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Abstract. The container problem describes the behaviour of elastic porous media in a 
rectangular container, which is completely saturated by an ideal incompressible liquid. By time 
the liquid extrudes on the surface of the container while the stress resulting from a given top 
load acts on the shrinking elastic solid due to its compression. The analysis bases on a space-
time potential that contains a linear elastic term, a darcy flow term, and a boundary load term. 
The variation of the potential results in a space-time principle. Its minimum preserves 
approximately equilibrium over space and time. 
 
1 INTRODUCTION 

The container problem describes the behaviour of elastic porous media in a rectangular 
container, which is completely saturated by an ideal incompressible liquid. Displacement and 
velocity at the bottom are zero. Motion is possible only in the vertical direction. The boundary 
load on the top acts on the elastic solid. It starts with zero at the beginning and increases to its 
maximum at the end of duration T. By time the liquid extrudes on the surface of the container 
while the stress moves to the shrinking elastic solid due to its compression [2], [4]. 

Quadratic approximation of the displacement in space results in linear elastic stress 
distribution and cubic liquid pressure distribution. It fulfils compatibility of displacement, 
strain, and velocity. The cubic approximation of the displacement in time starts with a time 
gradient of zero and ends towards infinity with a time gradient of zero. Displacements and 
velocities are zero in the beginning. 

The state at the end of duration T results from the minimum of virtual worktime which is the 
integral of virtual work over space and time. For T towards infinity solutions are available for 
low order approximation according to the rule of Bernoulli L’ Hospital. The potential decreases 
for higher order approximation which indicates convergence [1], [5]. 

2 POTENTIAL AND PRINCIPLE 

2.1 Space Formulation 

For a given point of time the elastic stripe is subjected to a downward (negative) top load 
and an upward area load which results from the declining liquid pressure resulting from the 
velocity of the upward moving water. 

 
 



M. Göttlicher 

 2

Potential: 

T

A A B

1 1
d A d A d B

2 2
   ε σ u p u σ  (1) 

x

x
x xy

y
y y

xy
yx

u

x

u pu

u py

uu

y x

 
    
                                

ε Du σ u p  (2) 

strain

stress

displacement

pressure gradient

A area

B boundary



ε

σ

u

p
 

The potential contains an elastic term, an area load term, and a boundary load term [3]. The 
area load results from the impact of the declining pressure on the elastic solid. The boundary 
load is given and identical to the elastic stress of the top. The liquid pressure is zero at the top. 
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E Young 's modulus

Poisson ratio

k Flow parameter

  

The pressure gradient depends on the displacement. For asymmetric interpolation in space 
and time evolve two area load terms. 

 
Plane strain stripe of hight H and  = 0: 
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2.2 Space Time Formulation 

The integration over space is extended by an integration over time. 
Potential: 
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The analysis bases on the minimum of the space time potential. 
 
Principle: 
 
For a given duration T the virtual work is integrated over space and time The virtual work 

time is set to zero: 
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3 APPLICATIONS 

A plane container of a height H of 20 meters and width L of 10 meters is considered.  

 
Figure 1: Benchmark system [4]. 
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A constant top load acts on solid and liquid. In the beginning it acts completely at the liquid. 
By time the liquid extrudes on the surface of the container while the stress moves to the 
shrinking elastic solid due to its compression [4]. 

With respect to the presented time approximation in this paper the system is modified. 
Instead of a constant top load  from the beginning to infinity, a time consistent load increasing 
from zero to maximum during the time T is applied. The flow parameter is reduced to 10-5. 
Also, no top load acts on the liquid since the presented potential is restricted to the elastic solid. 
The liquid pressure p at the top is zero and it increases according to the upward velocity of the 
liquid towards the bottom. It is a secondary value. 

3.1 Bilinear approximation 

The rough bilinear approximation is appropriate to explore the solution mechanism of the 
space time analysis. Despite the significant violation of boundary conditions and equilibrium 
the main behavior is covered sufficiently. The power of the potential reduces the incompetence 
of the interpolation. The handmade analysis is easy to perform and to understand. 

Displacement: 
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Stress: 
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Figure 2: Space-time container problem. 

Velocity and pressure gradient are linear over space and constant over time. 
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Benchmark system: 

  
Figure 3: Displacement uH and stress  at the top. 

  
Figure 4: Stress 0and pressure p0 the bottom. 
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Figure 5: Pressure gradient p’ and pressure p (constant in time). 

  
Figure 6: Displacement uT and stress  at the end of duration T. 
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Towards infinity the mere elastic solution is realized. 
 
Mere Darcy solution: 
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3.2 Quadratic cubic approximation 
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Figure 7: Quadratic cubic approximation. 
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Strain and velocity: 
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Top load H and top load vector b: 
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Figure 8: Displacement uH and stress  at the top. 

  
Figure 9: Stress 0and pressure p0 the bottom. 
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Figure 10: Pressure gradient pT’ and pressure pT at the end of duration T. 

  
Figure 11: Displacement uT and stress  at the end of duration T. 

The most obvious space time effect is the slightly decreasing displacement u towards the 
end of duration T. The pressure p turns to tension. This effect vanishes if the time derivation at 
the end is set to zero or if the duration T is extended towards infinity. 
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CONCLUSIONS 

- An equal treatment of space and time in connection with low order approximation is 
an appropriate approach to analyze an elastic stripe subjected to the extrusion of a 
liquid due to compression. 

- The minimization of virtual worktime is a powerful extension of the minimization of 
virtual work. 
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