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Summary. In this work, we introduce a novel metric designed to quantify the error committed
by predictions from an autoregressive forecasting model, in the absence of knowledge of the
actual solution. This metric provides a means to determine the appropriate point at which to
cease predictions, ensuring that the forecast does not diverge significantly from the true dynamics
of the physical system under consideration. The proposed metric was tested on the challenging
task of forecasting the dynamics of a turbulent flow at a Reynolds number of Re = 2600, where it
demonstrated a high degree of similarity with the actual prediction errors, effectively capturing
the divergence between the predicted and true flow dynamics.

1 INTRODUCTION

Numerical simulation plays a critical role in both industrial and academic settings for the
prediction and resolution of complex fluid flow phenomena in fluid mechanics. High-fidelity nu-
merical simulations are often necessary for studying intricate fluid dynamics. This can be done by
a direct numerical simulation (DNS), which is computationally expensive and time-consuming.
This creates a compelling need for techniques that can effectively reduce computational costs
while maintaining, up to some point, the accuracy and reliability offer by a DNS.

In this meaning, reduced order models (ROMs) have been proposed as a viable alternative to
DNS, offering a way to decrease computational costs while retaining sufficient accuracy. ROMs
are generally categorized into two types: intrusive and non-intrusive ROMs.

Intrusive ROMs involve modifying the governing equations of the physical system under study.
A common example of this approach is the Galerkin projection method, where the governing
equations are projected onto a reduced basis, thus simplifying the computational effort required
to solve them [1].

In contrast, non-intrusive ROMs, also known as surrogate models, do not require alterations
to the governing equations. Instead, they rely solely on data to predict the system dynamics.
Within this framework, machine learning (ML) models are frequently employed due to their
capacity to learn complex patterns and relationships directly from the data.

Galerkin methods have been widely utilized to simulate flow dynamics by projecting the
governing equations onto an orthonormal basis formed by proper orthogonal decomposition
(POD) modes. In this approach, the primary objective shifts to simulating the mode amplitudes,
thereby reducing the complexity of the original problem. While this technique has proven
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effective in various applications, it presents some challenges. One significant issue with Galerkin
methods is that they can produce unstable iteration schemes [2]. Also, in some problems the
dynamics cannot be adequately represented by a few dominant POD modes. This necessitates
the inclusion of a larger number of modes to accurately capture the essential structures embedded
within the underlying dynamics [3]. However, increasing the number of modes directly raises
the computational cost, potentially making the ROM inefficient.

In this context, data-driven forecasting models have emerged as a promising alternative for
predicting mode amplitudes without the need to project the governing equations. This approach
combines data-driven forecasting models with POD, offering a hybrid methodology that has been
extensively explored for predicting the evolution of dynamical systems [4, 5, 6, 7, 8, 9, 10].

Deep learning models are often chosen for this task due to their ability to handle nonlin-
earities, their relatively low computational cost during the training phase, and their proven
effectiveness in time-series forecasting. These models can capture complex temporal dependen-
cies and interactions within the data, making them particularly well-suited for predicting the
evolution of fluid dynamics and other complex physical systems. However, a significant chal-
lenge with this hybrid methodology lies in determining the appropriate point to stop predictions
to prevent them from diverging from the actual dynamics of the system. In a previous work,
Kičić et al. [11] introduced a metric specifically designed to measure this divergence within a
forecasting framework that relied exclusively on deep learning models, without incorporating
POD. Similar works have been carried out for Galerkin methods [12, 13].

Building on this concept, we propose a similar metric tailored to take advantage of the
combined use of POD and deep learning forecasting models. This metric is designed to monitor
the divergence of the predictions from the actual system dynamics effectively, thereby providing
a criterion for halting the predictions when necessary.

This paper is organized as follows. Section 2 describes the hybrid ROM used in this paper,
where section 2.1 describes the singular value decomposition method that is used to compute
POD modes, and section 2.2 describes the forecasting model. Then, section 3 presents the
proposed metric to measure the predictions divergence from the actual dynamics. Section 4
shows the results obtained when the whole framework, which combines the hybrid ROM and
the metric, is tasked to predict the dynamics of a turbulent flow. Finally section 5 gives the
conclusions obtained from this work.

2 HYBRID ROM

A physical system is usually represented by a system of nonlinear partial differential equations
(PDEs), which in some special cases an analytical solution is easy to find, but in most situations
is required a numerical approach to this solution.

Let’s assume Px ⊂ R3 (or R2 for two-dimensional cases) and Pt ⊂ R are compact sets
representing the spatial and temporal dimensions, where to solve the system of PDEs, so P =
(Px,Pt). Consider a Hilbert space W̃ = W̃ (P) defined on over the domain P, which represents

the space that contains all the possible solutions to the system of PDEs on the domain P, i.e., W̃
is composed by functions w̃ defined as w̃ : Px × Pt → R. Furthermore, the system of nonlinear
PDEs can be denoted as a mapping Φ : W̃ ×P → R, where the problem of interest reads: given
p = (x, t) ∈ P = (Px,Pt), find a w̃(p) ∈ W̃ (P) such that,
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Φ(w̃(p), p) = 0. (1)

In practice, it is of interest to find a function w̃ ∈ W̃ that makes (1) as close as possible to
zero, and not exactly zero. Furthermore, to approximate the solution a discretization, in either
time and space, of the governing equations (1) is required.

This increase the degrees-of-freedom to the order of thousand or millions, scaling the com-
putational cost to the point where the resolution of the equations requires specialize hardware
and/or a long time of computation. Being in some scenarios intractable to solve all spatio-
temporal scales within the dynamics. In this meaning reduced order models (ROMs) allow to
approximate the solution only for the scales of interest.

This paper makes use of a hybrid ROM, already proposed in the literature [4, 5, 6, 7, 8, 9, 10],
that combines proper orthogonal decomposition (POD) and deep learning (DL) forecasting
models. The methodology followed by this hybrid ROM is explained in the subsequent section.

2.1 Proper orthogonal decomposition

Proper orthogonal decomposition is the first method used by the hybrid ROM, which allows
to project the solution of the governing equations onto an orthonormal basis, as follows,

w̃(x, t) =

K∑
i=1

Ai(t)Ui(x). (2)

The set {U1, . . . ,UK} represents the orthonormal basis or POD modes, while Ai are the
mode amplitudes, which individually represents the energy contribution of the POD mode Ui

to the overall dynamics [14]. That is, these amplitudes allows to classify the POD modes based
on the information they carry about the dynamics.

This technique has been extensively used to study the structural composition of flow dynam-
ics, in order to find the coherent structures that rely within it [15]. The first one to apply POD
to a turbulent flow was Lumley [16] in 1967.

In this context, it is necessary to compute the POD modes U = [U1, . . . ,UN ] and the
mode amplitudes A(t) = At = [A1(t), . . . , AN (t)]⊤, where the latter will be forcasted by the
deep learning model. In this work, this is done using singular value decomposition (SVD), also
known as the method of snapshots, developed by Sirovich [17] in 1987.

To apply SVD it is required to have a datasetD composed by a series of snapshots representing
the flow dynamics, e.g., the velocity flow field, pressure field, etc. The resolution of these
snapshots are directly related to the spatial grid used to discretize the spatial domain.

Let’s assume the spatial domain is discretized in N = #Px points xj ∈ R3 (or R2) and
T1 represents the number of snapshots available, where T1 is less than the temporal horizon
T = #Pt where we want solve the problem (1). Then, the dataset D is a snapshot tensor
defined as follows,

D = [w̃1, . . . , w̃T1 ], (3)

dim(D) = [C ×Nx ×Ny ×Nz × T1]. (4)
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Where w̃i = w̃(·, i), dim stands for dimension of D, C represents the number of components,
e.g., the velocity components (streamwise, wall-normal and spanwise), different Reynolds num-
bers, etc. The variables Nx, Ny and Nz represent the number of points in the x-, y- and z-axis
discretization, respectively.

Note, this dataset is formed by solutions of the system of PDEs given by (1), where typically
T1 ≪ T . Consequently, to produce the required snapshots for the application of SVD, it is nec-
essary to solve the system (1) over a time horizon T1 that is as small as possible, ideally ensuring
that T1 ≪ T . Once D is obtained, SVD can be performed to yield a matrix decomposition as
follows,

D = UΣV ∗. (5)

Where U is a unitary matrix whose columns represent the POD modes in (2), Σ is a diagonal
matrix containing the singular values, and V is a unitary matrix whose columns represents the
POD coefficients. The matrix V ∗ is the conjugate transpose of V . Because Σ is diagonal, it is
possible to express (5) as a sum of rank one matrices,

D =
K∑
i=1

σiuiv
∗
i . (6)

Where σi corresponds to the i-th singular value, ui represents the i-th column in U , i.e., the
i-th POD mode, and vi corresponds to the i-th column of V , i.e., the i-th POD coefficient.

The singular values are hierarchically sorted based on their energy contribution, i.e., σi ≥ σj
for i > j. This means that the i-th POD mode carries information about larger-scale structures
inside the dynamics than the j-th POD mode. This facilitates the truncation of POD modes in
order to keep only the dynamics of interest and not all the spatio-temporal scales.

Note that, from (6) it is clear that the mode amplitudes of (2), for the dataset D, can be
expressed as a product of the singular values and the POD coefficients,

Ai(t) = σiv
∗
i (t). (7)

Once the POD modes has been computed using SVD, the temporal evolution of the corre-
sponding amplitudes, A(t), can be predicted through forecasting models. Note from 2 that, by
predicting future states of these amplitudes, the method is predicting the temporal evolution of
the POD modes, which represent the structures of interest within the dynamics. The following
section gives a description of the forecasting model used in this work.

2.2 Deep learning forecasting model

Since SVD provides historical data on the mode amplitudes, as expressed in equation (7), it is
possible to forecast their future evolution by leveraging past information. In contrast to Galerkin
methods, where a projection of the governing equations onto the POD modes is required.

As demonstrated in Section 4, this methodology can be effectively applied to forecast datasets
derived from experimental data, where the governing equations may be challenging to obtain.

This work employs a deep learning (DL) model to forecast the mode amplitudes. Its ar-
chitecture must be capable of identifying the temporal correlations within a past sequence
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{At−m+1, . . . , At} and extrapolating this information to predict the future state of the am-
plitudes, {At+1}.

In this aim, a Long Short-TermMemory (LSTM) network [18] is employed. This deep learning
architecture is characterized by its use of three gates: the input gate, the forget gate, and the
output gate. These gates regulate the flow of information, of the input sequences, through the
network by selectively adding new information (input gate), removing irrelevant information
(forget gate), or allowing information to pass through to the next cell (output gate).

In this work, the input gate is represented by i, the forget gate by f and the output gate by
o. As well, the cell input is represented by ci, the cell output is given by co and the cell state is
denoted by c. The procedure to compute the gates and states are as follows,

fj = σ̂(Wf [hj−1, xj ] + bf ) (8)

ij = σ̂(Wi[hj−1, xj ] + bi) (9)

c̃t = tanh(Wc[hj−1, xj ] + bc) (10)

cj = fj · cj−1 + ij · c̃j (11)

oj = σ̂(Wo[hj−1, xj ] + bo) (12)

hj = oj · tanh(cj) (13)

Where W and b are the weights and biases for each gate, respectively, and c̃ is the updated
cell state. The activation function is represented by σ̂, which is typically a Sigmoid.

To enhance the model’s flexibility, after applying the LSTM and obtaining the final state, rep-
resenting the time-ahead prediction, two multi-layer perceptron (MLP) layers are subsequently
applied. This process yields the final forecast of the mode amplitudes, {At+1}.

The training of this model is done using the T1 available amplitudes {At}T1
t=1, which were

obtain by applying SVD to the dataset D as in (5). After training, predictions of the future
amplitudes {At}Tt=T1+1 are performed following an iterative procedure where predictions are
taken as new inputs for the model, yielding to an autoregressive model. Note, the solutions
w̃(x, t) are then constructed using (5).

The question then arises regarding the optimal duration for predicting these amplitudes
before predictions begin to diverge from the actual dynamics. To address this, we propose a
novel metric in the following section to quantify the divergence in the predictions. This metric
represents the key innovation of our work.

3 METRIC TO MEASURE DIVERGENCE OF PREDICTIONS

As stated above, the problem of interest is to approximate the solution of the system of
equations (1) in a time horizon t ∈ [0, T ]. In this work, we have chosen a hybrid ROM that
forecasts the mode amplitudes At and recover the solution using the POD modes, in accordance
with equation (2).

To train the forecasting model, a subset of solutions belonging to the horizon t ∈ [0, T1],
where T1 ≪ T , is utilized. After the training phase, the mode amplitudes At are then predicted
for the extended time range t ∈ [T1 + 1, T ].

Given the autoregressive nature of the forecasting model, each prediction inherently accumu-
lates errors propagated from preceding predictions. Therefore, it is crucial to establish a means
to quantify these incremental prediction errors.
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In this study, we propose a metric that measures the divergence between predictions from
multiple models, each trained on datasets with different truncation levels in the number of
modes.

Singular value decomposition allows to decompose the dataset D on POD modes ui, singular
values σi and POD coefficients v∗i as shown in (5). Since, singular values are hierarchically
sorted based on their energy contribution, it gives a way to truncate the number of modes. In
this aiming, four training datasets are defined using different truncation levels in the number of
modes,

Ãk1 = [A1, . . . , AK1 ] ∈ Rk1×T1 , (14)

Ãk2 = [A1, . . . , AK2 ] ∈ Rk2×T1 , (15)

Ãk3 = [A1, . . . , AK3 ] ∈ Rk3×T1 , (16)

Ãk4 = [A1, . . . , AK4 ] ∈ Rk4×T1 . (17)

Here k1, k2, k3, k4 denote the number of modes retained, with k1 > k2 > k3 > k4, where k1
corresponds to the number of modes required to fully capture all scales of interest. Correspond-
ingly, four forecasting models F1, F2, F3 and F4 are trained using these datasets.

The rationale behind this strategy is that a lower number of modes simplifies the dynamics
by capturing larger spatio-temporal scales. Consequently, training model F1, which utilizes
the largest number of modes, is expected to be more challenging and potentially less stable.
However, since k1 represents the optimal number of modes required to preserve the dynamics
of interest, it is crucial to compare the predictions from model F1 with those from the other
models, which are easier to train due to their reduced number of modes.

Although their predictions will vary because of the differing number of modes retained, the
overall dynamics should remain consistent. If the predictions begin to diverge, this indicates that
the models are forecasting different dynamics, serving as a reliable indicator that the model’s
predictions can no longer be trusted.

Therefore, defining T2 = T − T1 and P1 ∈ Rk1×T2 , P2 ∈ Rk2×T2 , P3 ∈ Rk3×T2 and P4 ∈
Rk4×T2 as the sets containing the predicted mode amplitudes {At}Tt=T1+1 from models F1, F2,
F3 and F4, respectively. The procedure starts by computing the standard deviation of the first
k4 mode amplitudes for each t ∈ [T1 + 1, T ],

SD = std({P1,P2,P3,P4}) ∈ Rk4×T2 . (18)

Where std represents the standard deviation operator. Now compute the euclidean norm of
SD for the mode amplitudes, S̃D = ∥SD∥2 ∈ RT2×1. A smaller S̃D indicates that the mode
amplitudes from different predictions are closer to each other, implying that the predictions are
dynamically similar.

Finally normalize S̃D over the euclidean norm of the first k4 mode amplitudes of P1,

MT =
S̃D

∥P1∥2
∈ RT2×1. (19)

Therefore, the prediction should stop when this metric is greater than or equal to some
tolerance ϵ, i.e., MT ≥ ϵ, where ϵ is a tune-able parameter. As demonstrated in section 4,
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this metric, MT , provides a quantitative measure of the model’s divergence when it is used to
iteratively predict future states of the mode amplitudes.

Regarding the technical details, it is worth to mention that the code for this study was devel-
oped using the Python programming language. Singular value decomposition was implemented
utilizing the PyTorch library, which was also employed to develop the deep learning forecasting
model.

More details can be found in ModelFLOWs-app [19]. The code was run in a computer using
a CPU Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz with 16 cores and 64 Gb of RAM. Training
each model took around 18.023 seconds for 200 epochs, and the prediction of the subsequent
200 mode amplitudes was around 0.32 seconds.

4 RESULTS

To demonstrate the effectiveness of this method in quantifying the divergence of predictions
from the actual dynamics, we applied the hybrid ROM to a dataset characterizing the velocity
flow field of a turbulent flow at high Reynolds numbers [20].

This dataset is public and it comprises two-dimensional velocity fields acquired from an
experimental study of the three-dimensional wake flow past a circular cylinder with a diameter
of D = 5 mm. The experiments were conducted in the L10 low-speed wind tunnel at the von
Karman Institute, utilizing time-resolved particle image velocimetry (TR-PIV) techniques. The
complete dataset spans approximately 4.5 seconds (13200 snapshots) of flow evolution, during
which the free-stream velocity transitions between two steady-state conditions. The transitional
phase, which captures the change in flow dynamics, lasts for roughly 1 seconds.

In this work, the training and testing set are extracted from the second steady-state condition,
characterized by a Reynolds number (calculated with the cylinder diameter) of Re = 2600. The
first T1 = 200 snapshots were designated for training, and the subsequent T2 = 200 for testing.
In this case the dataset D has the following dimension,

dim(D) = [C ×Nx ×Ny ×Nz × T1] = [2× 111× 301× 1× 200]. (20)

Note that Nz = 1 because the snapshots are two-dimensional, and C = 2, reflecting the
presence of both streamwise and wall-normal velocity components in the dataset. Singular value
decomposition (SVD) is then applied to the dataset D to extract the POD modes and their
corresponding mode amplitudes. The cumulative sum of the singular values, normalize over the
maximum value, shows the percentage of energy, E(k), contained for different truncation in the
number of modes. This is shown in Fig. 1 for the dataset D used in this work.
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Figure 1: Percentage of energy E(k) contained at the first k POD modes, for different values of
k.

In analyzing complex flows, particularly those within a turbulent regime, it is common prac-
tice to truncate the number of modes such that they retain approximately 30% - 40% [21] of the
overall energy. Therefore, in this case we selected k1 = 30 (E(k1) ∼ 40%), which represents the
truncation with the largest number of modes. This choice was made to ensure that all significant
flow scales are adequately captured. The subsequent truncations were chosen so they gradually
decresase to E(k4) ∼ 30%, as follows, k2 = 25, k3 = 22, k4 = 17.

From these truncations, we construct the four distinct training sets: Ãk1 , Ãk2 , Ãk3 and

Ãk4 . Correspondingly, the four forecasting models trained. These models are then employed to
iteratively predict T2 time-ahead mode amplitudes. Subsequently, the MT metric is computed
following the formulation provided in equation (19).

To demonstrate the effectiveness of this metric as an indicator of the error committed by
the model, Figure 2 presents a comparison between the divergence measure from MT and
the relative root mean squared error (RRMSE). The RRMSE is calculated by comparing the
predictions from F1, which is the model with the largest number of modes, with the actual
solution w(x, t) obtained from the dataset.

To show how this metric is a good indicative of the error committed by the model. Fig. 2
compares the divergence measure from MT and the relative root mean squared error (RRMSE)
between predictions from F1, predictions with the largest number of modes, and the actual
solution w(x, t) obtained from the dataset.

The results demonstrate that the divergence measure provided by MT is closely aligned with
the actual prediction error, as indicated by the RRMSE. Notably, the increase in error observed
around t = 330 in the RRMSE, as shown in Fig. 2 (b), is also reflected in the MT , as depicted
in Fig. 2 (a). Furthermore, the peaks observed around t = 225 and t = 300 in the RRMSE are
similarly captured by the MT . These observations underscore the reliability of the proposed
metric for assessing model accuracy.
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(a) Model divergence. (b) Relative root mean squared error.

Figure 2: Comparison of the metric proposed to measure model divergence, MT (19), (a) and
the actual prediction error measured with relative root mean squared error (b).

We determined that a tolerance value of ϵ = 0.5 is effective for deciding when to terminate
predictions. This threshold is based on the observation that when MT (t) ≥ ϵ at some time t, the
predicted dynamics begin to diverge from the actual system dynamics. In this case, this occurs
at t = 334, as demonstrated in Fig. 4 bottom row. This figure illustrates the point at which
the discrepancy between the forecasted and true dynamics becomes substantial, indicating that
predictions beyond this tolerance level are less reliable.

Figure 3: Snapshot comparison for the streamwise velocity at different time instants, from top
to bottom, t = 250, t = 300 and t = 334. From left to right, snapshots coming from ground
truth dataset, and predictions from models F1, F2, F3 and F4, respectively.
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Figure 4: Same as Fig. 3 for the wall-normal velocity.

Figs. 3 and 4 show a comparison of snapshots between the ground truth and the predictions
generated by all evaluated models at selected representative time instants.

5 CONCLUSIONS

The proposed work introduces a novel metric designed to measure the divergence of predic-
tions, generated by autoregressive forecasting models, from the actual dynamics of a physical
system. This metric facilitates the determination of an appropriate point at which to cease pre-
dictions, particularly in scenarios where the actual solution remains unknown. The methodology
is rooted in a hybrid reduced order model (ROM) that integrates singular value decomposition
with deep learning forecasting models. Analogous to Galerkin methods, this approach targets
the prediction of amplitude modes.

The effectiveness of the proposed metric has been validated in a complex case study involving
the prediction of flow dynamics in an experimental turbulent flow at a high Reynolds number.
In this context, the hybrid ROM not only successfully yielded accurate predictions of the flow
dynamics but also demonstrated that the divergence of these predictions, as quantified by the
proposed metric, mirrored the actual prediction error trends. These findings suggest that the
proposed metric has the potential to serve as a foundation for the development of adaptive
(online-offline) models, which could seamlessly integrate classical numerical solvers with data-
driven forecasting models.

6 ACKNOWLEDGEMENTS

The authors acknowledge the grants PID2020-114173RB-I00, TED2021- 129774B-C21 and
PLEC2022-009235 funded by MCIN/AEI/ 10.13039/501100011033 and by the European Union
“NextGenerationEU”/PRTR, and S.L.C. acknowledges the support of Comunidad de Madrid
through the call Research Grants for Young Investigators from Universidad Politécnica de
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predictive hybrid reduced order model based on proper orthogonal decomposition combined
with deep learning architectures, Expert Systems with Applications 187 (2022) 115910.
doi:https://doi.org/10.1016/j.eswa.2021.115910.
URL https://www.sciencedirect.com/science/article/pii/S0957417421012653

[9] L. Xu, G. Zhou, F. Zhao, Z. Guo, K. Zhang, A data-driven reduced order modeling for
fluid flow analysis based on series forecasting intelligent algorithm, IEEE Access 10 (2022)
60163–60176. doi:10.1109/ACCESS.2022.3177223.

[10] A. Corrochano, R. S. M. Freitas, A. Parente, S. L. Clainche, A predictive physics-aware
hybrid reduced order model for reacting flows (2023). arXiv:2301.09860.

11

https://doi.org/10.1007/s001620050131
https://doi.org/10.1007/s001620050131
https://doi.org/10.1007/s001620050131
https://www.sciencedirect.com/science/article/pii/S0021999116305319
https://www.sciencedirect.com/science/article/pii/S0021999116305319
https://doi.org/https://doi.org/10.1016/j.jcp.2016.10.033
https://doi.org/https://doi.org/10.1016/j.jcp.2016.10.033
https://www.sciencedirect.com/science/article/pii/S0021999116305319
https://doi.org/10.1137/17M1140571
https://doi.org/10.1137/17M1140571
http://arxiv.org/abs/https://doi.org/10.1137/17M1140571
https://doi.org/10.1137/17M1140571
https://doi.org/10.1137/17M1140571
https://arxiv.org/abs/1804.09269
https://arxiv.org/abs/1804.09269
http://arxiv.org/abs/1804.09269
https://arxiv.org/abs/1804.09269
https://doi.org/10.1063/1.5113494
https://doi.org/10.1063/1.5113494
http://arxiv.org/abs/https://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/1.5113494/19764542/085101_1_online.pdf
http://arxiv.org/abs/https://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/1.5113494/19764542/085101_1_online.pdf
https://doi.org/10.1063/1.5113494
https://doi.org/10.1063/1.5113494
https://www.sciencedirect.com/science/article/pii/S0021999119305364
https://www.sciencedirect.com/science/article/pii/S0021999119305364
https://doi.org/https://doi.org/10.1016/j.jcp.2019.07.050
https://www.sciencedirect.com/science/article/pii/S0021999119305364
https://www.sciencedirect.com/science/article/pii/S0045782520301742
https://www.sciencedirect.com/science/article/pii/S0045782520301742
https://doi.org/https://doi.org/10.1016/j.cma.2020.112990
https://www.sciencedirect.com/science/article/pii/S0045782520301742
https://www.sciencedirect.com/science/article/pii/S0957417421012653
https://www.sciencedirect.com/science/article/pii/S0957417421012653
https://www.sciencedirect.com/science/article/pii/S0957417421012653
https://doi.org/https://doi.org/10.1016/j.eswa.2021.115910
https://www.sciencedirect.com/science/article/pii/S0957417421012653
https://doi.org/10.1109/ACCESS.2022.3177223
http://arxiv.org/abs/2301.09860


Rodrigo Abad́ıa-Heredia, Manuel Lopez-Martin and Soledad Le Clainche
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