Load Balancing Inbound Traffic in Multthomed
Stub Autonomous Systems

Ashok Singh Sairam and Gautam Barua
Department of Computer Science and Engineering
Indian Institute of Technology Guwahati
Guwahati 781039, India
Email: {ashok, gb}@iitg.ernet.in

Abstract—In the Internet, with many competing networks each
trying to optimise its own bandwidth, a stub network has limited
knowledge about user demands, available network resources
and routing policies of other networks. This uncertainty makes
the task of interdomain traffic engineering for a stub network
very challenging. The basic aim of a stub network connected to
multiple ISPs (multihomed) is to load balance its traffic among
its various edge links. Our goal in this work is to distribute the
incoming traffic of a multihomed stub network among its various
edge links. The focus is on networks that primarily download
traffic from the Internet. Regulating the incoming traffic is diffi-
cult since it will require to influence the behaviour of the remote
destinations. We performed a systematic analysis of our problem
and showed that even a restricted instance of the problem is NP-
complete. We proposed simple, low-cost route control techniques
to load balance traffic by reallocating the routes of outgoing
traffic. The techniques were validated using synthetic as well
as actual data collected under numerous traffic load conditions.
Results show that we can achieve significant improvement in load
balancing with minimum traffic re-assignments. Moreover, the
proposed techniques neither require any third party assistance
nor changes to existing protocols and network setup. This makes
our schemes easily deployable in real networks.

I. INTRODUCTION

One of the driving forces behind the evolution of Internet is
due to a substantial growth in the number of stub autonomous
systems (ASes). Transit ASes primarily interconnect networks
and hence they are connected to more than one provider
or peer. Interestingly this trend of multihoming has been
observed in stub ASes too ([26]). In multihomed networks,
traffic on one path is congested, even when traffic on other
links are under-utilised. Re-balancing the traffic load can
result in significant improvements in download speeds. A
number of tools and techniques collectively referred to as
smart routing or intelligent route control have been proposed
for exploiting multihoming to extract performance benefits
([71,[18]). However, these tools concentrate on improving the
end-to-end performance, rather than redistributing the traffic.
The performance gains of our multihoming route control
technique are comparable to existing multihomed techniques
yet our approach is much simpler and practical. To realise
performance benefits, existing multihomed techniques rely on
choosing the best ISP link and assume that the stub network
has perfect information about the performance of the ISPs.
([7D. In this work we realise similar performance benefits by

optimising the utilisation of the multiple edge links at our
disposal.

In the Internet, a stub network has limited knowledge
about user demands, available networks resources and routing
policies of other networks. Tools available to measure network
metrics do not give accurate results. Moreover Internet traffic
is highly chaotic when considered at small time scales. The
presence of such uncertainties makes the task of load balancing
in an interdomain environment very challenging. For wider ac-
ceptability, the need to propose solutions within the framework
of existing protocols and standards makes the problem even
more difficult. As the size of the network grows, intradomain
path between a user and an edge router can be several hops.
Consequently, intradomain traffic can have a substantial affect
in the overall latency ([22]). Thus while selecting the edge
links we will also need to consider the intradomain bandwidth.

The main goal of this paper is to distribute the incoming
traffic of a multihomed stub network among its various edge
links. We tackle the inaccuracies of network monitoring tools,
by attempting to keep link utilisations proportionate to their
available bandwidth. Such a step will ensure that the link
utilisations are fairly balanced even if the measurements of
available bandwidth is an approximation. The other two goals
are to minimize the re-assignments and to incorporate the
intradomain cost in the route selecting process. We attempt to
solve the problem in two steps. In the first phase, we assume
that the input traffic is known and that the bandwidth mea-
surements are accurate. Even with such strong and unrealistic
assumptions, we find that the problem is NP-complete. This
part of our study is called the offline analysis. In the second
phase, we assume the input traffic is completely unknown. We
call this part of our study the online analysis or online models.
Leveraging upon our approaches developed for the offline case,
we propose route control mechanisms for the online models.
The proposed techniques although simple yield significant
improvement in traffic load balancing. Empirical results show
that our techniques yield more than 40 percent improvements
as compared to a scenario where no load balancing techniques
are used.

The rest of the paper is organized as follows. A brief
background to our problem is presented in section II. In section
IIT we describe the problem. The offline and online models are
discussed in section IV and V respectively. The experimental

results are given in section VI. Finally the concluding remarks
and future work are presented in section VII.

II. BACKGROUND AND MOTIVATION

Although many of the applications used on the Internet
generate bi-directional flow of data, volume of data is heavier
in one direction than the other ([25]). Organisation, therefore,
try to optimise either the traffic that enter or leave the network
based on its business interest. Content providers that host a
lot of web or streaming servers will have several customers
wanting to download traffic from its network. Such networks
will try to optimise the traffic that leaves their network. On
the other hand access providers that serve small and medium
enterprises will have users that primarily want to download
traffic from the Internet. The traffic in access networks will
mainly consist of small outgoing requests and large response.
The main objective of this paper is to load balance the traffic
that enters a network.

BGP ([27]), the current de-facto interdomain routing proto-
col has not been primarily designed from a perspective of
interdomain traffic engineering. Nevertheless, a number of
tools have been designed to improve Internet performance
by tweaking BGP policies. These tools have been primarily
designed for outbound traffic and hence they are not competent
to handle incoming traffic ([26], [21]). Edge based traffic
engineering techniques([23]), which identify and categorize
specific network traffic, and then constrain each category to
use no more than a specified amount of bandwidth will not be
effective on inbound traffic since they act on the traffic after it
has already consumed the scarce bandwidth. Inbound traffic
cannot be controlled by directly acting on the traffic. We,
therefore, propose to control the flow of the incoming traffic
by acting on its corresponding outgoing traffic. In the solution
that we propose, a stub AS monitors the incoming bandwidth
on all its edge links. When the stub network observes that a
particular edge link is congested, it does not try to control the
routing of its ISP. Rather it re-routes some of its incoming
traffic to a relatively less congested edge link. As the focus of
our work is on access networks, requests for downloads will
primarily originate from within the network. Besides, Internet
traffic being primarily in the form of request-response pairs,
re-routing can be achieved by scheduling the outgoing request
appropriately.

III. PROBLEM DESCRIPTION
A. Measuring Available Bandwidth

In the context of data networks, the term capacity or
bandwidth of a path means the maximum bandwidth that a
flow can achieve when no other traffic is present. Available
bandwidth means the maximum bandwidth that such a path
can provide to flows, given the existing traffic it is already
carrying. To optimise the Internet experience of end users,
it is crucial to understand the location and traffic load of
bottleneck links. A stub network may have a dedicated link
between itself and its uplink provider, but beyond a certain
point its Internet traffic flows will share network resources

with millions of other flows. The stub network does not have
any control on the network traffic beyond a point. The aim
of this work is to optimise the utilisation of resources at the
disposal of the network. We assume that there is a point ”X” in
the provider’s network to which all packets from the network
have to travel to, and that beyond the point X, there is sufficient
bandwidth available. The congestion (or restriction in available
bandwidth) is assumed to be only up to point X. The path
to this point X from the edge router is referred to as the
connecting path. In the simplest case, the path could be of
length 1, if the provider’s peering border router is point X.
In this case where the path is one hop, we can directly probe
the edge router and find out the bandwidth usage. For the
general case the point X will not be known and has to be
discovered. We adapt an existing tool pathneck ([19]) to infer
the congestion point and measure the available bandwidth of
the connecting path.

B. User Traffic

The only assumption made about the traffic is that we can
split the traffic entering the network at a certain level of
granularity. Other than this we do not make any assumptions
about the characteristics of the traffic. The basic granularity
of load balancing is assumed to be a user (IP address).
Typically, a domain will have a large address block and
dynamically changing the default gateway of all the users
will be cumbersome and unmanageable. To keep the routing
tables simple and manageable, we aggregate the users into user
classes. In this work the quality of service(QoS) we provide is
in terms of user movements. The classes can be formed based
on similar QoS requirements of users, and a priority can be
assigned to each class based on the QoS needs. We select user
classes with lower priorities as candidates for re-assignment.
This will ensure that only low priority users will face possible
disruptions due to movement.

C. Network Model

Assuming that all intradomain and edge links connecting
to other ASes are bi-directional, the only requirement for our
scheme to work is that the request and response of a traffic
flow must follow the same edge route. That is if a request
to download a file is send through an edge link L1 (say) then
the corresponding response should also return through L1. We
describe two network models that can support this assumption
- NAT-based model and BGP-based model.

In order to preserve the limited number of IP addresses,
network address translation (NAT) is often used to send
outbound packets, with a source IP address associated by the
ISP with an edge link. The corresponding return traffic will
automatically come back via the same link, because it is the
only link servicing that address range. NAT-based solutions
are by far the most practical solution for controlling incoming
traffic and they have been frequently used to control the flow
of incoming traffic ([7], [18], [8]). NAT-based solutions are,
however, not scalable for large domains with many hosts

behind the NAT. In case of such large networks where NAT-
based solution fails to scale, BGP route advertisements are
manipulated to influence the incoming traffic ([13], [9]).

Selective advertisement is a technique commonly used in
BGP to control incoming traffic. In this work we propose a
variant of selective advertisement for our network model. Let
us consider a stub Autonomous System, AS1 (as shown in
figure 1), with two edge links e; and ., and an independent IP
address block. We partition the IP address prefixes into groups
and then advertise these prefixes. Once we change the default
gateway of a user group, say from link e; to es, we announce
the prefix of the user group on link es and withdraw it from ey .
The advantage of this model is that as soon as the route of a
user group is withdrawn and re-advertised through a new route,
all traffic destined toward the user (including traffic of ongoing
sessions) will start following the new route immediately. An
issue with the use of sub-prefixes is that many ISPs filter
out small IP prefixes advertisements. The challenge would
be to announce sub-prefixes that are acceptable to the uplink
providers. Subdividing of prefixes for load balancing, however,
is a standard practice in multihomed networks ([9]). The other
issue is with regard to time taken for route convergence. BGP
route convergence typically range from seconds to tens of
minutes ([20]). The frequent route updates required in our
model may cause route convergence problems. BGP route
convergence time has always been a source of concern and
several techniques have been proposed to reduce it ([10]). The
heuristics that we propose proceeds in periods. During each
period it is expected that there will be some route updates.
However, once a user is moved it is not considered for re-
assignment for the next several periods. This means routes
of users that have been moved will converge before it is
selected again for re-assignment. Thus delay due to BGP
convergence will not have a serious impact on the performance
of our heuristics. Moreover, tools have been developed ([15])
which allow network operators to predict flow of traffic due
to changes in BGP policies.

The periodic link state updates of intradomain protocols do
not include any traffic engineering metrics. To facilitate in-
tradomain traffic engineering, extensions to link state protocols
have been proposed. OSPF-TE ([14]) adds traffic engineering
capabilities to OSPF by incorporating available bandwidth
information, hop count etc. along with the link state updates.
In this work, the intradomain protocol deployed is assumed
to be OSPF-TE. Intradomain link costs are set proportional to
available bandwidth of the links.

D. Problem Statement

Consider a network with N edge links, E = {e1, e2,..,ex}.
Let S be the size of the user population and the set of users
be, I = {iy,iz,..ig}. Time is divided into discrete intervals,
indexed by t={1,2,...}. A period t denotes the time interval (t-
1,t). The available bandwidth of a link e (in Mbps) is denoted
by Ae. Let Ug(t) (in Mbps) denote the measured incoming
traffic of link e and let b;(t) denote the incoming traffic of
user i in the period t. The variable xie(t) has a value of 1 if

ISP1 IsP2
7116 \E, E: /161126
e & /16.1.064126

17.1.0.64126",

Interdomain Links
Intradomain Links

Fig. 1.

Managing user movement in a stub AS.

user i is assigned link e at time t, otherwise it has a value 0.
A user can be assigned to only one edge link at any instant.
Therefore, Zévzl Z;(t) = 1, Vi € I. The objectives that we
attempt to achieve are:

o The utilisation of the edge links is in tune with their
available bandwidth. This objective will ensure that the
actual utilisations of the links are fairly balanced although
our measure of link utilisation is approximate. We define
the ideal utilisation of a link as:

_ w _ T Ui
IU(t) = K . A.(t) where K = ST .

Our objective is to keep the actual utilisation as close as
possible to its optimal value.

f1: min [IU.(t) — Uc(t)| Ve € E

e The number of user movements is as small as possible.
That is we wish to minimize

N S
f2: minz Z | () — e (t — 1)] 2)
e=1 i=1
We say that a user has moved if its present assignment
is different from its previous assignment. For each user
movement, the value of the above equation will increase
by 2.

o In larger networks like that of a stub AS, intradomain
traffic can also have substantial affect on the overall
latency. The intradomain path between a user and an edge
router may be several hops. Ideally we would like each
user to select an edge router that is the least costly to
reach. If d(i,e) denotes the intradomain cost of the path
between the user i and edge router e, then

f3: d(i,e) <d(i,e'), V' € E 3)

IV. OFFLINE MODELS

A major impediment in finding a solution to our problem
is that the input traffic takes unknown values at the time of
making decisions. In order to exhibit the complexity of the
problem we make some simplifying assumptions about the

input traffic, though some of these assumptions may sound
unrealistic. For each such assumption we examine the possible
solution and their complexity.

1) Input Traffic is Known: Let us assume that the incoming
traffic of users, that is value of the b;(t)’'s, are known at the
time of assigning the users to links. The sum of these b;(t)'s
will yield the total incoming traffic. Further we assume that
the available bandwidth of each link is a constant equal to the
link capacity. Since we know the assignment of users to links,
we can also compute the utilisation of each individual link.
Using equation 1, we compute the ideal utilisation of each
edge link. Our job now is to distribute the user traffic such
that utilisation of each link is at its ideal value.

i. Rank the Egress Links: The utilisation of a link with
respect to its ideal value will be in one of the three states -
over-utilised, utilised or under-utilised. A link is classified as
over-utilised if its utilisation is above the ideal value, utilised
if it is exactly equal and under-utilised if it is below the ideal
value. We define a rank for each of the links. The rank of a
link is the difference in the value between its ideal and actual
utilisation. An algorithm to compute the rank of the edge links
and to list the over-utilised and under-utilised links is given in
algorithm 1.

input : b[1..S], A[1..N], x[1..S]

/* b[]: Incoming User Traffic */
/* A[]l: Link Available Bandwidth */
/* x[i]l=e, user i assigned link e */

for e = 1 to N do
| T_Abw ¢ T_Abw + Ale]
end
/* U[] Measured Incoming Traffic */
fori=1to Sdo
T_traf fic <+ T_traf fic + b[i]
Ulz[i]] « Ulz[i]] + b[7]

end
/* IU[] Ideal Utilization */
fore = 1 to N do
T ic. A
e « _traf fic . Ale]

T Abw

rankle] < IU[e] — Ule]

if rank[e] < O then

/* OUtil[] Over-utilised links */
OUtil[index + +] + e

end

else if rank[e] > O then

/* UUtil[] Under-utilised links */
UUtil[indexl + +] + e

end
end

Algorithm 1: Compute rank of edge links

ii. Move Users: We now have a set of users assigned to
over-utilised links from which we need to select some of the
users and move them to under-utilised links so that utilisation

of the links become ideal. Our goal is to load balance the traffic
with a minimum number of user re-allocations. We call this
problem the re-assignment problem. We prove that the problem
is intractable by showing that a restricted instance of the
problem (restricted re-assignment problem) is NP-complete.

Informally, we show that the partition problem, a well-
known NP-complete problem ([24]) can be mapped to the re-
stricted re-assignment problem. Given a multi-set S of integers,
the partition problem is to decide whether there is a way to
partition S into two subsets S1 and S2 such that the sum of the
numbers in S1 equals the sum of the numbers in S2. In the
restricted re-assignment problem, let us restrict the number
of edge links to two. There is a one-to-one correspondence
between the partition problem and the restricted re-assignment
problem. Let us equate the set S to the user set I of our
problem. The restricted re-assignment problem is reduced to
the problem of splitting the users in the set I into two subsets,
such that the sum of the incoming traffic of the users (i.e. bjs)
in each set is equal. A user cannot be assigned to two edge
links simultaneously, therefore the subsets form a partition in
the sense that they are disjoint and cover I. Since the partition
problem is NP-complete, so is the restricted version of our
problem.

We next establish an interesting correlation between over-
utilised and under-utilised links. If one or more of the edge
links are over-utilised then there are guaranteed to be under-
utilised link(s) which will exactly fit the excess traffic. A
formal proof of this statement is given in appendix A (theorem
8.1).

2) Input traffic is Known and Bounded: As mentioned in
section III-A, our main goal is to optimise the bandwidth
of the connecting path. Incoming traffic of a user cannot
exceed the available bandwidth of this path. We, therefore,
define an upper bound on the user bandwidth equal to the
available bandwidth of the connecting path. The problem
is now equivalent to a partition problem where the size”
of the elements of the set is bounded. Garey and Johnson
([17]) show that in the partition problem, pseudo-polynomial
time bounds solutions are possible if the “sizes” have a
upper bound. Let us further restrict the values of the user
bandwidth to two - 0 or 1. A value of 0 means the user is
not receiving any traffic (dormant) while 1 means the user is
receiving traffic at the maximum possible bandwidth (active).
Then from theorem 8.1, it follows that an exact solution to
the problem can be found by filling up each under-utilised
link with users from over-utilised link that have value of b;
equal to 1, such that the utilisation of all these links become
ideal. A straight forward solution would be to examine each
user, identify the rank of the link assigned to the user, move
those users assigned to over-utilised links and then update the
link utilisations and ranks. The solution will, therefore, take
at most ()(.5) time, where S is the size of the user population.

The conclusion that we draw from our discussion of the
offline models are - (i) an exact solution to the problem cannot
be realised even if the input traffic is assumed to be known,

and (ii) feasible solutions can be realised if the input traffic is
suitably discretized.

V. ONLINE MODELS

The offline analysis has been carried out to gain insight
into the problem. In the real world input traffic will change
dynamically and their values will be unknown at the time
of assigning users to links. In this section we remove all
restrictions imposed on the input traffic. We do not make any
assumptions about the input traffic. Therefore, it is unlikely
that we can have a simpler solution than that of the offline
models. However, we continue with what we have learned and
explore possibilities of adapting these solutions to the online
scenario.

A. No Restrictions on Input traffic, Intradomain Traffic Static

In this section we assume the input traffic to be unknown
and can take on any value. However, we assume that the
intradomain traffic is steady and does not have an affect on the
latencies. We call such a network environment where the effect
of intradomain traffic is not considered as a static network
environment or a static intradomain network environment. The
network traffic is not entirely static since the incoming traffic
is dynamic and available bandwidth of the edge links can vary.

Greedy Approach: Our first heuristic is to move the user
that is currently receiving the maximum traffic. Studies have
shown that a few high throughput users contribute majority of
the traffic. Our aim is to identify these users and move them so
as to achieve load balancing with minimum re-assignment. We
call this heuristic the greedy approach. The heuristic proceeds
in stages or periods. The duration of a period is set as five
minutes. We have tried to keep the durations small in order
to handle the chaotic nature of Internet traffic at small time
scales. At the same time the period has been kept large enough
keeping in mind the re-assignment cost. The other reason
behind our choice of the period duration is that typical network
operations collect link level statistics every 5 - 15 minutes
([25], [5]). At the end of each period the following actions
are performed:

1) Compute the ranks of the links based on the current
network traffic state. This is done using algorithm 1.

2) Sort users assigned to over-utilised links in descending
order of their incoming traffic. Consider them one by
one.

3) Select the first user from the sorted list. Check if the
user can be moved. Get the most under-utilised link. If
the user fits the under-utilised link go to next step, else
repeat 3 till a user can be moved; exit if no more users
are left in the sorted list.

4) Move user, re-compute link utilisations and ranks.

5) Repeat steps 3 and 4 until the utilisation of all the links
become optimal or no user can be moved.

We say that a user fits into a link if assigning the user to
the link does not make the link over-utilised. As the users are
moved the utilisation of the links are updated accordingly. The
heuristic proceeds recursively with the second stage acting as

the first for the next run of the algorithm. A pseudo-code of
the greedy approach is given in algorithm 2. Depending on
the manner we select users for re-assignment, there can be
different algorithms. Another approach would be to select the
users based on the outcome of a random game and relative
utilisation of their edge links. In this paper we stick to the
greedy approach only.

During the course of our experiments, we discovered that
when a high throughput user is moved from an over-utilised
link to an under-utilised link, the second link becomes over-
utilised and the first one under-utilised. Thus in the next
period the user gets moved back to the first link and in this
way the user oscillates between links. To confront such user
oscillations, we incorporated an additional constraint. If a user
has been moved once it should not be considered for re-
assignment for the next few periods. The question is how long
should we restrain a user from re-assignment once the user has
been moved. To test the limit up to which we can delay re-
assignment of users, in our experiments once a user is moved
it is not considered for re-assignment during the entire period
of the simulation. The duration of our simulations range from
1 hour to 2 hours.

B. Input Traffic Unknown, Network State Dynamic

In this section, we finally assume a totally dynamic network
environment where the input Internet traffic is unknown,
available bandwidth varies across periods and the intradomain
traffic is dynamic too. Thus while selecting an under-utilised
link, we additionally need to take into account the dynamics
of intradomain traffic. In existing Internet protocols like BGP,
if the route selection process results in multiple equally good
edge links then the intradomain distance is used to break the
tie. We propose to follow a similar philosophy in our work.
For a user assigned to an over-utilised link, the set of under-
utilised links that fits the user are equally good edge links.
Thus from this set of under-utilised links we select one with
the least intradomain cost. To incorporate the above alterations
into our heuristics, we need to only change the way an under-
utilised link is selected for moving users, that is the getnext
function. A pseudo-code of the new gefnext function is given
below:

VI. EXPERIMENTAL RESULTS

In this section we describe our experimental evaluation
of the greedy approach. First, we evaluated the performance
of the route control model proposed for static intradomain
network environment and examined the sensitivity of the
model to cross-traffic. In the second and third experiments we
analyzed our dynamic route control algorithm using synthetic
and actual traffic traces respectively. To quantify the benefits
of our approach we compare our heuristics to the default case,
when no load balancing mechanisms are applied.

A. Data Set

Simulation results will largely depend on the characteristics
of the traffic traces. The traces should be collected at transit

input : OUtil[], UUil[]

/* OUser[]:

over—-utilised links. */
fori=171to Sdo

if (rank[z[i]] < 0) then

| OUser[index + +] « i

end
end
/* Sort users in descending order. */
SortedOuser < sort(OUser,”d”)
foreach ou in SortedOUser do

Users assigned to

Ink + x[ou]
/* Get most under-utilised link */
next < getnext()
/* Check if user ou fits. */
if (user ou fits link next) then

/* Move user. */

x[ou] ¢ next
/* Update link utilisation and

rank */
end
end
getnext ()
/* Return most under-utilised link. */

mazx_rank < 0; ret_Ilnk + —1
foreach Ink in UUtil do

if rank[ink] > max_rank then
maz_rank < rank[Ink]

ret_Ink <+ Ink
end

end

return ret_Ink
Algorithm 2: Greedy Algorithm

points so that individual traffic from all the users can be
seen. Secondly the traces should ideally cover traffic on at
least two different interdomain links. Thirdly we should be
able to construct from the traces, the source and destination
addresses, volume of traffic and IP protocol. We consider only
TCP connections since TCP constitutes bulk of the Internet
traffic. In this section we present our observations from the
analysis of a 1 hour trace collected from 4 different ISP
links. Network traffic traces were collected using tcpdump
([3]). The total number of TCP connections detected in the
trace was 22.7 millions and the distinct number of users (IP
addresses) present was 932. The total traffic downloaded was
7.5 gigabytes and outgoing traffic was 0.5 gigabytes. The
highest traffic downloaded by a user was 607 megabytes and
the user was active throughout the duration of the trace period.
On the other hand, the lowest size user downloaded just 67
bytes and it was active for 1 sec only. Traffic flows are usually
classified on the basis of their size and lifetime. We analyzed
the trace both in terms of the bytes downloaded and lifetime
of a user. The data set exhibited all the characteristics of

getnext (user)
/* Return least cost link. */

src < user
min_cost < 999
ret_Ink <+ —1

foreach Ink in UUtil do
dst < Ink

/* Cost between src and dst */
cost + pathcost(sre,dst)

if cost < min_cost then
min_cost < cost

ret_Ink < Ink
end

end
return ret_Ink

interdomain traffic. A summary of our analysis is given below.

o The users were sorted on the basis of their size. We found
that the top 5 percent of the users account for 70 percent
of the traffic and 10 percent of the users account for 80
percent of the traffic. These users have high throughput
and long duration flows (elephants).

« Next we classified the users on the basis of their lifetime
and placed them in bins of 5 minutes. The first bin
considered users that had a lifetime of less than 5 minutes,
the second bin considered users that had a lifetime
ranging between 5 to 10 minutes and so on. Out of the 12
bins, 40 percent of the users fell in the first bin. However,
the total bytes downloaded by these users were just 4.5
percent. That is majority of the users are short-lived and
have a low throughput (mice). Such users will not have
much of an impact on load balancing of the links.

« There does not seem to be any correlation between the
size and lifetime of a user. Earlier studies ([11]) have
also indicated that flow size is independent of the flow
lifetime.

B. Simulating under Static Intradomain Traffic Conditions

In this experiment, we simulated the greedy algorithm using
a simple simulation program developed using Perl ([2]). The
program initially analyzes the traces individually and sums
the payload of all incoming packets that fall within a period.
This sum represents the default utilisation of the links, that is
the utilisation when no load balancing techniques are used.
While computing the utilisation of each link, we also list
the distinct users present in the trace. These users represent
the default assignment of users to the link. Subsequently, we
merge the traces in chronological order using tcpslice ([4]).
Now we simulate the greedy algorithm on this merged trace.
The assignment of users is changed as demanded by the
algorithm and the link utilisations are computed accordingly.
This simulation program does not consider the intradomain
traffic dynamics but nevertheless we can get a feel of the
performance of the algorithms in actual traffic conditions.

1) Experiment 1: Examining the Effects of Cross-Traffic:
This particular experiment is to examine the presence of cross
traffic on our route control strategies. The number of edge
links considered was four, the trace duration was of one hour.
While the traces were collected, we also recorded the available
bandwidth of the links. There were three different runs of the
experiment. In the first run no load balancing techniques were
used and we simply computed the utilisation of the links in
each period (default). In the second run of the experiment, we
used the greedy approach to re-assign the route of the users
but no cross traffic were considered. In the third run of our
experiment, we simulated cross traffic by varying available
bandwidth of the links in each period as per our recorded
values.

The rank of a link is a measure of the deviation of the
utilisation of the link from its ideal value. The overall deviation
for the default case, when no cross traffic was considered, was
18.85 and 17.1 when cross traffic was considered. To quantify
the improvement in load balancing achieved, we computed
period-wise the difference in deviation of the utilisation of the
links when the greedy approach was used to that of the default
approach. When the greedy approach was used, the deviation
of the links from their ideal value was significantly less. The
overall improvement in link deviations is shown in table I.
The improvement in load balancing was 53 percent when
cross-traffic was not considered and 43 percent when cross
traffic was considered. Moreover, we find that the mean and
median are almost same. This indicates that the performance
improvement is uniform in all the periods. The mean, median
and standard deviation of the re-assignments are given in table
II. The number of re-assignments is also identical in all the
periods. This means that due to the dynamic nature of Internet
traffic we constantly need to load balance the traffic.

TABLE 1
IMPROVEMENT OF ROUTE CONTROL SCHEME IN COMPARISON TO default
CASE (IN PERCENT)

Mean | Median | Standard Deviation
No Cross Traffic

9.96 | 9.19 | 3.78
Cross Traffic
7.34 | 7.09 | 5.95
TABLE II

USER RE-ASSIGNMENTS (IN PERCENT)

Mean | Median | Standard Deviation
No Cross Traffic

1.76 | 1.3 | 1.83
Cross Traffic
0.65 | 0.3 | 1.0

C. Simulating under Dynamic Traffic Conditions

In order to incorporate the dynamics of intradomain traffic
into our simulation, we first need to create a topology of
the internal network. As far as choosing a network topology
was concerned we used a standard topology generator (BRITE

([6]). The network model was later enhanced by dynamically
changing the link attributes, bandwidth and link costs. To find
how various attributes of network topologies affect the load
balancing of links, we experimented with a set of network
topologies. Our focus in these experiments was on access
network topologies where users connect to access routers
which in turn connect to edge routers and the Internet. Thus
from the set of nodes we identified edge nodes and access
nodes. We assumed that an edge router connects to a single
ISP. To simulate the edge links between the stub network and
its ISPs (connecting path), for each edge router we created a
corresponding ISP node and created links between the two.
During the course of the experiment, available bandwidth
of the connecting path as well as that of the intradomain
links were changed. Cost of a link was set to the inverse of
its available bandwidth. The intradomain protocol used was
OSPE. The available bandwidth and as a consequence the
link weights were computed at the end of each period. The
simulation engine used was ns-2 ([1]).

User nodes were created and attached to the access nodes.
For each user node we created a corresponding destination
node (sink) and attached it to its relevant ISP node. The cost
of the link from the user node to the access node and from
the destination node to the ISP node was set to 1. To simulate
our proposed route control techniques, we dynamically need
to change the route assignment of users. In order to effect
such user re-assignments, we created additional links from a
destination node to each of the other ISP nodes. The costs
of these additional links were initially set to a very high
value (infinity). This means that traffic will flow from the first
link only and the additional links will not be used. While
simulating the greedy approach, if the heuristic required that
a user be moved from its current ISP to a second ISP, the
costs of the path from the destination node to the first ISP
was changed to infinity and to that of the second ISP was
changed to 1. Figure 2 shows a network topology with two
edge routers, two ISPs and three user classes. As can be
seen in the figure, USER1 and USER?2 are assigned to ISP1
and USER3 is assigned to ISP2. For instance, if during the
simulation we require to move USERI1 from ISP1 to ISP2,
then the link from DST1 to ISP1 is set to infinity and the link
from DST1 to ISP2 is set to 1.

1) Experiment 2: Validating Using Synthetic Data: A major
challenge while developing test beds for network experiments
is modeling the Internet traffic. The discrete event simulator,
ns-2, provides a rich library of traffic models. In this experi-
ment we used three different types of user classes represented
by three different traffic models. Each instance of a traffic
model represented an user type or user class in our experiment.
The first user type modeled was by using the PackMime
Internet traffic model ([12]), a model for generating HTTP
traffic. The second user type used was the ns-2 class Page-
Pool/WebTraf, a standalone web traffic model ([16]). The third
user class was a ftp server. Internal or intradomain traffic was
generated using Pareto On/Off traffic sources. The topology
considered consisted of 25 nodes and 50 intradomain links.

Fig. 2.

Network topology.

The number of edge routers considered was four. Capacity of
all the links were considered to be the same (10 Mbps). The
duration of the experiment was 100 periods. With the above
experiment settings, we simulated the default case (no load
balancing) in the first run of our experiment and collected
the traffic traces. In the second run of our experiment, we
simulated the greedy heuristic proposed for a dynamic network
environment with the same network and user class settings.
To ensure that the same amount of traffic was generated in
both the runs, the user class parameters were kept same. The
link utilisations when no load balancing techniques were used
and when the greedy approach was used are shown in figure
3(a) and 3(b) respectively. As can be seen, application of
our route control strategy significantly improved traffic load
balancing on the links. The average deviation of the links
from their ideal value (i.e. ranks) was reduced from 30.67
percent to 6.03 percent. The load balancing of the links have
improved by 80 percent. The overall user re-assignment was
about 4.48 percent. The relatively higher percentage of user
re-assignment is because the default deviation of the links
was very high. One goal of this experiment was to test the
extent of performance improvement in load balancing possible
on links with highly disparate utilisations. In real network
conditions, we find that deviations for the default case are
relatively less and hence the user re-assignments are also low.
An advantage of using synthetic data is that we can store the
request-response exchanges between a client and a server. In
table III, the outgoing traffic, incoming traffic and round-trip
time (RTT) experienced by the users is shown for both runs
of the experiment. The round-trip times improved by about
7 percent as compared to the default case. The volume of
outgoing and incoming traffic in both runs of the experiment
was almost the same. This implies that traffic condition in both
runs of the experiment was similar.
2) Experiment 3: Validating Using Actual Data Traces:

In this experiment we propose to use the actual data, but
unfortunately ns-2 does not directly support TCP connection

TABLE III
EXPT 2: CHARACTERISTICS OF USER TRAFFIC.

Experiment Outgoing Incoming RTT
Traffic (GB) | Traffic (GB) | (seconds)
Default 0.17 2.47 990.88
Greedy 0.18 2.43 918.20

Link Utilization

Percentage Used

. |
0 10 20 30 40 50 60 70 80 90 100
Periods

(a) Default

Link Utilization
95 T T T T

S0 Link 4 ---ee-

Percent Used

Periods

(b) Greedy

Fig. 3. Expt 2: Plot of link utilisations.

from traffic traces. The individual traces collected from each of
the edge links were therefore pre-processed before being fed
into ns-2. We first extracted the distinct users (IP addresses)
present in a trace. Individual ns2 trace files were created for
each of these users. The trace files were scanned and whenever
an incoming packet for a user was encountered the payload
and inter-arrival time of the packet was appended to the ns2
trace file of the user. Like in our previous experiment for each
user node we created a corresponding destination node. But
instead of attaching a traffic model to the user node, the ns2
trace of the user was streamed from the destination to the user.

In this experiment, the user base considered was 1500
users. The duration of the trace was 2 hours. The total traffic
downloaded was about 20 gigabytes and the outgoing traffic

was 1.36 gigabytes. The network topology consisted of 50
nodes and 300 intradomain links. The numbers of edge and
access nodes considered were 8 and 17 respectively. With these
experimental settings, we simulated the three route control
mechanisms - default case, the greedy algorithm that does
not consider intradomain traffic and the greedy algorithm
that considers intradomain traffic while selecting routes. The
deviations of the links from their ideal value for all the three
schemes were plotted using a stacked histogram (figure 4(a)).
A stacked histogram for each period allows comparison in
the following way. The first stack depicts the least deviation,
the second stack shows the next higher deviation. The third
stack shows the highest deviation. As can be seen in the
figure, in the first period all the three approaches have the
same deviation and so we can see only one histogram. In
the second period, the greedy approach (without intra-domain
traffic) has the least deviation which is followed by the
greedy approach with intradomain traffic. The default case has
the highest deviation in the second period. Both the greedy
approach performed better than the default case in all the
time periods. The average percentage deviation of the link
utilisations from their ideal value for the three approaches are -
14.51 (default), 8.64 (greedy, without considering intradomain
traffic) and 9.02 (greedy, with considering intradomain traffic).
Thus, the performance improvement in terms of load balancing
as compared to the default case is on an average about 40
percent. The user re-assignments are shown in figure 4(b).
The overall percentage of users re-assigned per hour is less
than 2 percent.

In an actual network, latency of incoming traffic flow will
depend on the delay incurred by the flow on the Internet path,
delay on the intradomain paths as well as delay incurred by
the flow’s corresponding outgoing requests/acknowledgments.
This means for different intradomain paths followed by a user,
the delays incurred by the incoming traffic will also differ.
Howeyver, in this simulation, we cannot see the effect of such
delays as our incoming traffic is pumped at a pre-defined rate.
Nevertheless, to bring to light the difference, whenever a user
was re-assigned, we output the intradomain path followed by
the user as well as the IGP cost of the path. The total cost
of intradomain paths followed by users when edge links were
selected without considering intradomain traffic was 1295.91.
In contrast if the routes were selected based on the IGP cost,
the total cost of the intradomain paths was 590.65. Thus there
is an overall improvement by more than 50 percent in terms
of the IGP cost. In real network this improvement in the
intradomain cost will improve the RTTs of the downloads.

VII. CONCLUSION

A number of previous works ([7], [8]) have established
the practical benefits of load balancing traffic. In this work
we propose to load balance the incoming traffic of a stub
access network by keeping the link utilisations in proportion to
their available bandwidth. The scheme ensures that utilisations
of the links are fairly balanced even if the measurement of
bandwidth metrics is approximate. In the first part of our

"Default ' —= '
reedy ES<=
Greedy (intra-domain traffic) s

Percentage deviation from optimal

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Period (5 mins. per period)

(a) Comparison of Ranks

Greedy =
Greedy(intra-domain traffic) e

User Percentage Moved

:E';'EJJE'E:@E'E! Al il

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Period (5 mins. per period)

(b) Percentage of Users Re-assigned

Fig. 4. Expt 3: Greedy approach without and with intradomain traffic.

work we assume that the network traffic is known and the
measurements are accurate (offline models). Even with such
strong assumptions we prove that our problem is NP-complete.
We also prove that if there are over-utilised links then their
must exist under-utilised links that will exactly accommodate
the excess traffic. In the later part of our work, no assumptions
were made about the input traffic (online models). Leveraging
on our offline analysis, we propose a simple, light-weight and
practically viable solution (greedy approach). Our proposed
scheme can be deployed with minimal changes to existing
networks. The proposal was tested under different topologies
and network traffic loads. First we tested the greedy heuristic
in a static intradomain traffic environment and examined the
effects of cross traffic. Next we examined the performance in
a dynamic network environment using synthetic data. Finally
the performance was tested using real traffic traces. Results
show that we can achieve more than 50 percent improvement
in load balancing traffic in a static intradomain network envi-
ronment and 40 percent improvement in a dynamic network
environment. The re-assignment cost was small, less than 2

percent of the total users present. There is, however, a need
to carry out more experiments in a real network and to study
the effects of our route control techniques on neighbouring
domains. As future work we intend to develop a distributed
version of our algorithm.

VIII. APPENDIX A

Theorem 8.1: 1If there are over-utilised links then there must
exists one or more under-utilised links. The absolute value of
sum of ranks of over-utilised links must equal sum of ranks
of under-utilised links.

Proof: Suppose there are N links. Let IU((t), U.(t)
and A, (t) denote the ideal utilisation, actual utilisation and
available bandwidth of a link of a line e at time ¢. Our basic
goal is to re-distribute the total incoming traffic. Therefore,
the sum of ideal utilisation of the links is equal to the sum of
the utilisation of the links.

e=N e=N
D IU() =K Y Ac(t)

e=1

e=N

D Ac(t)

e=1

Yo, Ue(t)

Yol Ae(t)
e=N

= Z U, (t) = Total incoming traffic at time t.
e=1

We pair the ideal utilisation and utilisation of a link and rewrite
the above equation as follows.

(IU; —U1) + (IUs —Us) + ...+ (IUx —Ux) =0 (4

Each term in equation 4 represents the rank of the corre-
sponding link. Since the sum total of the ranks is zero, it
means either all the terms are zero or there are some negative
terms and positive terms which cancel out each other. The
first possibility that all the ranks are zero is unlikely since it
will mean the utilization of all the links are ideal. In practice
utilisation of a link will be either greater or lesser than its
ideal value. Suppose utilisation of the links / and m are greater
than their ideal value (over-utilised links). It means the terms
(IU, —U;) and (IU,, — U,,) are negative. Since the net value
of the equation must be 0, there will be one or more positive
terms (under-utilised links) present in the equation. Without
loss of generality, let n be the only under-utilised link. This
means the links /, m and n have non-zero ranks. Thus equation
4 can be re-written as:

(IU; = U}) + (IUy, — Up) + (IU,, — Uy,) =0 or
[(IU; = U) + (IUp — Up)| = |(IU, = U,)|

Hence the proof.]

REFERENCES

[1]
[2]
[3]
[4]

ns-2, Network Simulator version 2. http://www.isi.edu/nsnam/ns/.
Perl [online]. http://www.perl.org/.

tcpdump - dump traffic on a network. http://www.tcpdump.org/.
teptrace. http://www.tcptrace.org/.

[5] The Multi Router Traffic Grapher (MRTG) [online].
http://www.mrtg.com.
[6] A. Medina and A. Lakhina and I. Matta and J. Byers. BRITE: An

Approach to Universal Topology Generation. In Proceedings. Ninth
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, pages 346-353, 2001.

[7]

[8]

[9]
[10]

(11]

(12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

(271

A. Akella, B. Maggs, S. Seshan, and A. Shaikh. On the Performance
Benefits of Multihoming Route Control. Networking, IEEE/ACM Trans-
actions on, 16(1):91-104, Feb. 2008.

A.S. Sairam and G. Barua. Effective Bandwidth Utilisation in Multi-
homing Networks. Communication System Software and Middleware,
2006. Comsware 2006. First International Conference on, pages 1-8,
Jan 2006.

B. R. Greene and P. Smith. Cisco ISP Essentials. Cisco Press, 2002.
Olivier Bonaventure, Clarence Filsfils, and Pierre Francois. Achiev-
ing Sub-50 Milliseconds Recovery upon BGP Peering Link Failures.
IEEE/ACM Trans. Netw., 15(5):1123-1135, 2007.

N. Brownlee and K. C. Claffy. Understanding Internet Traffic
Streams: Dragonflies and Tortoises. Communications Magazine, IEEE,
40(10):110-117, Oct 2002.

Jin Cao, W.S. Cleveland, Yuan Gao, K. Jeffay, ED. Smith, and
M. Weigle. Stochastic Models for Generating Synthetic HTTP Source
Traffic. INFOCOM 2004. Twenty-third AnnualJoint Conference of the
IEEE Computer and Communications Societies, 3:1546-1557 vol.3, 7-
11 March 2004.

K. Chandrayana, R. M. Karp, M. Roughan, S. Sen, and Y. Zhang.
Search Strategies in Inter-domain Traffic Engineering. Interna-
tional Computer Science Insitute, http://www.icsi.berkeley.edu/cgi-
bin/pubs/publication.pl?ID=000171.

D. Kaitz and K. Kompella and D. Yeung. Traffic Engineering Extensions
to OSPF Version 2. In RFC 3630, September 2003.

Nick Feamster, Jay Borkenhagen, and Jennifer Rexford. Guidelines for
Interdomain Traffic Engineering. SIGCOMM Comput. Commun. Rev.,
33(5):19-30, 2003.

Anja Feldmann, Anna C. Gilbert, Polly Huang, and Walter Willinger.
Dynamics of IP Traffic: A Study of the Role of Variability and the
Impact of Control. SIGCOMM Comput. Commun. Rev., 29(4):301-313,
1999.

M. R. Garey and D. S. Johnson. “ Strong ” NP-Completeness Results:
Motivation, Examples, and Implications. J. ACM, 25(3):499-508, 1978.
F. Guo, J. Chen, W. Li, and T. Cker. Experiences in Building A
Multihoming Load Balancing System. In INFOCOM 2004., 2004.
Ningning Hu, Li (Erran) Li, Zhuoging Morley Mao, Peter Steenkiste,
and Jia Wang. Locating Internet Bottlenecks: Algorithms, Measure-
ments, and Implications. In SIGCOMM ’04: Proceedings of the 2004
conference on Applications, technologies, architectures, and protocols
for computer communications, pages 41-54, New York, NY, USA, 2004.
ACM Press.

Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. De-
layed Internet Routing Convergence. IEEE/ACM Trans. Netw., 9(3):293—
306, 2001.

M. Caesar and J. Rexford. BGP Routing Policies in ISP Networks.
Network, IEEE, Nov.-Dec. 2005.

R. Pang and M. Allman and M. Bennett and J. Lee and V. Paxson
and B. Tierney. A First Look at Modern Enterprise Traffic. In
SIGCOMM/USENIX Internet Measurement Conference, Oct. 2005.

S. Blake and D. Black and M. Carlson and E. Davies and Z. Wang and
‘W. Weiss. An Architecture for Differentiated Services. In RFC 2475,
December 1998.

S. Martello and P. Toth. Knapsack Problems. John Wiley & Sons, 1990.
K. Thompson, G. J. Miller, and R. Wilder. Wide-area Internet Traffic
Patterns and Characteristics. Network, IEEE, 11(6):10-23, Nov/Dec
1997.

Steve Uhlig and Olivier Bonaventure. Designing BGP-based Outbound
Traffic Engineering Techniques for Stub ASes. SIGCOMM Comput.
Commun. Rev., 34(5):89-106, 2004.

Y. Rekhter and T. Li. and S. Hares. A Border Gateway Protocol 4(BGP-
4). RFC 4271, Jan 2006.

