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ABSTRACT
Quantifying uncertainties in subsurface properties and stratigraphy can lead to better understanding of the ground conditions
and enhance the design and assessment of geotechnical structures. Several studies have utilized Cone Penetration Test (CPT)
data and employed Bayesian and Machine Learning methods to quantify the geological uncertainty, based on the Robert-
son’s soil classification charts and the Soil Behaviour Type Index (Ic). The incorporation of borehole data can reduce the
stratigraphic uncertainty. Significant challenges can arise, however, mainly due to the intrinsic differences between field
and laboratory-based soil classification systems, which can potentially lead to inconsistent soil classification. To this end,
this study proposes a multivariate Gaussian Process model that utilizes site-specific data and: i) jointly models multiple
categorical (USCS labels) and continuous (Ic) variables, ii) learns a (shared) spatial correlation structure and the between-
outputs covariance, and iii) produces two types of dependent classification outputs. The results indicate that the integration of
geotechnical and geological information into a unified model can provide more reliable predictions of the subsurface stratifi-
cation, by allowing simultaneous interpretation of USCS and Ic profiles. Importantly, the model demonstrates the potential to
integrate multiple variables of different types, aiming to contribute to the development of a methodology for joint modeling
of geotechnical, geological and geophysical data.
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1. Introduction

Reliable prediction of subsurface stratigraphy is essen-
tial for informed decision-making in geotechnical engi-
neering. Cone Penetration Tests (CPTs) have been proved
valuable tools for characterizing soil behavior and stratig-
raphy, providing high resolution measurements of the soil
mechanical response along depth. Among the various soil
classification systems linking cone parameters to soil type,
arguably the most popular are the Robertson’s Soil Behav-
ior Type (SBT) charts. The soil boundary delineation is
based on the cone tip resistance (qc) and the sleeve friction
(fs) measurements, and can be well approximated by the
bounds of the empirically derived SBT Index (Ic) (Robert-
son 2009, 2016). Several studies employed continuous
CPT data and statistical or Machine Learning (ML) meth-
ods for geological modeling. Some of these methods in-
clude, spatial regression and Gaussian Process (GP) models
(Ching 2021; Ching and Yoshida 2023), Geotechnical lasso
(Shuku and Phoon 2021), Compressive Sampling (Hu and
Wang 2020), clustering and Gausian Mixture Models (e.g.,
Shakir 2023), Markov Random Fields (e.g., Wang 2019).

Apart from CPTs, borehole drillings are commonly per-
formed as part of site investigations, extracting soil samples
that undergo laboratory testing. The Unified Soil Clas-
sification System (USCS) serves as a primary classifica-
tion scheme, categorizing soils into distinct groups based
on their textural and plasticity properties. Some of the
statistical and ML approaches that have been investigated
for stratigraphic modeling from sparse borehole drillings
include Markov Random Fields (MRFs) (e.g., Li et al.
2016; Wang et al. 2017; Shuku and Phoon 2023), coupled
Markov chain model (CMC, Elfeki and Dekking 2001; Qi
et al. 2016, Zhang et al. 2022), convolutional neural net-
works (CNN, Shi and Wang 2021), XGBoost (Chen and
Guestrin 2016) and combinations thereof (Wei and Wang
2022).

By integrating CPT and borehole data one seeks to en-
hance the delineation of soil boundaries and achieve more
reliable predictions of stratigraphy, compared to relying
solely on singular classification systems. Recent studies
in this direction have primarily explored clustering ap-
proaches based on MRFs and CMC (Wang et al. 2019,
Xiao et al. 2021), and conditional Random field models
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(Farahbakhsh and Ching 2023).
In this study, we propose a multivariate Gaussian Pro-

cess Regression model for joint stratigraphy prediction
from CPT and borehole data. Our approach is solely based
on site-specific data and does not require the use of soil
databases. More importantly, the model has the capability
of incorporating multiple categorical USCS labels, which
are readily available from the site-specific reported bore-
hole logs.

Our modeling approach assumes that the observations
of each USCS class and of Ic result from correlated Gaus-
sian Processes, i.e., from a multivariate Gaussian Process.
These processes share the same spatial correlation struc-
ture, with hyperparameters (e.g., correlation lengths) esti-
mated based on all available data. In this way, we seek
not only to overcome identifiability issues of scales of fluc-
tuation, arising from the horizontal spatial sparsity of the
data, but also to reduce the noise and mitigate the pres-
ence of multiple thin soil layers commonly observed in Ic
profiles. Additionally, we estimate the cross-covariance
between categorical USCS labels and Ic, using all site-
specific data at our disposal. To reduce the computational
effort, we employ the Maximum Likelihood Estimation
(MLE) for the model hyperparameters, instead of MCMC
sampling. The incorporation of the categorical USCS vari-
ables to our model made possible through their approxi-
mate transformation to Gaussian distributed variables, fol-
lowing (Milios et al. 2018). In the following, the mathe-
matical details of the proposed methodology are presented,
which is subsequently applied to a real dataset from a New
Zealand site.

2. Multivariate Gaussian Process

Let f(s) = (f1(s), ..., fq(s))
T with s ∈ D ⊂ Rd be

a vector-valued process with outcome space Rq . If the fi-
nite dimensional joint distribution of f(s) is multivariate
Normal, then f is a multivariate Gaussian Process:

f(s) ∼ GP (m(s),C(s, s′)) (1)

where m(s) = E[f(s)]) is a q × 1 vector valued mean
function, C(s, s′) a q× q covariance matrix function, with
(k, l) element Ck,l(s, s

′) = Cov[fl(s), fk(s
′)], that re-

turns the covariance of two components of the process at
two distinct locations.

Two main assumptions are adopted in this study. First,
the mean function m(s) is a-priori, i.e., prior to perform-
ing the measurements, constant for each random process.
Second, the covariance function C(s, s′) is separable, such
that it can be specified as the product between a spatial cor-
relation function (kernel) ρθ(s, s

′) with hyperparameters

θ, and a non-spatial, positive definite cross-covariance ma-
trix Σ (e.g., Bonilla 2007),

C(s, s′) = Σ · ρθ(s, s′). (2)

The definition of the covariance function in Eq. (2) im-
plies that all GPs share the same spatial correlation struc-
ture. Although this assumption may be restrictive (or in-
valid) in some cases where different types of soil variables
are modelled, in this study where we aim to jointly model
the USCS labels and the SBT index, we expect that the
spatial correlation of the different soil patterns will be sim-
ilar, given that the physical processes involved are the same
(e.g. weathering process). Several models have been pro-
posed for the spatial correlation function. In this study, a
single exponential function was selected,

ρθ(s, s
′) = exp

−

√
∆sx

2 +∆sy
2

θh
+

|∆sz|
θz


(3)

which implies isotropy in the horizontal plane, and separa-
bility between the horizontal and vertical correlation func-
tions. Apart from the computational gains enabled by the
separable structure of C(s, s′), this assumption can po-
tentially lead to an improved estimation of the correlation
lengths.

In this study, we are particularly interested in the
case where not all components are observed at the
same locations, such as when boreholes and CPTs
are available at different locations. In the geostatis-
tics literature, this data structure is often called hetero-
topic, or asymmetric in Machine Learning (e.g., Alvarez
2012). Let S = {Sl}ql=1, indicate the collection of
all spatial locations in the training data, where Sl =
{sl,i}nl

i=1, denote the spatial locations of each compo-
nent process. We define the random vector f(S) =
((f1(s1,1), ..., f1(s1,n)), ..., (fq(sq,1), ..., f1(sq,n))) of di-
mensions nq × 1. f(S) is a Gaussian random vector with

f(S) ∼ N(m(S),C(S,S)) (4)

where m(S) the concatenated nq×1 vector of means, con-
taining distinct constant values at the respective locations
of each component, i.e., {ml(sl,i) = µl}nl

i=1, l = 1, ..., q,
and C(S,S) the nq×nq block partitioned covariance ma-
trix given by:

C =


(C(S1,S1))1,1 · · · (C(S1,Sq))1,q
(C(S2,S1))2,1 · · · (C(S2,Sq))2,q

... · · ·
...

(C(Sq,S1))q,1 · · · (C(Sq,Sq))q,q

 . (5)



For a set of observations y at locations S, the marginal
likelihood emerging from the Gaussian distribution as-
sumption can be written as (Alvarez 2012):

p(y|µ,θ,Σ) = N(y|m(S|µ),C(S,S|θ,Σ) +D) (6)

where µ = {µl}ql=1, D is a nq × nq diagonal matrix
with diagonal blocks, containing the noise variances of
the observations. The estimation of the hyperarameters is
achieved by maximizing ln(p(y|µ,θ,Σ)), e.g. by using a
stochastic gradient descent optimizer, such as the Adaptive
Moment estimation (Adam) (Kingma and Ba 2015). The
predictive distribution of f∗ at some new locations S∗ is
again Gaussian, and is given by:

p(f∗|S∗,S,y) = N(f∗|m∗|S ,C∗|S), (7)

with,

m∗|S = m∗ +CT
S,∗(CS,S +D)−1(y −mS)

C∗|S = C∗,∗ −CT
S,∗(CS,S +D)−1CS,∗

(8)

where mS = m(S), m∗ = m(S∗), CS,S = C(S,S),
C∗,∗ = C(S∗,S∗) and CS,∗ is a nq × q matrix func-
tion with entries (C(Si,S∗))p,p′ for i = 1, ..., n and
p, p′ = 1, ..., q.

3. Gaussian Processes for joint Regres-
sion and Classification

The model introduced in the preceding section is di-
rectly suitable as a Gaussian Process Regression model for
continuous soil variables. However, since the aim of this
study is to jointly model categorical (USCS) and contin-
uous (Ic) variables, additional steps are required. Disre-
garding for the moment the CPT data, the problem at hand
can be viewed as a multi-label classification problem. Each
spatial location within the training boreholes, is associated
with a specific USCS label, e.g. "ML" corresponding to
silt. In general, there are in total 15 soil groups according
to the USCS system (e.g. Das 2015). Consider the case
where 4 soil groups are observed within the locations of
the available boreholes. Assuming that there are 5 avail-
able boreholes with similar depth range from which we se-
lect a subset of 100 locations along depth, there are in total
5×100 = 500 locations yielding observations of USCS la-
bels. Each of these locations can be associated to a vector
with 4 components, with value "1" assigned to the observed
class c and "0" to the other 3 labels. The borehole data can
be collected into a 500× 4 matrix Y bh, with binary values
in the entries associated with the locations of "presence" or
"absence" of the 4 USCS labels.

Consider now that there are also 10 available CPTs at
the site at hand, and that we select again 100 locations
along depth from each CPT, yielding data of Ic. Hence,
there are 10 × 100 = 1000 CPT locations, each one con-
taining an Ic value, collected in a 1000 × 1 vector. Hence
there are in total 1500 locations yielding observations on
USCS labels and Ic. These can be viewed as observations
of a 5-component stochastic process f = (f1, ..., f4, fIc).
To approach this problem with the multivariate Gaussian
Process Regression model presented in the previous section
it is necessary to seek for a transformation of the categor-
ical USCS related variables to the Gaussian space, given
that Ic can be directly modeled by a Gaussian distribution.

Such a transformation is given in Milios et al. 2018,
where the authors propose a methodology for multi-label
classification by regressing on transformed labels. Each
borehole observation ybh can be viewed as a draw from
categorical distribution Cat(π). Considering C different
USCS labels observed in the training borehole data, the
class probabilities π = (π1, ..., πC) are treated as ran-
dom variables. The joint probability distribution of π =
(π1, ..., πC) can be modeled by a Dirichlet distribution
π ∼ Dir(α), where α = (α1, ..., αC) are the concen-
tration parameters. Given a binary observation vector ybh,
at a location s within a borehole, the components of α take
values:

αi =

{
1 + αϵ, ybh,i = 1

αϵ, ybh,i = 0
(9)

for i = 1, ..., C, where 0 < αϵ ≪ 1 is a small quantity that
ensures valid definition of the Dirichlet distribution. For a
vector ybh of borehole USCS observed labels, the categor-
ical likelihood is given by:

p(ybh|α) = Cat(π), π ∼ Dir(α). (10)

A sample πi from the Dirichlet distribution can be drawn
from samples of C independent Gamma distributed ran-
dom variables with shape parameters αi given in Eq. (9)
and rate λ = 1,

πi =
xi∑C
c=1 xc

, xi ∼ Gamma(αi, 1). (11)

The authors in (Milios et al. 2018) propose the approxima-
tion of the Gamma marginals with the lognormal distribu-
tion,

x̃i ∼ Lognormal(ỹi, σ̃
2
i ) (12)

where (ỹi, σ̃
2
i ) correspond to the parameters of the un-

derlying normal distribution. Through moment matching
E[xi] = E[x̃i] and Var[xi] = Var[x̃i], the parameters of
the underlying normal distribution are derived as:

ỹi = ln(αi)− σ̃2
i /2, σ̃2

i = ln(1/αi + 1). (13)



Consequently, ỹi can now represent the transformed to the
Gaussian space observation, and σ̃2

i the noise variance as-
sociated with the respective observation. Note that there
is an additional parameter that needs to be determined to
complete the transformation of the USCS data to the Gaus-
sian space, and this is the small quantity αϵ appearing in
Eq. (9). The authors in (Milios et al. 2018) discuss on
how to select this parameter, or estimate it as an additional
hyperparameter of the model. Here, we fix αϵ to a small
value. Ic is assumed to be lognormal distributed as well,
as it can only take positive values, such that YIc = ln(Ic)
follows the Normal distribution.

The important advantage of the approximate transfor-
mation to the likelihood of the USCS data is that it can be
now assumed that f = (f1, ..., fC , fIc) are jointly Gaus-
sian and can be modeled with the multivariate Gaussian
Process Regression model described in the previous sec-
tion. The estimates of the hyperparameters obtained by
maximizing the marginal likelihood given in Eq. (6) are
now informed by both borehole and CPT data. The es-
timate of the cross covariance matrix Σ can define the co-
variance between the USCS labels themselves and between
Ic.

Turning to the predictions at some new locations within
the site, the predictive distribution f∗ given in Eq. (7) pro-
duces in total C + 1 outputs, i.e., C predictions related to
the USCS classes, plus predictions of ln(Ic). It is possible
to derive analytically the predictive mean and variance of
Ic. The predictive mean of the class probabilities is given
by:

E[πi,∗|y] =
∫

exp(fi,∗)∑C
j exp(fj,∗)

p(fi,∗|y) df∗, (14)

where for convenience the dependence on S∗ and S has
been omitted. The integral in Eq. (14) can be approxi-
mated with samples from the posterior predictive distribu-
tion of each class. We first generate N Normal distributed
samples from p(f∗|S∗,S,y), and we approximate the pos-
terior probability of the classes through:

E[πi,∗|y] ≈
1

N

N∑
i=1

exp(fi,j,∗)∑C
j exp(fi,j,∗)

. (15)

4. Application to a New Zealand site
(Christchurch)

A site at Christchurch, New Zealand (Wang and Zhu
2023) is adopted to demonstrate the proposed approach.
The site plan including the borehole logs and CPT sound-
ings is illustrated in Fig. 1.

Figure 1. Christchurch site (extracted from Wang and Zhu 2023).

Figure 2. 3D illustration of the selected boreholes and CPTs;
black lines: CPT soundings; colored lines: borehole data.

The site investigation plan includes 26 CPT soundings
with original depth increment 0.01m and 9 boreholes. 5
out of 9 boreholes were used for training the model (BH_2,
BH_4, BH_6, BH_7, BH_8), while the remaining 4 bore-
holes (BH_1, BH_3, BH_5, BH_9) were reserved for vali-
dation. The maximum depth range of the training borehole
data is 21.45− 27.45m. Out of the 26 available CPTs, the
deepest 21 were used for training, with maximum depth
range of approximately 7 − 24m. Furthermore, the upper
1.86m were disregarded due to very unstable CPT mea-
surements. Fig. 2 provides a 3D illustration in space of
the selected boreholes and CPTs. It is important to note
that only 8 out of the 21 selected CPT soundings reach
depths similar to those of the borehole logs. The data pre-
processing steps can be summarized in the following:

• Transformation of the coordinates to the unit cube
[0, 1]3

• Derivation of Ic from qc, fs and pore pressure u2

measurements (see Robertson 2009, 2016)

• Selection of 250 equidistant points along depth of
the deepest borehole. Note that the same depth in-
crement was considered for the boreholes and CPTs,



which means that there are different numbers of col-
lected observations from each of the CPT soundings
and borehole logs. There are in total 2614 locations
yielding observations of Ic in the training data. The
Ic was assumed to follow the lognormal distribution,
such that the log-transformed YIc = ln(Ic) is nor-
mal distributed. Furthermore, the observations were
standardized, to ensure that the variables have simi-
lar scales.

• Among the selected borehole locations, there are
7 labels observed: GW-”well-graded gravel” (139),
SP-”poorly-graded sand” (145), SW-”well graded
sand” (147), SM-”silty sand” (231), ML-”silt of low
plasticity” (350), OL-”organics of low plasticity”
(25) and Pt-”peat” (34), with the numbers in the
parentheses corresponding to the number of loca-
tions where the respective soil class was observed.

• One-hot encoding: each location within the bore-
holes is associated with a vector of 7 components,
with values of "1" denoting presence and "0" denot-
ing absence of each USCS class. There are in total
1071 × 7 binary observations from all boreholes. A
small value was assigned to the quantity αϵ(=0.002)
and from Eq. (9), (13) the categorical data were
transformed to noisy Gaussian observations ỹi, with
each observation associated with noise variance σ̃2

i

The Gaussian transformed data were collected in a 10111×
1 column vector y. The single exponential model given in

Eq. (3) was selected to model the spatial correlation. The
10111 × 10111 diagonal matrix D was constructed from
the variances σ̃2

i of the borehole observations, and a noise
variance for each yIc observation. For the latter, a fixed
small value (σ2

yIc
= 10−5) was assumed for each obser-

vation. All computations were performed on a commercial
laptop CPU (Intel Core i5; 16GB; 2.40GHz).

Estimates of the hyperparameters {µ,θ,Σ} were ob-
tained by minimizing the negative marginal log-likelihood
of Eq. (6). The estimates of the vertical and horizontal
correlation lengths were θ = [1.63m, 35.45m]. The run-
ning time for the optimization, with 150 steps of the Adam
optimizer was ≈ 40min.

Predictions at the reserved boreholes were performed
using Eq. (7), (8) and (15). To assess the performance of
the model, prediction results for borehole 9 are illustrated
in Fig. 3. Starting from the left, the first figure displays
the reported classification from borehole log 9. The sec-
ond shows the most probable classification profile derived
from the multivariate GP model and the third exhibits the
corresponding predicted probabilities. Different colors and
styles are assigned to each USCS soil class to allow eas-
ier interpretation. The fourth figure illustrates prediction
results for the Soil Behavior Type Index Ic including the
95% confidence intervals, while the last one presents the
(standardized) Information Entropy, serving as a measure
for uncertainty in the USCS classification prediction. The
running time for predictions at one borehole was ≈ 30s (for
2000 locations, 1000 samples for USCS probabilities).
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Figure 3. Borehole 9: predictions.



Examining from the top and descending to 9 meters,
the reported borehole data highlight ML as the dominant
USCS soil class. This dominance is captured in the pre-
dicted classification results, evident in the second figure,
with a higher probability of ML in the probability profiles
of the third figure. The predicted mean of Ic at these depths
falls mainly within the SBT categories of clay and silt mix-
tures, although the prediction uncertainty is considerably
high, with the 95% CIs covering a large portion of the re-
gions defined by the SBT categories bounds. The borehole
data reveal thin crusts, primarily around depths of 3.5-4.2
meters, comprising Pt and OL soils, which are not visible
in the second graph. However, inspecting the probability
profiles reveals increased corresponding class probabilities
at these depths, accompanied by higher entropy values, in-
dicating higher uncertainty in the USCS predictions. No-
tably, the mean of the Ic predictions successfully detects
the thin layers of organic soils and peat, although the 95%
CI is broader at these depths.

The USCS predictions successfully capture the transi-
tion to GW at depth equal to 9 meters, with high probability
associated to GW and lower entropy. This transition is also
depicted in the Ic prediction graph. According to the bore-
hole reported data the GW layer thickness is around 1m,
and at 10 meters the profile changes to SW soil which ex-
tends up to 13m. The predicted GW layer extends to around
11m with a smoother transition to SW soil as indicated by
the probability profiles.

The dominant USCS class down to 20m depth is SM,
which is also suggested by the USCS prediction results,
with higher probability of this class in most of these depths.
The borehole reported data indicate a thin layer of SP soil
at depths around 15m. This is not evident in the second
figure. Looking at the probability plots there is an indica-
tion of a rise in the probability of the SW class, as well
as a rise in the entropy, although the highest probability
is associated again with the SM class. The prediction re-
sults indicate that there are some thin SP layers at lower
depths, not evident at the observed borehole data. One can
argue that the soils from 10 to 20m are mixed. Although
the predominant soil is sand, the fines content affect the
classification. It is worth mentioning that according to the
USCS some soils may be assigned double classification,
such as SP-SM, which may be the case here. This behavior
may be also explained by the Ic predictions plot. The pre-
dicted mean falls on the border between SBT classes 6 and
7, although the the upper confidence bound extends to SBT
class 5.

Beyond 20 meters depth, and down to 23 meters, the
reported borehole data signify a transition to ML soil, a
shift effectively identified by the USCS prediction. The

predicted mean of Ic primarily aligns with SBT categories
5 and 6, although the confidence interval is wider, suggest-
ing potential inclusion of mixed silty and sandy soils. The
USCS prediction reveals crusts of SW soil, absent in the
reported borehole data. Below 23 meters, the soil trans-
forms to GW both in the observed and predicted profiles,
with the borehole reaching depths of approximately 24.4
meters. Below these depths, the predictions exhibit lower
probabilities even for the dominant class, accompanied by
high entropy and a wide confidence interval in the Ic pre-
dictions.

Interpretation of the predicted profiles was performed
to all reserved boreholes. Transitions to ML and GW lay-
ers were successfully detected in all testing boreholes, as
well as embedded soils within the predominant sand layer,
consistently observed across all reserved boreholes from
approximately 10 meters to 20 meters. A challenge was
encountered in detecting thin layers of SP when the dom-
inant layer was SM, and in few cases thin layers of SW
when the main soil layer was SM. It is reminded that this
difficulty may be attributed to dual classification soils (SP-
SM, SW-SM). Overall, the proposed methodology demon-
strated accurate prediction of the USCS classification even
for boreholes located at a considerable distance from other
boreholes and CPTs.

5. Concluding remarks

A methodology for joint stratigraphy prediction from
sparse borehole and CPT data was proposed in this study.
The key aspect of this methodology lies in its capability
to incorporate both numerical CPT and categorical USCS
data. This integration is achieved by viewing the USCS la-
bels as Dirichlet-distributed random variables, and approx-
imately transforming these variables to the Gaussian space.
This allows to jointly model the transformed Gaussian vari-
ables and CPT parameters, such as Ic, with a multivariate
Gaussian Process Regression model.

The main assumption of the GP model is the separa-
ble structure between spatial and cross-correlation, which
implies that the USCS related variables and the modeled
CPT parameter, share the same spatial correlation struc-
ture. The hyperparameters of the model were estimated by
maximization of the marginal likelihood. Predictions of Ic
and USCS classification profiles were performed at the lo-
cations of the verification boreholes. The results suggested
that the USCS predicted classification was in good agree-
ment with the borehole reported data, with major transi-
tions and embedded layers successfully identified.

Despite the emphasis on Ic in this study, the proposed
methodology enables the joint modeling of multiple CPT



parameters and categorical geological variables. Conse-
quently, it becomes feasible to obtain predictions for both
mechanical parameters and reliable stratification within a
unified regression-classification framework, at a reasonable
computational cost, with an approach that relies solely on
site-specific data. Importantly, the proposed approach can
be viewed as a baseline model that can be further extended
into a fully Bayesian Gaussian Process model. This exten-
sion would enable quantifying the uncertainty in the hyper-
parameters.
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