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Summary. We present an efficient way to compute the acoustic energy within complex-shaped
geometries and obstacles inside cavities in the mid-high frequency range. The method is based
on energy flow, known as the Simplified Energy Method (MES), considered quite accurate in
this frequency range. However, its performance is primarily effective in simple cavity shapes and
does not adequately address obstacles within the domain. We then propose a hybrid method
that couples ray and triangle intersection techniques with the MES formulation. This method
involves calculating ray intersection points to identify blocking elements before computing the
energy transfer in each boundary element. We rely on a primary intersection state matrix,
which contains the overall information of the direct view between elements. This matrix is
then integrated into a modified MES equation, thereby disabling unnecessary computation and
ensuring precise energy transfer of blind couples. The hybrid formulation is applied to both
direct and reverberant fields to calculate the total energy density. Numerical simulations are
conducted in a complex domain enclosure and compared with traditional MES calculations
and physical properties. The simulation results demonstrated the accuracy of the proposed
algorithms, and the computational cost is analyzed and appears to be totally suitable for shape
optimization problems, as it usually involves many ‘call’ of the objective function.

1 INTRODUCTION

In the framework aimed at enhancing acoustic performance across various environments,
from transportation compartments like aircraft cabins, cars, and boats to building rooms, the
reduction of noise levels holds paramount importance. Typically, pressure noise exhibits three
distinct behaviors as frequency increases. The first band describes the low-frequency region,
where methods such as finite element methods (FEM) and boundary element methods (BEM)
are well-suited [1]. The second and third frequency regions define the mid and high frequency
domains, characterized by high modal density. The primary challenge at high frequencies lies in
managing small wavelengths, necessitating the handling of numerous degrees of freedom. Several
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studies have indicated that deterministic techniques such as the FEM and BEM encounter
challenges when processing the extensive datasets needed, especially when addressing the mid-
high frequency range, proving computationally intensive for large models [2]. Over the past
decade, a method based on geometrical acoustics has been applied to address this frequency
band. The image-source method uses virtual sound sources to simulate sound reflection off
surfaces, based on the assumption of sound traveling in straight lines with specular reflections
from opposing surfaces. [3]. In contrast, ray tracing involves simulating sound propagation as
a series of rays emitted from a source. As these ray encounter surfaces, they are absorbed,
reflected, or transmitted based on the acoustic properties of the materials they encounter [4].
For enclosures, both the image-source method and ray tracing can be applied efficiently [5].
However, their significant computational demands, particularly in complex environments, limit
their practicality for large-scale or highly detailed applications [6]. Advanced techniques such
as Statistical Energy Analysis (SEA) for vibroacoustic are also of interest for medium and high
frequency acoustic analysis. SEA has been applied with considerable success, leveraging the
consideration of mechanical energy within complex-built structures [7, 8]. The system is divided
into subsystems, with energy exchange defined based on the statistical coupling of subsystem
modes. Several researchers have studied the application of SEA in acoustic simulation. For
instance, authors in [9] utilized the SEA model to estimate the sound pressure level generated
by a commercial refrigerator in a reverberant field, defining 26 subsystems with parameters
necessary for model computation, such as modal density, bending wave speed, bending wave
number, bending wavelength, damping loss factor, and critical frequency. Their results were
compared against real-world experiments. Cordioli et al. [10] explored the efficacy of SEA in
vibro-acoustic vehicle modeling, demonstrating its usefulness in preemptively addressing noise
issues and optimizing noise control from the design phase. Additionally, Shorter, P. J., and
Langley, R. S. [11] reviewed the integration of SEA with other numerical methods for analyzing
vibro-acoustic interactions in complex systems, with numerous developments and applications
documented in references [12, 13, 14]. Energy methods provide efficient alternatives for high
and medium frequency ranges, where numerical approaches such as FEA or BEM formulations
become computationally intensive. In contrast to these methods, which require fine meshes,
energy methods can yield results within seconds or minutes, significantly reducing computational
time. In this work focuses on a local energy formulation for acoustic cavities. The initial
development of this method, presented by Nefske and Sung [15], extended SEA densities to a
local energy formulation for predicting the spatial spread of energy density within subsystems.
Subsequent authors have further refined this into the Simplified Energy Method (MES) [16, 17,
23]. MES has been applied across various domains, including beams, membranes, and plates
[18, 19, 20, 21, 22], as well as in enclosure acoustic cavities for sound source identification [24],
and as an objective function in topology and shape optimization contexts [25, 26]. However,
its effectiveness is predominantly limited to simple cavity shapes and struggles to adequately
handle obstacles within the domain.

This paper propose a novel method implemented within the MES formulation, enabling its
application to more complex acoustic cavities, even in the presence of obstacles within the
domain. The technique we propose is based on employing ray and triangle intersection to
detect blind couples between elements presented in the matrix, which is then integrated into
the modified MES formulation. The present paper is organized as follows: the first part recalls
the basic construction of the Simplified Energy Method, then the derivation and adaptation of
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ray and triangle intersection algorithms into the MES formulation. Numerical experiments are
provided in this study. The validation of the new approach utilizes the energy conservation law
to investigate the total energy transfer in the enclosure cavity. Finally, the results were achieved
by comparing the proposed method with conventional MES in cases of complex acoustic cavities,
including those with internal obstacles.

2 SIMPLIFIED ENERGY METHOD (MES)

2.1 General description of MES

The principle of the Simplified Energy Method is based on determining the energy density W
and the energy flow I resulting from source in a domain Ω with the boundary ∂Ω Illustrated in
in Figure 1, radiation energy at point M is computed in two forms: firstly, the direct field energy
emitted by the primary source at S and secondly, the fictitious or reverberating energy trans-
mitted from the surface boundary defined as element dP . This study focuses on the steady-state
equation; hence, the numerical implementation for the transient state has not been addressed.

Figure 1: Energy transfer from direct and reverberated fields to a specific point M

The initial step involves an energy balance to describe the local energy quantity at the
observation point M , expressed as follows:

−∇I⃗ = πdiss (1)

Here, ∇ represents the gradient operator, πdiss denotes the power dissipation. The dissipation
power term is analogous to that found in the SEA viscous model, as previously discussed in
literature references [5, 7], which describes πdiss = ηωW where η is the damping loss factor,
assumed to be minimal in acoustic fluids, and ω is the angular frequency. The MES method
incorporates waves that consist of both direct and reverberated energy components. The direct
field results from the input power source, while the reverberated field emerges from boundary
reflections [24]. This paper focuses specifically on the energy density W , which is related to the
square of the sound pressure in the cavity. By considering both fields, we apply the superposition
principle:

W = Wdir + Wrev (2)
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The relationship between the propagative waves, energy flow, and energy density is notably
straightforward. Utilizing an intrinsic energy law, we define wave velocity c as follows [25]:

I⃗(M) = cW (M)n⃗ (3)

Where n⃗ is the unit vector directed towards observation point M . In a 3D space, the wave
fields are symmetrical about the source point S. The propagation fields vary with the distance
r form S to M . Thus, we can reformulate the energy balance equations (1) and (3) as:

1

r2
∂

∂r
(r2⃗I) = 0 (4)

Where r is the distance from the source point S to the observation point M . Equation (4)
can be rewrited by focusing on the energy density in the W field:

−c2
1

r2
∂

∂r
(r2W n⃗) = 0 (5)

Equation (5) is termed the local energy equation for symmetrical wave propagation, a concept
central to the radiosity method. This method, initially proposed by Kuttruff [27], is the focus
of our current approach. To derive solutions for equations (4) and (5), we introduce elementary
expressions: G(r) for energy density and H(r) for energy flow, under analogous conditions,
represented as:

G(r) =
1

γ0cr2
and H(r) =

1

γ0r2
u⃗r (6)

Where γ0 denotes the solid angle of the space under consideration (γ0 = 4π) in a three
dimensional space and u⃗r represents the unit vector from the source, covering both direct and
reverberated fields, to the observation point M .Utilizing the principle of superposition for energy,
the combined energy fields of energy density and energy flow within the cavity are modeled based
on the contribution from primary sources and fictitious sources, the latter representing unknown
parameters of the reverberant field. The formalization of these energy fields is provided in the
representation formulas that:

W (M) =

∫
Ω
ρ(S)G(S,M) dS +

∫
∂Ω

σ(P, θP )G(P,M) dP (7)

I(M) =

∫
Ω
ρ(S)H(S,M) dS +

∫
∂Ω

σ(P, θP )H(P,M) dP (8)

Where ρ is the intensity of the primary source, which is a known quantity, and σ is the
magnitude of the fictitious sources that need to be determined. To achieve this, we describe
the secondary source, which varies with the angle θP (see Figure 2). This concept is commonly
known as the law of perfectly diffuse reflection (Lambert’s law of cosine emission direction). The
boundary sources σ(P ) serve as the unknowns we aim to determine in the problem. These sources
account for the reverberated energy and are calculated by considering the energy balance at the
boundary interfaces. We establish the power balance by introducing the absorption coefficient α
, which is the ratio of the reflected power to the incident power (ranging from 0 to 1), observed
at a point P . Therefore, the total reflected energy can be characterized as follows:

σ(P ) = (1 − α)

(∫
Ω
ρ(S)H(S, P ) dS +

∫
∂Ω

4 cos(θQ)σ(Q)H(Q,P ) dQ

)
· n⃗P (9)
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Where n⃗P is the outward normal vector at point P . This form of the integral equation is
termed the Fredholm equation of the second kind, with σ(P ) as the unknowns. To solve this,
we will implement a discretization strategy for the structure and a standard numerical scheme,
details of which will be provided later.

Figure 2: Notation of interaction from source to element and element to element.

2.2 Implementation of the Simplified Energy Method (MES)

This section is devoted to detailing the numerical implementation of MES. The foundation of
this implementation is the matrix operator T , which operates within the function space defined
on the boundary ∂Ω. This operator is integral to addressing the boundary sources as specified
in equation (9):

T : σ → (1 − α)

∫
∂Ω

σ(Q)V (Q,P ) ·
cos(θQ) cos(θP )

π|PQ|2
dQ︸ ︷︷ ︸

Kernel K

(10)

To facilitate the integration process and to account for obstacles that may block the line of
sight, we introduce a binary visibility coefficient V (Q,P ) which is essential for assessing the
potential energy exchange between two boundary surfaces. According to the principle of energy
conservation within an enclosure, the integration over the kernel K, ensuring that the total
energy interacting with a point on the boundary sums up to unity. This principle can be applied
for validating the numerical calculation in the paper which will be provided in the numerical
experiment. Based on equation (9), this can thus be written in matrix form where Id represents
the identity operator:

(Id − T )σ(P ) = B(P ) (11)

The right-hand side B corresponds to the contributions from primary sources which construct
the elementary H defined by:

B(P ) = (1 − α)

∫
Ω
V (S, P ) · cos(θP )

4π|SP |2
dS (12)

The numerical implementation can be performed through boundary discretization. The re-
verberating fields will be solved by equation (11) which is: σ(P ) = (Id − T )−1B(P ) then the
final energy density referred to in equation (7) can be expressed:

W (M) =

Nk∑
k=1

ρ(S)k
4πc|SkM |2

· V (Sk,M) +

Nj∑
j=1

σ(Pj) cos(θPj )

πc|PjM |2
· V (Pj ,M) (13)
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In equation (13), k represents the count of primary sources, and j indexes the boundary
elements. It is also crucial to note that inside the boundary ∂Ω, there may be complex geometries
or obstructions that could interfere with the energy paths between points P and Q. The next
section will introduce the computation of the visibility coefficient matrix V , which significantly
improves the accuracy of energy transfer calculations throughout the acoustic domain we are
analyzing.

3 HYBRID METHOD FOR MES IN COMPLEX CAVITY

In the previous section, we discussed the MES formulation and its numerical application. Our
primary focus now is to introduce a method that enables the application of MES in more complex
cavity shapes, even in the presence of internal obstacles. This hybrid method incorporates ray
and triangle intersection algorithms, as presented by Möller, T. [28]. As illustrated in Figure 3,
we discretize the acoustic cavity into a mesh of triangles, with the center of each mesh element
pair represented by points O and S.

Figure 3: illustrates two key concepts: (a) the intersection of a ray with a triangle and (b) the criteria
for the movement of the intersection point within barycentric coordinates.

The direction vector D is determined by the relative positions of the element pairs, using the
vertices V0, V1 and V2 of the blocking element (obstacle). The intersection point is represented
by a parametric ray equation:

R(t) = O + tD (14)

Where t is a scalar that represents the distance along the ray from the originating element
O to the potential intersection point on the obstructing triangle. To describe a point P on the
plane of the triangle, we employ barycentric coordinates with the parameters u and v, utilizing
the vertices of the triangle. This approach is applied to validate whether a sound ray intersects
with a triangle, which is essential for understanding sound propagation in complex environments.
A point P on the triangle is thus expressed in barycentric coordinates as:

P (u, v) = (1 − u− v)V0 + uV1 + vV2 (15)

From equation (15), point P is located inside the triangle if u ≥ 0, v ≥ 0, and u+ v ≤ 1. The
intersection between the ray R(t) and the triangle at point P (u, v) occurs when these conditions
are satisfied, leading to the equation:

O + tD = (1 − u− v)V0 + uV1 + vV2 (16)
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Rearranging the terms, we obtain:

[
−D, V1 − V0, V2 − V0

] t
u
v

 = O − V0 (17)

Equation (17) can be geometrically interpreted by mapping to the x, y and z coordinate and
is solvable using Cramer’s rule: t

u
v

 =

 T E1 E2

−D T E2

−D E1 T

−1

(18)

Where E1 = V1 − V0, E2 = V2 − V0 and T = O − V0. By solving Equation (24), we can
identify which elements between paired considerations create an obstacle by presenting more
than one intersection point for each ray direction. A value of 0 is assigned when intersections
are found, and a value of 1 when they are present. This binary assignment is then integrated
into the visibility matrix V , which is essential in the MES formulation, particularly for complex
acoustic scenarios.

4 NUMERICAL SIMULATIONS

4.1 Verification of the Hybrid Method

This section details a numerical simulation conducted for a complex acoustic cavity to validate
our proposed method. The cavity has a rectangular shape with dimensions is 4×6×3 m. We
assume that all boundaries have an absorption coefficient of 0.5. A point source, emitting 1
W of power and located at 5.5, 2, 0.8 m within the cavity. Inside, there are two obstacles,
both subject to the same conditions depicted in Figure 4. The entire cavity is discretized into
a triangular mesh consisting of 400 elements using Gmsh software, an open-source tool that is
adept at creating and meshing finite element models. The mesh elements generated in Gmsh are
exported in the .VTK file format, which is compatible with Python. For the acoustic simulations
in this research, we utilize the PyVista API in Python to manage the mesh data effectively. The
validation of the hybrid method will be examined.

Figure 4: The acoustic cavity finite element domain.
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To execute the obstacle checking algorithm, we can employ the principle that calculates the
sum of the energy fractions exchanged by a patch within an enclosed cavity as referred to in
equation (10). The numerical method to compute this is the well-known contour integration
method presented in [29]. The result in Figure 5 demonstrates the conservation of energy across
each element. It is apparent that the obstacle check algorithm plays a crucial role in the accuracy
of energy exchange calculations within the acoustic domain. Calculations performed without
obstacle checking (represented by the red data points) show a significant deviation from the
ideal value. This variance not only indicates a less accurate energy exchange assessment but
also highlights the potential for overestimation of the energy transfer in scenarios where the
sound waves are obstructed. Contrastingly, when obstacle checking is applied (indicated by the
black data points), the sum of the form vectors consistently approaches the ideal value of 1.

Figure 5: The result of summation from vector, comparison between using obstacle check algorithm
(black) and calculation without obstacle checking (red).

4.2 Numerical result of Sound Pressure Level (SPL)

The comparison of sound behavior is provided by examining two distinct acoustic cavities:
a simple rectangular cavity and a more complex configuration with two obstacles, comparing
their acoustic responses. The sound pressure level (SPL), measured in decibels (dB), was used
to gauge energy density within these spaces. To examine sound movement, we measured SPLs
across two planes: the XY plane, situated 0.5 meters from the base, and the XZ plane, 1.5
meters from the left side wall. As expected, and depicted in Figure 6(a), the SPL within the
unobstructed cavity showed a reduction in a spherical pattern moving away from the source.
This observation aligns with the inverse square law, which states that sound intensity decreases
as the distance from the source increases. Additionally, we observed the influence of sound waves
reflecting off the cavity boundary, creating a reverberation effect. The highest SPL recorded
was 122 dB near the source, tapering to a minimum of 112 dB at the furthest measured points.
In contrast, the complex cavity scenario presented in Figure 6(b) demonstrated the significant
impact of obstructions on sound distribution. The presence of obstacles not only disrupted the
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direct path of sound waves but also affected the reverberation patterns, creating areas of lower
SPL behind them. Notably, the lowest SPL recorded at a comparable position to the open
cavity was 106 dB, found behind the second obstacle. These findings reveal that obstructions
within an acoustic space can lead to considerable variations in SPL distribution. This is a
crucial consideration for real-world applications, such as in the optimization design of acoustic
cavity shapes and includes the analysis of the effects of changing absorption coefficients, which
can present uncertainty in design. In the subsequent section, we will delve into the effects of
varying absorption coefficients. By adjusting these coefficients, we aim to explore how different
materials within the cavity affect the SPL distribution.

Figure 6: Sound pressure map in a cavity excited by a point source. (a) no obstacle (b) with obstacle.

The provided figures, Figures 7 illustrate the effects of varying absorption coefficients on the
sound pressure level (SPL) in an acoustic cavity with obstacles. The dashed line indicates the
measurement direction for SPL across a section of the cavity, and the absorption coefficients
are varied in the simulation by 0.3, 0.5 and 0.7 replectively. These results suggest that as
the absorption coefficient increases, the SPL within the cavity decreases, which is consistent
with the expectation that more sound energy is absorbed by the surfaces, and less is available
to propagate within the space. Absorption coefficients can be strategically placed to reduce
reverberation and create areas with significantly lower sound levels as indicated by the areas of
lower SPL behind the obstacles. Conversely, for spaces where a certain level of reverberation is
desired, materials with lower absorption coefficients might be preferred.
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Figure 7: Sound Pressure Level (SPL) Variation with Absorption Coefficients of 0.3 (Blue), 0.5 (Red),
and 0.7 (Black)

5 CONCLUSIONS

In the study presented, we have developed a hybrid acoustic energy calculation method that
combines ray and triangle intersection techniques with the Simplified Energy Method (MES)
to address the challenges of complex shape cavities with internal obstacles. The proposed ap-
proach significantly improves the accuracy of the MES, especially in mid-high frequency ranges,
by eliminating unnecessary computations for obstructed element pairs. The efficiency and accu-
racy of the method were validated through numerical simulations, which also demonstrated its
superiority over traditional MES in complex acoustic scenarios. The introduction of a primary
intersection state matrix was crucial in achieving precise energy transfer, confirming the method
potential for intricate geometries. This makes it particularly suitable for applications involving
to the shape optimization. The hybrid MES method marks a significant step forward in compu-
tational acoustics, providing a refined, computationally feasible tool leveraged to integrate into
comprehensive acoustic optimization frameworks.
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[28] Möller, T., and B. Trumbore. 2005. “Fast, Minimum Storage Ray/Triangle Intersection.”
In ACM SIGGRAPH 2005 Courses, 7–es.

[29] Mazumder, S., and M. Ravishankar. 2012. “General Procedure for Calculation of Diffuse
View Factors Between Arbitrary Planar Polygons.” International Journal of Heat and Mass
Transfer 55, no. 23-24: 7330–7335.

12


	INTRODUCTION
	SIMPLIFIED ENERGY METHOD (MES)
	General description of MES
	Implementation of the Simplified Energy Method (MES)

	HYBRID METHOD FOR MES IN COMPLEX CAVITY 
	NUMERICAL SIMULATIONS
	Verification of the Hybrid Method
	Numerical result of Sound Pressure Level (SPL) 

	CONCLUSIONS

