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Summary. Understanding the thermo-mechanical behavior of thermoplastic vulcanizates
(TPVs) is crucial to improving their design and development workflow for industrial appli-
cations. TPVs are aimed to replace traditional thermoset rubbers due to their processing ease,
recyclability, and low density, but they face challenges in modeling strategies that accurately and
efficiently capture their complex nonlinear mechanical behavior. Machine learning is increas-
ingly integrated into various scientific and engineering fields, showing its greatest utility where
conventional methods are inefficient. It is expected that machine learning, particularly neural
networks, can circumvent the limitations of phenomenological and micromechanical constitutive
modeling of TPVs. In this work, the capacity of physics-constrained neural network-based consti-
tutive models in the literature to fit hyperelastic data is assessed, laying the groundwork to model
more complex behaviors. To train the models, a cyclic loading-unloading test campaign was con-
ducted for TPV-based test specimens, obtaining the necessary uniaxial tension, pure shear, and
equibiaxial tension strain-stress data. Then, the models were benchmarked with the future aim
of integrating them into a FEM package.

1 INTRODUCTION

Elastomers play a pivotal role in various industrial applications due to their exceptional elas-
ticity, resilience, and dynamical behavior [1]. They are widely used across multiple sectors,
including automotive, aerospace, construction, and consumer goods. Among these, the automo-
tive industry stands out as the primary consumer of elastomers, relying on them to manufacture
tires, seals, gaskets, hoses, and various other components essential for vehicle performance and
safety. Additionally, elastomers are integral to anti-vibration components, which are critical
for minimizing noise, vibration, and harshness (NVH) in vehicles. These properties enhance
passenger comfort and protect sensitive vehicle parts from dynamic stresses.
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However, traditional thermoset rubbers are not recyclable, posing significant environmental
challenges. This limitation drives the need for alternative materials that maintain the desirable
properties of elastomers while offering better circularity. Thermoplastic elastomers (TPEs) are a
special kind of elastomeric materials that merge the elastic characteristics of rubber with other
properties of thermoplastics [2]. TPEs offer significant benefits, such as recyclability, ease of
processing, and low density, making them increasingly popular in various applications. Among
TPEs, thermoplastic vulcanizates (TPVs) are of particular interest. TPVs are composed of a
high amount of crosslinked rubber particles dispersed in a thermoplastic matrix [3]. They are
prepared by a complex reactive blending process characterized by the selective crosslinking of
the rubber phase during the melt-blending with the thermoplastic under high shear conditions.
This process is known as dynamic vulcanization.

The heterogeneous microstructure of TPVs generates a highly nonlinear stress-strain behav-
ior, making the assessment of constitutive models that reproduce all the characteristics difficult
and time-consuming. One of the most important characteristics of TPVs that needs to be pre-
dicted is their large nonlinear elastic deformation leading to their categorization as hyperelastic
materials. The hyperelastic behavior is usually characterized by cyclic loading-unloading quasi-
static tests. A TPV material subjected to cyclic loading-unloading tests exhibits strain softening
or Mullins effect [4], permanent deformations [5], and hysteresis [6], which further complicates
fitting their behavior using traditional constitutive models.

With the boom of “big data” and the emergence of the fourth paradigm of science [7]—which
aims for data-driven scientific discovery— there is an increasing agreement that addressing
complex science and engineering challenges demands innovative methodologies that integrate
physics-based modeling with state-of-the-art machine learning (ML) techniques [8]. Artificial
Neural Networks (ANNs) are the most popular ML models in the solid-mechanics research com-
munity. Since pioneers Ghaboussi et al. [9] proposed the first ANN as a mechanical constitutive
model, their use has skyrocketed in the last years due to their ability to approximate complex
nonlinear functions [10], their ease of use through advanced open-source frameworks, and the
possibility to integrate them into finite element method (FEM) packages [11], among others.

ML, and particularly Deep Learning (DL) [12], benefited immensely from the establishment
of benchmarks [13]. Benchmarking plays an indispensable role in the development and evolu-
tion of ML technologies by providing a standardized suite of tests for objective evaluation and
comparison of various algorithms and models. Benchmarks set defined tasks and standards to
achieve, driving innovation by challenging researchers to surpass these standards. For hyperelas-
ticity, Treloar’s data [14] has been extensively used to benchmark the accuracy of hyperelastic
constitutive model fittings [15, 16], including data-driven models [17]. However, there is a lack of
research on benchmarking data-driven hyperelastic constitutive models using real experimental
data from TPEs, and particularly, TPVs.

In this work, the capacity of existing physics-constrained NN-based constitutive models in
the literature [18, 19, 20] to fit hyperelastic data of TPVs was evaluated. The performed exper-
imental campaign involved conducting cyclic loading-unloading tests on TPV-based specimens
to obtain the necessary strain-stress data at different deformation modes, including uniaxial
tension, pure shear, and equibiaxial tension. These data enabled to benchmark the ANN mod-
els with the future aim of integrating them into a FEM package, advancing the design and
development workflow for industrial applications of TPVs.
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2 HYPERELASTIC CONSTITUTIVE MODELING

2.1 Traditional constitutive models

Constitutive modeling in mechanics is the practice of representing the mechanical properties
of materials through mathematical models. These models are formulated based on physical
principles and supported by experimental data, combining mathematical problems with physical
concepts and empirical evidence. In the most general form, constitutive equations in solid
mechanics are tensor-valued tensor functions that define the relation between stress, such as the
first Piola-Kirchoff or nominal stress P, and a deformation measure, typically the deformation
gradient F. By capturing the relation between stress and strain in materials, constitutive models
facilitate the prediction of material responses under various loading scenarios.

Hyperelastic constitutive modeling specifically addresses materials that exhibit significant
elastic behavior when subjected to large deformations, allowing them to return to their original
shape upon the removal of loads. Hyperelasticity extends linear elasticity to non-linear cases,
making it suitable for predicting large strains [21]. These models are particularly relevant for
elastomers and TPVs —known for their ability to undergo large, reversible deformations— and
serve as a foundation for modeling more complex mechanical behaviors.

Traditional approaches to hyperelastic constitutive modeling can be broadly categorized into
micromechanical and phenomenological models. Micromechanical models are inspired by the
material’s microstructure and attempt to link the macroscopic behavior to the microscopic
properties of the material constituents. They often provide a detailed understanding of the
material behavior but can be computationally intensive and require extensive knowledge of the
material’s microstructure.

Phenomenological models are based on observed material behavior and employ mathemati-
cal functions to describe the stress-strain relations. Common phenomenological models include
the Yeoh [22], Mooney-Rivlin, Ogden, and Neo-Hookean models. While they are less computa-
tionally demanding and easier to implement, they may lack the precision in capturing complex
material behaviors seen in micromechanical models, but they are still broadly used within the
automotive industry for their simplicity. Most hyperelastic phenomenological models relate the
invariants of the right Cauchy-Green tensor C (defined as the product of F and its transpose)
to the strain energy density function Φ, from which consequently the stress response is derived.
Expressing Φ in terms of the invariants of C satisfies objectivity by default [23].

2.2 Neural network-based constitutive models

Data-driven approaches have emerged as powerful tools for constitutive modeling in compu-
tational mechanics [24]. Traditional models are often limited by their reliance on predefined
functional forms, which may not capture the full complexity of material behavior. In contrast,
data-driven methods can learn directly from experimental data, providing more accurate and
flexible models.

Due to their exceptional ability to approximate nonlinear functions, ANNs are naturally
suited to model complex constitutive relations. However, standard ANNs, which lack knowledge
of the underlying physics of the relations they model, face an immensely large function space.
This vastness calls for extensive training data (hence they are more suited for big data regimes,
often unattainable in science and engineering), limits their generalization and extrapolation
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ability, hinders the convergence of their algorithms, and results in black-box models that are
often uninterpretable.

Physics-informed ML [25] is a burgeoning field of research that integrates physical knowledge
into data-driven models to address the limitations of purely data-driven approaches. In the case
of ANNs, they generally include physics in a weak form, where learning biases force the training
to converge on physically consistent solutions by modifying the loss term, in the manner of
Physics-Informed NNs (PINNs) [26]; or in a strong form, where inductive biases are encoded as
model-based structures a priori. This second approach of injecting physical knowledge into the
inner architecture of the NNs is being increasingly used for mechanical constitutive models in
general [27] and for hyperelasticity in particular [17].

Hyperelastic materials present additional challenges for constitutive modeling. The fulfillment
of multiple constitutive requirements within ANNs, including objectivity and polyconvexity, is
particularly demanding. This challenge has been described as the main open problem of the
material behavior theory [28]. Objectivity ensures that the constitutive model’s predictions
are frame-indifferent, while polyconvexity, a mathematical condition ensuring material stability
and the existence of solutions to boundary value problems, is crucial for realistic simulations.
Standard ANNs do not inherently satisfy these conditions, necessitating novel approaches.

To address these challenges, various advanced ANN architectures have been proposed. Con-
stitutive ANNs (CANNs) [18] are designed to ensure polyconvexity by using activation functions
that preserve convexity and pruning connections between nodes to result in a polyconvex strain
energy density function. Input Convex NNs (ICNNs) [29, 20] achieve similar goals by building
convex functions of invariant inputs using specific activation functions and non-negative weights,
ensuring that the resulting model adheres to the necessary physical constraints. Neural Ordinary
Differential Equations (NODEs) [19] take a different approach by leveraging the monotonicity
of trajectories of ordinary differential equations to interpolate monotonic functions associated
with the derivatives of strain energy rather than the energy itself. This method helps ensure
that the models remain physically consistent and adhere to the principles of hyperelasticity.

3 METHODOLOGY

To obtain the necessary data to fit the NN-based constitutive models, experimental tests in
three different deformation modes were conducted for a commercial TPV material. This ap-
proach ensures that the calibrated hyperelastic model accurately describes the material behavior
during complex deformations. To take into account the Mullins effect, cyclic loading-unloading
tests were conducted. Then, a backbone (or envelope) curve of the material’s stabilized response
was built, which considers the permanent set observed in the tests, according to standard pro-
cedures within the rubber industry.

3.1 Sample preparation

Specimens tailored to each deformation mode were prepared through an injection molding
process, ensuring consistent material properties by using the same batch for all samples. The
selected commercial TPV material was SantopreneTM 101-55, provided by Celanese, a TPV
known for its good dynamic performance. This material combines excellent physical properties
and chemical resistance, making it suitable for a wide range of applications. SantopreneTM

101-55 is shear-dependent and can be processed on conventional thermoplastics equipment for
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injection molding. It is recommended for applications requiring excellent flex fatigue resistance
and offers outstanding ozone resistance.

Different specimens were injected for each of the deformation modes to be tested. For uniaxial
tension (UT) tests, dumbbell-shaped specimens were used to concentrate stress in the gauge
length, facilitating a clear failure point. Rectangular specimens were employed for pure shear
(PS) tests to create uniform shear strain across the material. For compression tests, cylindrical
specimens were utilized.

3.2 Cyclic loading-unloading tests

The structural properties of elastomers change significantly during the first several times
the material experiences straining, a phenomenon commonly referred to as the Mullins effect.
When an elastomer is loaded to a particular strain level and then completely unloaded to zero
stress several times, the changes in structural properties from cycle to cycle, as measured by the
stress-strain function, diminish. Once the stress-strain function no longer changes significantly,
the material is considered stable for strain levels below that maximum. Since the Mullins effect
typically stabilizes after five cycles, five load-unload cycles at each strain level were conducted.
However, if the elastomer is subsequently subjected to a higher strain maximum, the structural
properties will change significantly again. The loading patterns in the conducted cyclic tests
allow us to observe the effects of Mullins softening on material stiffness and any plastic strain
accumulation.

Specimens were subjected to cyclic loading using an MTS universal testing machine at a
constant strain rate of 100%/min. For UT and PS tests, eight strain levels (10%, 20%, 30%,
50%, 70%, 100%, 150%, and 200%) were applied. For compression tests, six strain levels (5%,
10%, 15%, 20%, 30%, and 50%) were used.

Due to the lack of an equibiaxial testing machine, uniaxial compression tests were conducted
to infer the equibiaxial (ET) deformation mode. For incompressible materials, uniaxial compres-
sion tests create a strain state equivalent to equibiaxial extension [30]. While equibiaxial tests
are generally more complex and provide a more accurate material model by achieving a pure
strain state, compression tests can serve as a proxy for equibiaxial tension due to our assumption
of the incompressibility of TPV materials.

However, achieving pure compression strain is challenging because of friction-induced shearing
strains and nonhomogeneous deformations like barreling, which can lead to inaccuracies in the
test results. Additionally, the maximum strain level in compression tests is inherently lower than
in uniaxial tension and pure shear tests, which limits the strain range that can be effectively
analyzed for hyperelastic model development.

3.3 Backbone curve generation

Backbone curves representing the material’s stabilized response were derived using data from
the fifth cycle of each loading-unloading test. Due to the observed permanent set and given that
hyperelastic models assume the stress-strain curve initiates at the (0, 0) point, Eqs. (1) and (2)
were applied to adjust the curves before obtaining the backbone.

σ′ = σ0(1 + εset) (1)

ε′ =

(
1 + ε0
1 + εset

)
− 1 (2)
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Where σ0 is the nominal or engineering stress, ε0 is the nominal or engineering strain, and
εset is the plastic strain or permanent set.

As an example, Fig. 1 shows the fifth cyclic curves of uniaxial tension and the backbone
curve obtained after adjusting the permanent set.

Figure 1: Fifth cyclic curves of uniaxial tension test of SantopreneTM 101-55 and processed backbone
curve.

After adding one to the strain vectors to obtain stretch-stress curves, the backbone curves of
each deformation mode were ready to serve as input for the selected hyperelastic constitutive
models.

3.4 Constitutive modeling of backbone curves

Three different physics-constrained NN-based hyperelastic constitutive models were compared
to study their applicability to fit backbone curves of TPVs: CANNs, ICNNs, and NODEs.
Additionally, to compare the quality of the fittings to a traditional phenomenological constitutive
model, the data was fitted to the Yeoh constitutive model too.

In addition to evaluating the applicability of selected data-driven models to the mechanical
characterization methodology of TPVs, another objective was to study the models’ capability to
extrapolate from one deformation mode to another. By incorporating knowledge of hyperelastic
material physics within the architecture of the models, it was intended to ascertain whether data
from single-mode deformation tests could be used to fit curves for other deformation modes with
adequate quality. If successful, this approach would be particularly valuable for deriving accurate
material models of TPVs’ hyperelastic behavior from the simplest test: the uniaxial tensile test.
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4 RESULTS AND DISCUSSION

The results of the fittings of the different hyperelastic constitutive models are displayed in Fig.
2. Each column corresponds to the training data from different deformation modes: uniaxial
tension (UT), equibiaxial tension (ET), pure shear (PS), and all data combined. Table 1 shows
the R2 scores of each fitting.

Figure 2: Fittings of hyperelastic constitutive models to the backbone data of SantopreneTM 101-55.
The first three columns show the fittings to the three deformation modes using only training data from
UT, ET, and PS, respectively. The column on the right displays the fittings using all data for training.

The NN-based models perform comparably across the different deformation modes. Each
model shows a reasonable agreement with the experimental data, with slight variations in their
accuracy depending on the mode of deformation used for training. When trained with all the
data, ICNN obtains the most balanced fittings, with R2 scores surpassing 0.975 in all deformation
modes. CANN loses accuracy in fitting ET, and this drop is even greater for NODE. In contrast,
Yeoh fails to accurately fit UT data at high strain levels.

Regarding the extrapolation ability of the NN-based models, ET and PS deformation modes
extrapolate more accurately to other modes compared to the UT mode. When using UT data,
predictions of the NN-based models align well with experimental data at low strains but then
explode at higher strains, with the exception of NODE’s prediction for the PS mode. On the
other hand, Yeoh’s predictions based on UT data tend to underestimate real values, while they
are similar to the NN-based models using ET and PS data.
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Table 1: R2 scores of the fittings of hyperelastic constitutive models to the backbone data of
SantopreneTM 101-55.

UT training ET training PS training All training

UT prediction

CANN 0.999 0.954 0.694 0.985
ICNN 0.999 0.953 0.958 0.974
NODE 0.998 0.954 0.751 0.977
Yeoh 0.993 0.936 0.657 0.820

ET prediction

CANN -5.866 0.992 0.953 0.933
ICNN -13.771 0.992 0.621 0.975
NODE -2.053 0.992 0.880 0.826
Yeoh 0.803 1.000 0.936 1.000

PS prediction

CANN -6.622 0.849 1.000 0.989
ICNN -2.860 0.852 0.998 0.989
NODE 0.957 0.849 0.998 0.981
Yeoh 0.798 0.930 0.996 0.979

One notable limitation of the study is related to the fact that ET data was derived from
compression tests. The low strain levels and frictional effects in the compression tests introduce
concerns about the quality and reliability of the ET data. These factors might affect the accuracy
of the models when fitting the data.

Additionally, to ensure the consistency and generalizability of these findings, it is crucial to
replicate the process with other TPV materials. Doing so would verify whether the observed
trends and model performances are specific to the analyzed SantopreneTM material or if they
can be generalized to other similar materials.

5 CONCLUSIONS

Overall, while the NN-based models show promising results in modeling the hyperelastic be-
havior of TPVs, further investigations and validations are necessary to confirm their applicability
and reliability within the TPV-based part and product development workflow.

Physics-constrained NN-based hyperelastic constitutive models have great potential but they
are still an ongoing area of research. Their extrapolation ability is promising, especially at
low strains, which is particularly relevant since most TPV-based parts, such as antivibration
components, typically do not experience large stretches in real use. However, actual ET tests
are required for confirmation.

Future work includes validating the models by testing other TPV materials, integrating the
NN-based constitutive models into a FEM package as material models, and addressing additional
non-linear mechanical behaviors with the help of physics-informed ML techniques.
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