used in the stiffness matrix are now determined with the neutral axis positioned
at the region of the cross-section with zero bending stress. Dimensions hR1,hR2,hR3 of Fig. 2a
are first calculated as follows: ∫

s
ydA = ysAs =

(
TRs

2
−h1

)
(TRsWRs)∫

m
ydA = ymAm =

(
TRs +

Tm

2
−h1

)
(TmWRs)

(14)

Ys

∫
s
ydA+Ym

∫
m

ydA = 0 (15)

Solving Eqn. 15 using Eqn. 14,

hR1 =
T 2

Rs + ktTm(2TRs +Tm)

2(TRs + ktTm)
; hR2 =

T 2
Rs +2TRsTm + ktT 2

m

2(TRs + ktTm)
; hR3 =

T 2
Rs − ktT 2

m

2(TRs + ktTm)
(16)

Based on this calculation, the cross-section area and first and second moment of area are calcu-
lated, and subsequently apparent Young’s modulus of the structure is determined.
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(a)

(b) (c)

Figure 1: Unimorph configuration with rectangular cross-section (a) Honeycomb pattern and
its unit cell (b) Front view (c) Cross section of each beam

(a) (b) (c)

Figure 2: Various cross section of the composite structure (a) rectangular section (b) I-section
(c) T-section
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2.1 Substrate beam and smart layer parameters

In this section, we provide the closed form expressions of the Area, First and Second Moment
of Inertia related to the passive beam and smart layer respectively. Accordingly, we obtained:
Area of the beam

As =
∫ WRs

0

∫ hR3

−hR1

dydx =WRs

(
−T 2

mkt +T 2
Rs

2Tmkt +2TRs
+

T 2
Rs + ktTm(2TRs +Tm)

2Tmkt +2TRs

)
First moment of inertia of beam

Hs =
∫ WRs

0

∫ hR3

−hR1

zdydx =WRs

( (
−T 2

mkt +T 2
Rs
)2

2(2Tmkt +2TRs)2 −
(
T 2

Rs + ktTm(2TRs +Tm)
)2

2(2Tmkt +2TRs)2

)

Second moment of inertia of beam

Is =
∫ WRs

0

∫ hR3

−hR1

z2dydx =WRs

( (
−T 2

mkt +T 2
Rs
)3

3(2Tmkt +2TRs)3 +

(
T 2

Rs + ktTm(2TRs +Tm)
)3

3(2Tmkt +2TRs)3

)

Area of the smart layer

Am =
∫ WRs

0

∫ hR2

hR3

dydx =WRs

(
T 2

mkt +2TmTRs +T 2
Rs

2Tmkt +2TRs
− −T 2

mkt +T 2
Rs

2Tmkt +2TRs

)
First moment of inertia of smart layer

Hs =
∫ WRs

0

∫ hR2

hR3

zdydx =
WRsTmTRs(Tm +TRs)

2Tmkt +2TRs

Second moment of inertia of smart layer

Is =
∫ WRs

0

∫ hR2

hR3

z2dydx =
WRsTm

(
T 4

mk2
t +2T 3

mTRskt +4T 2
mT 2

Rs +6TmT 3
Rs +3T 4

Rs
)

12(Tmkt +TRs)2

Based on these geometric properties, in the following section, we obtained the apparent elastic
properties of the latticed structure.

2.2 Calculation of apparent elastic properties

2.2.1 Longitudinal Young’s modulus E1 and Poisson’s ratio µ12

A longitudinal force is applied in the direction x; a stress σ1 is generated. Apparent structural
properties similar to the previous sub-section can be calculated. Axial and transverse displace-
ment under external stress σ1 is determined as follows:

δAL =
PL2 cosθK55

L2K44K55 −12(K46)2 (17)
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δT L =
P
(

L2 sinθK55K44 +6LcosθK55K46 −12sinθ(K46)
2
)

K55 (K44K55L2 −12(K46)2)
(18)

Axial and transverse displacement under the influence of an external magnetic field is deter-
mined as follows:

δAM =
FmL2K55 −12MmK46

L2K44K55 −12(K46)2 (19)

δT M = 6L
(

FmK46 −MmK44

L2K44K55 −12(K46)2

)
(20)

Total axial and transverse displacement due to mechanical force and magnetic force are,

δTA = δAL +δAM; δT T = δT L +δT M (21)

Total displacement in direction 1 and direction 2 for single slant beam are, respectively:

δ1 = δTA cosθ+δT T sinθ

δ2 =−δTA sinθ+δT T cosθ
(22)

Strain in direction 1 and direction 2 are respectively,

ε1 =
2δ1

2Lcosθ
; ε2 =− 2δ2

2L(β+ sinθ)
(23)

Apparent Young’s modulus and Poisson’s ratio of a unit cell in direction 1 are,

E1 =
σ1

ε1
; µ12 =−ε2

ε1
(24)

2.2.2 Transverse Young’s modulus E2 and Poisson’s ratio µ21

When an extensional force W is applied in the direction y at the ends of the unit cell, as shown
in Fig. 1a, a stress σ2 is generated. Based on this force, apparent structural properties are
calculated. The force is given as

W = 2σ2LWRs cosθ (25)

Axial and transverse displacement of slant beams and axial displacement of vertical beam under
external stress σ2 is determined as follows:

δAL =
WL2 sinθK55

L2K44K55 −12(K46)2 (26)

δT L =
W
(

L2 cosθK55K44 +6LsinθK55K46 −12cosθ(K46)
2
)

K55 (K44K55L2 −12(K46)2)
(27)

δAV =
2W
K44

(28)
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Axial and transverse displacement under an external magnetic field is determined as follows:

δAM =
FmL2K55 −12MmK46

L2K44K55 −12(K46)2 (29)

δT M = 6L
(

MmK44 −FmK46

L2K44K55 −12(K2
46)

)
(30)

Total axial and transverse displacement due to mechanical force and magnetic force,

δTA = δAL +δAM; δT T = δT L +δT M (31)

Total displacement in direction 1 and direction 2 for single slant beam are, respectively,

δ1 = δTA cosθ−δT T sinθ

δ2 = δTA sinθ+δT T cosθ+δAV
(32)

Strain in direction 2 and direction 1 are, respectively,

ε2 =
2δ2

2L(β+ sinθ)
; ε1 =− 2δ1

2Lcosθ
(33)

Apparent Young’s modulus and Poisson’s ratio of a unit cell in direction 2 are,

E2 =
σ2

ε2
; µ21 =−ε1

ε2
(34)

3 CROSS SECTIONAL VARIATION

A comparative study on the apparent elastic properties has been carried out by varying the cross-
sectional shapes of beams of the hybrid honeycomb structure. This modified structure will
enable better control over the structural property. Two shapes, i.e., I-section and T-section, are
considered along with the rectangular section.

3.1 Formulation for I-section

The cross-section of a beam of the lattice is considered to be an I-section. Longitudinal forces
are provided in a similar direction to those discussed in the previous section. The apparent
structural properties of such a structure are now calculated. Additional non-dimensional terms
considered here are:

αI =
Tm

TIs
; ζI =

TIs2

TIs1
; ψI =

WIs2

WIs1
; (35)

Substrate’s neutral axis is located at yIsn =
TIs
2

∫
s
ydA =−(hI1 − yIsn)(2WIs1TIs1 +WIs2TIs2)∫

m
ydA =

[(
TIs +

Tm

2

)
−hI1

]
(TmWm)

(36)
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Ys

∫
s
ydA+Ym

∫
m

ydA = 0 (37)

Solving Eqn. 37 using Eqn. 36,

hI1 =
TIs

[
1+ ψIζI

2 + ktαI(2+ζI)
(
1+ αI

2

)]
(2+ψIζI)+ ktαI(2+ζI)

(38)

Similarly,

hI2 = hI1 −
TIs

2+ζI
; hI3 = TIs

(
1− 1

2+ζI

)
−hI1;

hI4 = TIs −hI1; hI5 = TIs(1+αI)−hI1

(39)

Using the dimensions as Eqn. 39, the apparent Young’s modulus and Poisson’s ratio of the
structure is calculated using similar formulation as developed in Section 2.1 and Section 2.2.

3.2 Formulation for T-section

In further analysis, the beam’s cross-section is varied to T-section to determine the implication
on apparent structural properties of the lattice metamaterial. Similar to the last discussion, addi-
tional non-dimensional terms assumed here are:

αT =
Tm

TT s
; ζT =

TT s2

TT s1
; ψT =

WT s2

WT s1
; (40)

yT sn =
(WT s1TT s1)

(
TT s2 +

TT s1
2

)
+(WT s1TT s1)

(TT s2
2

)
(WT s1TT s1)+(WT s2TT s2)

=
TT s1

[(
ζT + 1

2

)
+
(

ψT
ζ2

T
2

)]
1+ψT ζT

(41)

∫
s
ydA =−(hT 1 − yT sn)(WT s1TT s1 +WT s2TT s2)∫

m
ydA =

(
TT s +

Tm

2
−hT 1

)
(WmTm)

(42)

Ys

∫
s
ydA+Ym

∫
m

ydA = 0 (43)

Solving Eqn. 42 using Eqn. 43,

hT 1 =
TT s

[
ktαT

(
1+ αT

2

)
+
(

1+2ζT+2ψT ζ2
T

2(1+ζT )2

)]
(

1+ψT ζT
1+ζT

+ ktαT

) (44)

Similarly, dimensions with respect to the neutral axis are,

hT 2 = TT s(1+αT )−hT 1; hT 3 = TT s

(
ζT

1+ζT

)
−hT 1; hT 4 = TT s −hT 1 (45)

The dimensions of Eqn. 45 are used with the formulation of Section 2.1 and Section 2.2 to
determine the apparent structural properties.
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4 RESULTS AND DISCUSSION

Existing literature by Gibson et.al. suggests that altering the cell angle in a honeycomb lattice
structure should result in variation in the magnitude of the structural properties, like Young’s
modulus, without any indication of the sign reversal. An investigation has been conducted, con-
sidering PLA as the substrate and Terfenol-D as the smart material. The properties of materials
and dimensions are listed in Table 1. Results based on the tabulated parameters and the for-
mulation of the hybrid structure of Singh et.al. were plotted as Fig. 3a for the conditions with
complete absence of magnetic field. However, a distinct sign reversal was observed for some
thickness ratio conditions. As the thickness ratio increases, it is observed that the irregularity
becomes more prominent.

Parameters Magnitude
Young’s modulus of PLA (Ys) 3.5GPa

Young’s modulus of Terfenol-D (Ym) 25GPa
Magnetostrictive constant (d) 3.7×10−9mA−1

Thickness of substrate (Ts) 2mm
Width of substrate (Ws) 100mm
Length of substrate (L) 10mm

Vertical substrate length (h) 25mm

Table 1: Material properties and dimensions of the hybrid lattice
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Figure 3: Young’s modulus plot for the condition in the absence of magnetic field (a) based on
literature (b) after modification

Further investigation indicates that there is an assumption regarding the location of the neutral
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axis, which is valid only when the thickness of the smart material is less compared to the sub-
strate materials. The neutral axis represents the axis of the beam with zero stress. However,
earlier literature [17] assumed that the neutral axis is present simply on the geometric centre of
the substrate beam; this assumption only works well with a low-thickness smart layer. However,
as the thickness ratio increases, the irregularities are seen in the result of the apparent structural
properties.

The current paper proposes that the neutral axis will not always remain at the geometrical mid-
line. Instead it will depend on the material properties of the structure as well as the thickness of
the individual layers. Section 2 includes this idea, and the apparent Young’s modulus result is
plotted in Fig. 3b. The result now justifies the findings of Gibson et.al. with no sign reversal for
the condition without applying a magnetic field. As the thickness ratio varies, a similar trend is
observed. Results according to literature and after modification are plotted in Fig. 3.
The apparent structural properties of the I-section and T-section are plotted, as determined in
Section 3.1 and Section 3.2. The properties strongly correlate with the cell angle, as seen in the
equations; thus, with the change in angle, there is a gradual change in the magnitude of the struc-
tural parameters. A 2mm magnetostrictive sheet layer is used as the smart layer with the lattice
structure. Thus, there will be a deformation in the structure in the presence of the magnetic field.

Variation in longitudinal Young’s modulus (E1), transverse Young’s modulus (E2), and Poisson’s
ratios (µ12 and µ21) under the influence of externally applied forces has been depicted in Fig. 4.
Here, the cross-sectional area of all three shapes is taken to be the same to get a fair comparison
and to understand the variation in the elastic properties when only the first and second moment
of the area varies. Dimension of the cross-sectional shapes has been taken in such a way that the
T-section shows the highest first and second moments of area, the I section shows the intermedi-
ate, and the rectangular section shows the least. The Young’s modulus of the structure depends
on the ratio of the applied mechanical force to the induced strain. The strain comes out to be a
function of the first and second moment of area, the variation in strain is affected significantly
with the change in the first and second moment of area. A plot indicating the variation of E1 and
E2 has been plotted in Fig. 4a and 4b, in both the figures, it can be observed that for all the cell
angles, the highest/ lowest value of E1 and E2 is for the shape which has the highest/ lowest first
and second moment of area, which is exhibited by T shape and rectangular shapes respectively.
However, there is no significant difference in Poisson’s ratio plots. Poisson’s ratio is the ratio
between strains in x and y directions, respectively. Here, the strain terms mutually cancel out the
effect of the moment of areas; thus, there is a subtle difference in the magnitude while varying
the cross-sectional shape.

Further, when the magnetic field is applied to the lattice structure along with externally ap-
plied force, the properties of the structure have been obtained and plotted in Fig. 5. The ratio of
magnetic field intensity to mechanical stress has been kept constant at a magnitude of 2000 to re-
duce the number of variables. Mechanical strain develops in the lattice due to the application of
force. Moreover, an additional magnetostriction develops due to the application of the magnetic
field. Depending upon the direction of the magnetic field and the magnetostrictive coefficient,

11
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Figure 4: Comparison of mechanical properties between rectangular cross-section, I-section,
and T-section with same total area of section at no magnetic field applied condition: (a) E1 (b)
E2 (c) ν12 (d) ν21

the overall strain either increases or decreases. Results have been plotted in Fig. 5, highlight-
ing the T-section with the highest magnitude for E1 and E2 and the rectangular section with the
lowest. It is noted that the magnitude of Young’s modulus follows a similar trend, justifying our
conclusion on the dependence of the first and second moment of inertia. Further, at some cell
angles the reversal of the elastic properties can be observed. This unique behaviour exists when
the magnetostrictive strain is higher than the mechanical strain, and it acts in opposite directions
to each other. The plots in Fig. 5a and 5b depict that the sign reversal occurs in all three cases.
However, the sign reversal takes place at different cell angles for the different cases. In Fig.
5c and 5d, it can be observed that for Poisson’s ratio, the sign reversal is only observed for the
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Figure 5: Comparison of mechanical properties between rectangular cross-section, I-section,
and T-section with same total area of section and magnetic field to stress ratio of 2000: (a) E1
(b) E2 (c) ν12 (d) ν21

rectangular and I section cross-section, but in the T section, no sign reversal is there. This is due
to the high first and second moment of area for the T section, which offers high resistance to
induced strains.

5 CONCLUSION

This paper proposes an improved procedure for obtaining apparent structural properties of hybrid
lattice metamaterial. Some assumptions considered in the previous work limited the potential of
such hybrid structures for their application in developing futuristic materials. The neutral axis
was considered to be positioned exactly at the geometric mid-line of a cross-section. Although
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this assumption works well for hybrid structures when a thin layer of smart material is used,
however, irregularities are observed at a higher thickness ratio of the smart layer. Thus, accurate
determination of the neutral axis is necessary to obtain reliable apparent structural properties.
Necessary calculation is carried out to obtain the modified position of the neutral axis.
In addition, a study on the effect of variation of cross-section shapes of beams in a lattice struc-
ture is done to study the fluctuation of the magnitude of the properties with cross-section and
cell angle. A strong dependence of the first and second moments of the area is found in Young’s
modulus of the hybrid structure. The rectangular section shows the lowest apparent Young’s
modulus, followed by the I-section and the T-section with the highest, which is also the order
of their first and second moment of area. However, Poisson’s ratio is independent of variation
in the cross-sectional shapes, as it is the ratio of strains, and the effect of the variation in the
cross-sectional shape gets cancelled out every time. Finally, a distinct sign reversal is observed
in E1, E2, ν12 and ν21 due to the combined effect of mechanical strain and magnetostriction. The
range of cell angle for this unique phenomenon shifts with the variations in the cross-section of
a beam of the lattice structure.
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