
The 9th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2024

3–7 June 2024, Lisboa, Portugal

A FINITE ELEMENT METHOD FOR THE SIMULTANEOUS
ANALYSIS OF IMPLICITLY DEFINED

REISSNER–MINDLIN SHELLS

MICHAEL W. KAISER1,2, THOMAS-PETER FRIES1,3

1 Institute of Structural Analysis
Graz University of Technology

Lessingstr. 25, 8010 Graz, Austria
www.ifb.tugraz.at

2 email: michael.kaiser@tugraz.at

3 email: fries@tugraz.at

Key words: Fictitious domain methods, FEM, level-set method, shells, curved beams

Summary. We present a method to solve simultaneously all Reissner–Mindlin shells which
are embedded in a three-dimensional bulk domain. The shells are described by level sets of a
level-set function, hence, a coordinate-free formulation of the shell model which is valid for an
implicit geometry definition is required. The presented finite element method (FEM) is a hybrid
between the classical FEM and a fictitious domain method. Therefore, it was previously coined
Bulk Trace FEM. Numerical results confirm higher-order convergence rates.

1 INTRODUCTION

Shells are common structures in nature and engineering. Usually, one specific shell geometry
is analysed in the design process, i.e., the geometry of this shell is described and the mechanical
quantities, e.g., deformations, stresses, and energies are computed. Mostly, the analysis is based
on a geometry description and formulation of differential operators in curvilinear coordinates
and, therefore, a parametrization of the geometry is required [1, 2]. Furthermore, the shell
model can be stated in a coordinate-free formulation which is valid for geometries that are given
explicitly, e.g., by a parametrization or implicitly, e.g., by a level set of a level-set function. In
[3] the Kirchhoff-Love shell model has been reformulated in a coordinate free-formulation and
the Reissner–Mindlin shell model in [4]. Analogously, such coordinate-free formulations can be
obtained for beams, e.g., [5, 6] and for geometrically non-linear ropes and membranes, c.f., [7].
Differential operators in these models are formulated using the Tangential Differential Calculus
(TDC), c.f., [8]. If one single shell geometry is given implicitly, the Trace FEM can be used for
the analysis, e.g., [9] for Reissner–Mindlin shells.

In this work, we present a mechanical model and finite element method for the simultaneous
solution of all Reissner–Mindlin shells which are embedded in a three-dimensional bulk domain.
The individual middle surfaces of the shells are level sets Γc of a level-set function φ, hence, the
geometry of the shell is described implicitly and a coordinate-free formulation of the governing
equations, c.f., [4] is required. Furthermore, the co-area formula is used to formulate the weak
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Figure 1: Different FEM approaches for PDEs on manifolds.

form. Applications for this approach might be in the design process to find certain geometries
with desired target properties in a family of possible geometries or to use shells as reinforce-
ment structures in new anisotropic material models. For more detailed discussions, we refer
to our previous publication [10]. For the lower-dimensional case, i.e., when a one-dimensional
structure is embedded in a two-dimensional bulk domain, an analogous model for Timoshenko
beams follows, c.f., [11]. In the context of transport problems, the simultaneous solution for
all embedded d-dimensional structures in a (d+ 1)-dimensional space is shown, e.g., in [12, 13].
For the simultaneous solution of geometrically non-linear ropes and membranes, we refer to our
works in [14, 15, 16].

Different approaches may be distinguished to solve PDEs on manifolds using the finite element
method. In the context of Reissner–Mindlin shells, as in this paper, the manifold is the shell’s
middle surface but generally the manifold may be some curved surface or line on which some
physical process occurs. One possibility is to approximate the solution for one geometry by
the classical Surface FEM based on a parametrization of the manifold. Then, the geometry of
interest is represented by a conforming mesh composed by curved (surface or line) elements.
Furthermore, fictitious domain methods, e.g., the Trace FEM, might be used. Therein, one
manifold of interest with dimension d is embedded in a (d + 1)-dimensional background mesh.
For the numerical analysis, only the elements which are cut by the manifold are considered.
This often requires special attention, e.g., in the context of stabilization and the enforcement
of (essential) boundary conditions because the boundary is usually no longer conforming. The
approach used in this paper, previously labelled Bulk Trace FEM in [14], can be seen as a hybrid
between the Surface FEM and the Trace FEM for the simultaneous analysis of many geometries
at once. The mesh is by no means aligned to the level sets which are embedded in the bulk
domain but the boundary is conforming. Therefore, no stabilization is required and boundary
conditions are enforced strongly as in the surface FEM. Fig. 1 compares these three different
FEM approaches.

The remainder of this paper is as follows: In Section 2, the definition of the geometric setup
and the required differential operators are introduced. The mechanical model is derived in
Section 3 and posed in the weak form, to be used in the finite element method as described
in Section 4. Numerical results to verify the new methodology follow in Section 5. The paper
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(a) Ω and level sets Γc of φ (b) bounded level sets Γc (c) Ω and level sets Γc of φ (d) bounded level sets Γc

Figure 2: Some bulk domain Ω, level-set function φ (x), and implied level sets Γc. (a) and (b)
show the situation for shells, (c) and (d) for beams.

closes in Section 6, including an outlook to further research.

2 GEOMETRY REPRESENTATION AND DIFFERENTIAL OPERATORS

The shell is modelled by its middle surface which is a manifold of co-dimension 1 and implicitly
described as the level set Γc of a scalar level set function φ(x) : Ω → R where c is a constant
level-set value. Ω is the bulk domain, i.e., Ω ⊂ R3 for shells and Ω ⊂ R2 for beams. Within the
bulk domain, a minimum value φmin = inf φ and a maximum value φmax = supφ of the level-set
function is defined. Furthermore, the bulk domain can be specified by prescribed values for φmin

and φmax. In the following, all level sets, i.e., shells, which are embedded in the bulk domain
are considered simultaneously. These are

Γc = {x ∈ Ω : φ(x) = c ∈ R} , φmin < c < φmax. (1)

Fig. 2 shows the situation for shells and beams. For a more detailed discussion, including
requirements for valid combinations of bulk domains and level-set functions, the reader is referred
to [11, 14].

To formulate the differential operators and divergence theorems used in the formulation of
the strong and weak form of the governing equations, some vector fields are required:

• Normal vectors to the boundary of the bulk domain: m(x), x ∈ ∂Ω. The definition
of these vectors depends on how the bulk domain is described (explicitly or implicitly).
However, it is a standard task in the FEM to obtain such normal vectors based on existing
meshes (here: of the bulk domain), therefore, these are not further specified here.

• Normal vectors: n(x) = n?

‖n?‖ with n? = ∇φ(x),x ∈ Ω.

• Tangential vectors: t = m× n.

• Co-normal vectors: q(x) = q?

‖q?‖ with q? = n× t.

These vectors are visualized for one selected manifold in Fig. 3. With the normal vector and
the (d× d)-identity matrix, the projector onto the tangent space is defined as

P = I− n⊗ n = I−Q. (2)

3



Michael W. Kaiser, Thomas-Peter Fries

e1
e2

e3

ΓcΓcΓcΓcΓcΓcΓcΓcΓcΓcΓcΓcΓcΓcΓcΓcΓc

ΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩnnnnnnnnnnnnnnnnn

qqqqqqqqqqqqqqqqq

mmmmmmmmmmmmmmmmm

ttttttttttttttttt

Figure 3: Normal vector field n living on the manifold Γc and along the boundary ∂Γc depicted
in blue, vector fields t depicted in grey and q depicted in green on the boundary of the manifold
∂Γc, and normal vector field m to the boundary of the bulk domain ∂Ω. Note that for clarity,
only one surface is shown but the situation applies to every embedded level set Γc in Ω.

Furthermore, tangential or surface differential operators are defined. These are used in the
formulation of the governing equations. ∇• is the classical gradient w.r.t. the bulk domain, i.e.,
the three-dimensional space R3 for shells. Then, for the tangential gradient of a scalar function
f follows

∇Γf = P · ∇f. (3)

For the surface gradient of a vector-valued function v a directional and a covariant surface
gradient have to be distinguished. These are defined as

∇dir
Γ v = ∇v ·P and ∇cov

Γ v = P · ∇dir
Γ v = P · ∇v ·P. (4)

Note that ∇dir
Γ v is generally not in the tangent space of the manifold while ∇cov

Γ v is. The
divergence of a vector-valued function is given by

divΓv = tr(∇dir
Γ v) = tr(∇cov

Γ v) = ∇Γ · v (5)

and, for a second-order tensor function T, the divergence is determined by

divΓ T =




divΓ (T11, T12, T13)
divΓ (T21, T22, T23)
divΓ (T31, T32, T33)


 = ∇Γ ·T. (6)

Another important quantity is curvature. In the context of the TDC, it is defined based on
the Weingarten map, that is

H = ∇dir
Γ n = ∇cov

Γ n. (7)

The mean curvature is defined as

κ = tr(H) = divΓn. (8)
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The divergence theorem for a vector-valued function v and for a second-order tensor-valued
function T on a single surface Γc, defined by one constant value for c, is [3]

∫

Γc

v · divΓ T dΓ = −
∫

Γc

∇dir
Γ v : T dΓ +

∫

Γc

κ · v · (T · n) dΓ +

∫

∂Γc

v · (T · q) d∂Γ, (9)

For the simultaneous solution of all embedded shells, the co-area formula [13, 12, 14] is required.
It is defined as ∫ φmax

φmin

∫

Γc

f dΓ dc =

∫

Ω
f · ‖∇φ‖ dΩ (10)

in the domain and at the boundary as

∫ φmax

φmin

∫

∂Γc

f · q d∂Γ dc =

∫

Ω
f · q · (q ·m) · ‖∇φ‖ d∂Ω. (11)

With Eqs. (10) and (11) the divergence theorem in Eq. (9) is extended to
∫

Ω
v · divΓ T · ‖∇φ‖ dΩ = −

∫

Ω
∇dir

Γ v : T · ‖∇φ‖ dΩ +

∫

Ω
κ · v · (T · n) · ‖∇φ‖ dΩ (12)

+

∫

∂Ω
v · (T · q) · (q ·m) · ‖∇φ‖ d∂Ω.

Note that the term with the mean curvature κ vanishes for in-plane tensors.

3 MECHANICAL MODEL

The coordinate-free definition of the governing equations and their derivation for the case of
one shell geometry is given in detail in [3] and further in [4, 10]. Therefore, we summarize it in
this paper in a short and concise manner and refer to the aforementioned literature for further
details. Fig. 4 shows the situation of the kinematic relations for many embedded Reissner–
Mindlin shells and for the situation of one single shell. The displacement is defined as

uΩ̊c(x) = uΩ̊c(xΓ, ζ) = u(xΓ) + ζw(xΓ), (13)

with the displacement of the mid-surface u(xΓ) and the difference vector w(xΓ) which describes
the rotation of the shell director (normal), γ is the transverse shear deformation, and ζ ≤ | t2 |
describes the shell thickness. The membrane, bending, and transverse shear strain tensors are
defined as

εP
Γ,Memb(u) =

1

2

[
∇cov

Γ u+ (∇cov
Γ u)T

]
, (14)

εP
Γ,Bend(u,w) =

1

2

[
H · ∇dir

Γ u+
(
∇dir

Γ u
)T
·H +∇cov

Γ w + (∇cov
Γ w)T

]
, (15)

εS
Γ(u,w) =

1

2

[
Q · ∇dir

Γ u+
(
∇dir

Γ u
)T
·Q + n⊗w +w ⊗ n

]
, (16)

The constitutive law for a linear elastic material with Lamé constants λ and µ for plane stress
leads to the stress tensor

σΓ(x) = 2µεΓ(x) + λ tr [εΓ(x)] I. (17)
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Figure 4: The shell kinematics for (a) some shells embedded in the bulk doman and (b) a single
shell.

For the bending moment tensor mΓ, the effective normal force tensor ñΓ and the transverse
shear force tensor qΓ follows:

mΓ =

∫ t/2

−t/2
ζ P · σΓ ·P dζ =

t3

12
σP

Γ

(
εP

Γ,Bend

)
, (18)

ñΓ =

∫ t/2

−t/2
P · σΓ ·P dζ = tσP

Γ

(
εP

Γ,Memb

)
, (19)

qΓ =

∫ t/2

−t/2
Q · σΓ + σΓ ·Q dζ = tσS

Γ

(
εS

Γ

)
= 2tµαsε

S
Γ. (20)

Note that for qΓ, a shear correction factor αs is considered and that the real normal force tensor
is defined as nreal

Γ = ñΓ + H ·mΓ.
With Eqs. (13) to (20), there follows the Reissner–Mindlin shell model in strong form as

divΓ nreal
Γ + Q · divΓ qΓ + H · (qΓ · n) = −f , (21)

P · divΓ mΓ − qΓ · n = −c. (22)

f is the applied load vector per area and c is the applied moment vector. The boundary value
problem (BVP) is completed by sufficient boundary conditions. Note that in this BVP quantities
with index Γ are tensors, e.g., the shear force tensor qΓ, while the quantities without the index
are vectors, e.g., the co-normal vector q. Furthermore, note that for Timoshenko beams, the
governing equations have formally a very similar structure. This is because the Timoshenko
beam model is a dimensional reduction of the Reissner-Mindlin shell model. The differences are
the dimensions and the definition of the tensors of the internal moment and forces, see, e.g.,
[11].

4 WEAK FORM AND NUMERICAL ANALYSIS

To obtain the weak form of the governing equations, which are required for the FEM analysis,
Eq. (21) is multiplied with the test functions vu and Eq. (22) is multiplied with the test functions
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vw. Then, the divergence theorem, Eq. (9), is applied which leads to domain integrals
∫

Γc • dΓ
and boundary integrals

∫
∂Γc • · q d∂Γ. An integration over all level sets embedded in the bulk

domain leads to
∫ ∫

Γc • dΓ dc and
∫ ∫

∂Γc • · q d∂Γ dc. Finally the co-area formulas, Eqs. (10)
and (11), are applied, respectively. This leads to the continuous weak form, formulated over the
bulk domain. Only first derivatives occur and, therefore, standard Lagrange-type finite elements
can be used. For more details about the continuous weak form and the corresponding function
spaces, we refer to [10].

The discrete weak form is obtained by discretizing the bulk domain with C0-continuous
Lagrange-type elements. It should again be emphasized that the mesh does by no means have
to align with the level sets in the bulk domain. The difference vector is an in-plane quantity. In
the FEM, this can be enforced by the tangentiality constraint wh ·n = 0, used with a Lagrange
multiplier or by projecting the difference vector onto the tangent space as wh = P · w̌h. •̌ is
a (general) vector, defined in R3, i.e., it is not (necessarily) tangential to the manifold. The
second variant is used in this paper. Therefore, also the test function vhw = P · v̌hw must be
projected and the penalty term ρw

(
w̌h · n

) (
v̌hw · n

)
is added in Eq. (24). The penalty parameter

is ρw = E · t, with Young’s modulus E and the shell’s thickness t. Further discussions about the
tangentiality constraint of the difference vector and how it can be considered in the FEM, are
found in [10, 4, 9]. Finally, the discrete weak form reads: With the given material parameters
E ∈ R+, ν ∈ [0, 0.5), body forces f ∈ R3 on Γc, tractions p̂∂Γ on ∂ΓcN,u, find u ∈ Su and w ∈ Sw
such that for all vu ∈ Vu and for all vw ∈ Vw, there holds

∫

Ωh

[
∇dir

Γ v
h
u : ñΓ +

(
H · ∇dir

Γ v
h
u

)
: mΓ +

(
Q · ∇dir

Γ v
h
u

)
: qΓ

]
·
∥∥∥∇φh

∥∥∥ dΩ =

∫

Ωh

vhu · f ·
∥∥∥∇φh

∥∥∥ dΩ +

∫

∂Ωh
N,u

vhu · p̂∂Γ · (q ·m) ·
∥∥∥∇φh

∥∥∥ d∂Ω, (23)

∫

Ωh

(
∇dir

Γ v
h
w : mΓ + vhw · qΓ · n+ ρw

(
w̌h · n

)(
v̌hw · n

))
·
∥∥∥∇φh

∥∥∥ dΩ =

∫

Ωh

vhw · c ·
∥∥∥∇φh

∥∥∥ dΩ +

∫

∂Ωh
N,w

vhw · m̂∂Γ · (q ·m) ·
∥∥∥∇φh

∥∥∥ d∂Ω. (24)

The discrete function spaces Su, Vu, Sw, and Vw, respectively, are defined as usual in the FEM.
The reader is referred to [10] for further details.

5 NUMERICAL RESULTS

Before the presentation of some numerical test cases, error measures are introduced. The
residual errors are obtained for the force equilibrium, εF, and for the moment equilibrium, εM,
respectively. The approximated solutions uh andwh are inserted in Eqs. (21) and (22). Provided
that the solution is sufficiently smooth, the errors are computed as

ε2
F =

nel∑

i=1

∫

Ωel, i

rF

(
uh,wh

)
· rF

(
uh,wh

)
· ‖∇φ‖ dΩ, (25)

ε2
M =

nel∑

i=1

∫

Ωel, i

rM

(
uh,wh

)
· rM

(
uh,wh

)
· ‖∇φ‖ dΩ. (26)
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The residuals of force and moment equilibrium are defined as

rF

(
uh,wh

)
= divΓ nreal

Γ

(
uh,wh

)
+ Q · divΓ qΓ

(
uh,wh

)
(27)

+ H ·
(
qΓ(uh,wh) · n

)
+ f (x) ,

rM

(
uh,wh

)
= P · divΓ mΓ

(
uh,wh

)
− qΓ

(
uh,wh

)
· n+ c (x) . (28)

A further error measurement used in this section is the stored energy error, obtained by

εe =
∣∣∣e (u)− e

(
uh
)∣∣∣ , (29)

with the stored (elastic) energy of the Reissner–Mindlin shell defined as

e (u) =
1

2

∫

Ω

[
εP

Γ,Memb(u) : ñΓ + εP
Γ,Bend(u,w) : mΓ + εS

Γ(u,w) : qΓ

]
· ‖∇φ‖ dΩ. (30)

This stored energy error is not to be mixed up with the classical energy error norm, see [14, 17].

5.1 Trigonometric shell geometry with Navier support

The geometry of this test case is from Section 5.5 in [10], but the mechanical quantities used
here are different. The shell geometry is described by the level sets of the level-set function
φ(x) = z − 2 · sin

(
1
4 · x · y

)
and the spherical bulk domain is defined with a prescribed interval

of φ as Ω =
{
x ∈ R3 : ψ(x) = ‖x‖ − 1 ≤ 0 and − 1

5 < φ(x) < 2
5

}
. The thickness of each shell

is t = 0.1, Young’s modulus is E = 2.1 · 107, and the applied force is fz = −1000 (acting
downwards). All other applied force components, i.e., fx = fy = 0, and the moment vector are
zero. The whole boundary is considered as Navier supports. Fig. 5 shows the geometric setup
and results for this test case. The ansatz functions for the displacement test and trial functions
is one order higher than those of the difference vector. This is identified as a mixed approach,
while we say that an isoparametric approach is used when the same order is applied for all
test and trial functions for displacements and the difference vector, respectively. Figs. 5(c) an
(d) show optimal higher-order convergence rates for the residual errors of the force and slightly
sub-optimal ones of the moment equilibrium. We refer to [10] for more details.

5.2 Cupola with Navier support

The geometry, material parameters, and loading for this test case is from section 5.7 in
[10]. Herein, the spherical shells (cupolas) are supported by Navier supports instead of clamped
supports as in [10] and the isoparametric approach is used. This example shows how the simul-
taneous solution can be used in a design value search. The solution is obtained for all embedded
shells. As a post-processing step, the geometry for which a sought target value (ut) is reached,
is evaluated. Herein, the radius for the cupola with a maximum displacement of ut = 0.045 m
at the apex is rt = 9.018 m. For a more detailed description of the design value search and
comparison with a clamped support of the cupolas, we refer to [10]. Also for this example,
higher-order convergence rates are obtained in the residual errors but not shown for brevity.
Fig. 6 shows the geometric setup and the solution of the design value search.
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Figure 5: (a) shows the geometry with a possible discretization and some level-sets in yellow,
(b) shows the Euclidean norm of the displacements, (c) the results of the convergence study for
the residual error of the force equilibrium, and (d) of the moment equilibrium.

5.3 Influence of curvature

Numerical tests for Reissner–Mindlin shells and Timoshenko beams show that for relatively
flat geometries or geometries which contain relatively flat parts, i.e., where the mean curvature
goes to zero, problems occur when the isoparametric approach is used. In contrast, when the
mixed approach is applied instead, the convergence rates in the stored energy error are as
expected. This behaviour is illustrated in Fig. 7. The left column shows the test case of Section
5.1 with clamped support instead of Navier support: In Fig. 7(a), the mean curvature and then
the higher-order convergence rates in the stored energy error εe for the isoparametric approach,

9
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(a) (b)

Figure 6: (a) The geometric setup of the cupola with some level sets and the curved surface
which generates the boundary in dark blue. (b) Result of the design value search shown on one
half of the geometry. The blue surface is the found cupula corresponding to the sought target
value.

in Fig. 7(c), and for the mixed approach, in Fig. 7(e), are shown. Analogously, the right column
shows the results for the test case discussed in Section 5.6 in [10]. This comparison shows that
for the case of spherical shells (right column) the mixed and the isoparametric approach lead to
optimal convergence, while for the case where the mean curvature vanishes in parts of the shell,
only the mixed approach converges optimal.

6 Conclusions and outlook

A mechanical model and finite element method for the simultaneous analysis of Reissner–
Mindlin shells is presented. The shells are modelled by level sets of a level-set function which
are embedded in a three-dimensional bulk domain. For the formulation of the weak form, the
co-area formula is applied. The concept can easily be adopted to curved Timoshenko beams
which is a dimensional reduction by 1 of the shell counterpart.

Further research is the application of this approach in the design value search, as already
outlined in one of the presented numerical test cases for a simple example, and the application
in anisotropic material models reinforced with shells.
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