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Summary. The preparation of CAD geometries for meshing and analysis poses a significant
challenge in engineering simulations due to its labor-intensive nature. Over the last 20 years,
various methods have been proposed to bridge the gap between CAD and analysis by requesting
CAD to produce volume represents (V-Rep) suitable for the analysis . However, these methods
do not integrate with modern CAD software (which do not produce V-Reps) and have not found
wide industrial applicability. Our study extends the capabilities of the NURBS Enhanced Finite
Element Method (NEFEM), a CAD-friendly technique that offers distinct advantages. NEFEM
combines boundary representation (B-Rep) from common CAD packages with volume represen-
tation (V-Rep) from established meshing tools, resulting in a super-parametric element formula-
tion for direct analysis of the CAD geometry. Our research introduces high-order quadrilateral
elements and presents a comparison with their finite element counterparts. Through established
benchmarks, the study demonstrates geometric convergence and underscores a superior CAD
interoperability of NEFEM that could not be achieved with other methods.

1 Introduction

The integration of geometric design and analysis in computational engineering represents a
crucial challenge, particularly when using methods that ensure accurate geometric representation
within the simulation process. The NURBS-enhanced finite element method (NEFEM) emerges
as a promising technique in this context [1, 2, 3], offering the ability to directly incorporate
the boundary representation (B-rep) provided by CAD systems without the need for conversion
to a volumetric representation (V-rep) [4, 5, 6]. This approach not only reduces geometric
errors associated with discretization but also enhances the accuracy of simulations across various
application areas, including heat transfer, electromagnetism, and fluid dynamics. This work aims
to investigate the effectiveness of NEFEM using elements with polynomial degree p = 2. The
primary objective is to evaluate the advantages in terms of accuracy and convergence compared
to standard formulations and lower-order NEFEM. Through a series of numerical examples, we
will demonstrate how increasing the polynomial degree can expand the applicability of NEFEM,
making it a competitive choice for complex problems in structural engineering, emerging lattice
structure applications [7] and fluid dynamics.
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2 Methodology

2.1 Background

The NURBS-enhanced finite element method (NEFEM) was developed to address the lim-
itations of traditional finite element methods (FEM) in integrating with CAD systems. While
standard FEM [8, 9] relies on an approximate polynomial representation of geometry, NEFEM
leverages the exact boundary representation (B-rep) provided by CAD models. This approach
allows for precise geometric descriptions, thereby improving the accuracy of simulations.

The primary difference between FEM, isogeometric analysis (IGA), and NEFEM lies in how
they handle geometric representation. FEM uses a piecewise polynomial description, which can
introduce geometric errors. IGA, on the other hand, employs NURBS to represent the entire
volume but requires a complex transformation from B-rep to volumetric representation (V-rep).
NEFEM takes a hybrid approach, directly using the CAD B-rep for boundary elements, thereby
maintaining an exact match with the CAD geometry. Traditionally, NEFEM has been applied
only to triangular or tetrahedral meshes, limiting its applicability in contexts where quadrilateral
or hexahedral elements are preferred, such as in nonlinear solid mechanics.

Quadrilateral elements are highly significant in the field of structural simulation as they
enable the generation of structured meshes, which are crucial for accurate and efficient analysis.
Linear quadrilateral elements have been extensively studied in a previous paper from the authors
[10]. This work presents an extension of NEFEM to quadrilateral elements with a polynomial
degree p = 2.

The proposed approach introduces a new super-parametric mapping that preserves the exact
boundary representation for quadrilateral elements in any field approximation. This mapping is
based on NURBS curves defining the element edges, ensuring tight integration with CAD and
enhancing simulation accuracy. For solving the weak form, numerical integration is performed
using Gaussian quadratures adapted to the rational nature of NURBS curves, thereby reducing
integration errors.

Several numerical examples demonstrate the effectiveness of this approach, showing signif-
icant error reduction compared to traditional finite elements. This formulation is particularly
beneficial in structural mechanics and fluid dynamics problems, where geometric accuracy is
crucial.

2.2 Mapping

For FEM elements the mapping from parent space [0, 1]2 (derived from the most used parent
space [-1, 1]2) to physical element is the classical isoparametric mapping, given by Eq. 1.

ϕ(ξ, η) =

4∑
k=1

Nk(ξ, η)ϕk, (1)

where Nk is the bi-linear shape function associated to node (ξk, ηk).
The mapping for NEFEM quadrilateral elements is a non isoparametric formulation that

came from the Coons patch [11], an injective and continuously differentiable function able to
parameterize the surface enclosed by four curves (Eq. 2).
This solution maps from the parent space [0, 1]2 to a quadrilateral NEFEM element Ωe as follow:
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ϕ(ξ, η) =

2∑
i=1

Ñi(η)Ci(ξ) +

2∑
j=1

Ñj(ξ)Dj(η)︸ ︷︷ ︸
A

−
4∑

k=1

Nk(ξ, η)xk︸ ︷︷ ︸
B

, (2)

where {Ñl}l=1,2 denote the linear shape functions in the one-dimensional reference element
[0, 1]. The parametric curves {Cl}l=1,2 describe the edges connecting nodes P4 and P3 and
nodes P1 and P2, respectively. Similarly, the parametric curves {Dl}l=1,2 describe the edges
connecting nodes P2 and P3 and nodes P1 and P4, respectively.

In general, part A of Eq. 2 is the part related to the curves, while part B is inherited from
the classic isoparametric formulation.

The parametrization of a curved NEFEM quadrilateral element induced by the mapping of
Eq. 2 is illustrated in Fig. 1a.

(a) NEFEM element using linear
approximation for field solution

(b) NEFEM element using
serendipity element for field solu-
tion

Figure 1: Comparison between NEFEM p = 1 element (a) and NEFEM p = 2 element (b)

It is worth noting that for the majority of NEFEM elements, not all the faces are curved,
as shown in the latter sections of the paper. When one of the edges of a NEFEM quadrilateral
element is straight (i.e. not on the boundary), the parametrization is simply given by the two
nodes that connect this edge. For instance, if the edge connecting the nodes P2 and P3 is a
straight edge, the parametrization D1 is simply

D1(η) = ηP2 + (1− η)P3. (3)

In the presented work, Eq. 2 remains unchanged even if the polynomial approximation of the
investigated field is higher (here p = 2) since the geometrical representation is exact using linear
polynomials. This means that if ϕ represents the displacement field, parabolic shape functions
will be used according to Eq. 1. On the other hand, if ϕ represents the approximation of the
geometry, Eq. 2 will be used where all shape functions Ni are linear. Although the model is not
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isoparametric, it allows for the geometric approximation to remain unchanged regardless of the
field investigated. The geometry is always exact, regardless of the problem type.

Fig. 1b shows the mapping applied to a parabolic serendipity element which will be used in
the following discussion. It can be observed that the serendipity element perfectly matches the
element with linear functions, as the mapping is already exact in the first case. The approxi-
mation is therefore only improved for the chosen field variable, in this case, the displacements
given by elasticity theory.

3 Numerical Results

3.1 Linear Elasticity Model

The considered example is the linear elastic problem, governed by the classical formulation
Eq. 4 

−∇ · σ = f in Ω,

u = uD on ΓD,

n · σ = gN on ΓN ,

(4)

where u is the displacement field, σ is the Cauchy stress tensor, f denotes a volumetric external
force, uD is the imposed displacement on the Dirichlet boundary, and gN is the imposed traction
vector on the Neumann boundary.

The test considered is the so-called Lamé problem. It consists of a thick-walled cylinder of
infinite length subject to a uniform internal and external pressure. The solution is computed in
a quarter of the domain using the symmetry of the problem as shown in Fig. 2a.

There are no volumetric forces applied, and the exact solution can be written, in polar
coordinates, as

u(r) = C1r +
C2

r
, (5)

where

C1 =
ν − 1

νE

per
2
e − pir

2
i

r2e − r2i
, C2 =

ν + 1

νE

(pe − pi)r
2
er

2
i

r2e − r2i
. (6)

In the above expressions, r =
√
x2 + y2, re and ri are the external and internal radii of the

annulus respectively, pe is the external pressure and pi the internal pressure, ν and E defines
the Poisson’s ratio and the Young’s modulus.

The displacement field is computed using serendipity elements through the proposed NEFEM
approach and the error over it is displayed in Fig. 2b.

Results are also presented for a better visualization in Table 1 where the error over FEM and
NEFEM is computed as the percentage relative error (Eq. 7) between numerical approximation
and reference value.

Err =
|ϕa − ϕn|

ϕa
(7)

ϕa represents the analytical value while ϕn the numerical one.
The contour plots of the displacement also indicate that NEFEM p = 2 offers better solution

over the boundaries for elastic problem respect to NEFEM p = 1. Even if the continuity is not
higher between elements, the approximation on the boundary is smoother (Fig. 3).
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(a) NEFEM element using linear approxima-
tion for field solution

(b) NEFEM element using serendipity element
for field solution

Figure 2: Comparison between NEFEM p = 1 and NEFEM p = 2 elements

FEM NEFEM Err - FEM Err - NEFEM

4 0.02805 0.029576 4.915254 0.257627

16 0.02940 0.029491 0.355932 0.030508

64 0.029489 0.029498 0.037288 0.006780

256 0.029499 0.029500 0.003390 0.000080

Reference 0.029500

Table 1: Maximum displacement comparison between FEM and NEFEM.

(a) Four NEFEM p = 1 elements. (b) Four NEFEM p = 2 elements.

Figure 3: Contour plot displacement of NEFEM elements
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3.2 Complex geometries

Having been validated on thick-walled cylinders, the method can be extended to more com-
plex geometries. Specifically, the problem of a flywheel (Fig. 4), which includes challenging
geometries and closed loops (holes), has been addressed. The simulation was performed under
the application of centrifugal forces. The results indicate that NEFEM elements provide similar
displacement outcomes (Fig. 5) compared to traditional serendipity elements in commercial
software, but show a significant improvement in terms of total strain energy. It is noteworthy
that strain energy calculated as Eq.8 is a unique scalar value for the entire structure giving a
good marker of the goodness of the assembled elements.

E =
1

2
KU2 (8)

To achieve the same energy value with FEM it is required approximately 30% more elements as
shown in Tab.2.

Figure 4: Flywheel mesh using NEFEM p = 2 elements.

NEFEM FEM FEM (More Elements)

No element: 11179 11176 14842

Energy: 0.0059322 0.0059141 0.005933

Table 2: Energy value comparison between NEFEM elements and standard Serendipity elements.

Numerous other geometries (Fig. 6), have been tested, further highlighting the flexibility of
the method. The ability of NEFEM to accurately handle a wide range of complex shapes, includ-
ing those with intricate features and varying boundary conditions, demonstrates its robustness
and adaptability across different engineering applications. These tests underscore the method’s
capacity to provide reliable results without the need for extensive manual preprocessing, making
it a versatile tool for advanced simulations.
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(a) Displacement field using NEFEM p = 2.
(b) Displacement field using commercial soft-
ware.

Figure 5: Flywheel displacement field.

4 Conclusion

The primary advantage of NEFEM with a polynomial degree of p = 2 lies in its ability to
maintain an exact boundary representation throughout the numerical integration process. Un-
like traditional FEM, where geometric information can be lost due to approximation, NEFEM
ensures that the boundary mapping remains consistent, even when higher-order field approx-
imations are employed. This consistent mapping allows the quadrature process to follow the
same rule as in standard FEM, making the method both accurate and computationally efficient.

Moreover, the direct integration of NEFEM with CAD systems, using the boundary represen-
tation (B-rep) without any need for conversion to a volumetric representation, distinguishes it
from both traditional FEM and isogeometric analysis (IGA). Unlike IGA, which requires a com-
plex transformation from B-rep to V-rep, or standard FEM, which may lose geometric details
during mesh generation, NEFEM preserves the exact geometry provided by the CAD model,
ensuring that no information is lost.

The introduction of NEFEM to quadrilateral elements and its application to solid mechanics
problems within a continuous Galerkin formulation represents a significant advancement for
the finite element community. The results from this study demonstrate that NEFEM with
p = 2 not only matches but often surpasses the accuracy of traditional FEM, especially in
scenarios requiring high geometric fidelity. The method’s robustness and strong integration with
CAD systems make it an ideal choice for complex engineering simulations, where maintaining
geometric accuracy is crucial for achieving reliable results.

As NEFEM continues to be refined, its applicability can be expanded to other types of
interpolation functions, such as Hermitian or bicubic functions, further broadening its utility in
advanced engineering contexts. The flexibility and precision offered by NEFEM, combined with
its seamless CAD integration, position it as a powerful tool for future developments in structural
mechanics and fluid dynamics.
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Figure 6: Caption of Figure 2 from the document.
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