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ABSTRACT  

In earthquake-prone regions, assessing soil liquefaction potential is indispensable for contemporary seismic design. 

Various procedures for liquefaction triggering analysis have emerged over the past decades. However, most of them are 

derived from generic liquefaction databases, such that the model uncertainties in liquefaction potential assessments 

applied to a specific region of concern remain unknown, which poses a challenge for engineers to evaluate the liquefaction 

risks of target sites. This study aims to propose a hierarchical Bayesian model (HBM) to learn the inter-region 

characteristics of model uncertainties of the traditional simplified liquefaction potential evaluation methods based on a 

database containing global case histories of liquefaction categorized into several regions where those triggering events 

occurred. The learning outcomes can yield the model uncertainty of the target region, and the liquefaction probability at 

the target site under a given ground motion condition. For an illustration of the proposed model, a case history of 

liquefaction from a specific region is adopted to construct a quasi-region-specific model uncertainty and evaluate the 

liquefaction probability in the target soil. The illustration shows that the constructed quasi-region-specific model 

uncertainty with liquefaction histories in the target region can improve liquefaction occurrence prediction in comparison 

with the prediction without any histories, which is believed to benefit the engineering practice.  
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1. Introduction 

Assessing soil liquefaction potential is a cornerstone 

for contemporary seismic design. Diverse approaches for 

assessing soil liquefaction potential have been developed 

over the past decades (e.g., Seed and Idriss 1971; Dobry 

and Ladd 1980; Olsen 1997; Youd et al. 2001; Boulanger 

and Idriss 2016; Cetin et al. 2018; Hwang et al. 2021). 

Their features and applicability are also comprehensively 

compared and discussed (e.g., National Research Council 

2016; Cetin and Bilge 2022). Among them, the stress-

based simplified procedures that exploit the 

measurements of in situ tests, such as the blows of 

standard penetration tests (SPT-N), the cone resistance of 

piezocone penetration tests (CPT-qc), and the shear wave 

velocity (VS) for liquefaction potential evaluations, are 

the most prevalent in practice and accepted by seismic 

design codes of various countries (e.g., Architectural 

Institute of Japan (AIJ) 2001; American Association of 

State Highway and Transportation Officials (AASHTO) 

2014; Japan Road Association (JRA) 2017; Ministry of 

Interior (MOI) of Taiwan 2022).  

Although simplified procedures are prevailing in 

practice due to their simplicity and convenience, since 

they do not perform perfectly for predicting the 

occurrence of liquefaction, their model uncertainties 

become a further focus of studies in geotechnical 

engineering. These studies have developed the 

probabilistic models for these simplified procedures to 

quantify their prediction bias and model uncertainties 

(e.g., Juang et al. 2003; Cetin et al. 2004; Moss et al. 2006; 

Kayen et al. 2013; Boulanger and Idriss 2016; Hwang et 

al. 2021). 

However, most of the simplified procedures and their 

probabilistic versions were driven based on generic 

liquefaction potential databases, such that their 

quantified model uncertainties are also generic. Namely, 

the model uncertainties of simplified procedures for 

liquefaction potential assessments applied to a specific 

region of concern remain unknown, which poses a 

challenge for engineers to evaluate the liquefaction risks 

of target sites. 

Therefore, this study aims to propose a hierarchical 

Bayesian model (HBM) for two objectives. One is to 

learn the inter-region characteristics of model 

uncertainties of the traditional simplified liquefaction 

potential evaluation procedures. The other one is to 

utilize the learning outcomes to acquire the quasi-region 

specific model for predicting liquefaction occurrence. 

This model can yield the quasi-region-specific model 

uncertainty that incorporates the information contained in 

a generic database and the target region data. Accounting 

for quasi-region-specific model uncertainty, this model 

yields the liquefaction probability of the target site 

adapted to the concerned region under a given ground 

motion condition.  

Developing the aforementioned HBM requires two 

items: a database containing global case histories of 

liquefaction categorized into several regions where those 

triggering events occurred, and a hierarchical model that 

can accommodate the inter-region characteristics of 

liquefaction triggering and an indicator to determine 

whether the soil liquefies. The former is introduced in 



 

Sec. 2, and the latter is elaborated on in Sec. 3, 

respectively.  

2. Soil liquefaction potential database 

A soil liquefaction potential database is compiled in 

this paper. Most of the data in this database were 

collected from 20 studies published in scientific journals 

or investigation reports. The others came from Next 

Generation database of Liquefaction (NGL) (Ulmer et al., 

2023).  

This liquefaction potential database contains 2759 

site-investigation records from 60 regions where 

historical earthquake-induced liquefaction hazards 

occurred, such as Niigata in Japan (Ishihara and Koga, 

1981), Imperial Valley in USA (Bennett et al., 1984), 

Kocaeli in Turkey (PEER, 2000), Tangshan City in China 

(Cai et al., 2012), Canterbury in New Zealand (Green et 

al., 2014), and Chang-Hwa County in Taiwan (Hwang et 

al., 2021). Those site-investigation data cover 6 

parameters that are adopted in common for liquefaction 

risk evaluation, including the ratio of overburden stress 

(σv/σvʹ), clean-sand normalized SPT-blows ((N1)60), 

normalized cone tip resistance (qt1N), soil behavior index 

(Ic), normalized shear wave velocity (VS1), and fines 

content (FC). The distribution of the dataset is shown in 

Fig. 1 via histograms.  

 

 
Figure 1. Histograms of soil data in liquefaction potential 

database. 

Along with these investigation data, the 

corresponding liquefaction histories (i.e., the soil 

liquefied or not) given the event conditions (i.e., moment 

magnitude and peak ground acceleration), are also 

included in this database. This database is utilized to 

develop an HBM for region-specific liquefaction risk 

evaluation. 

3. Quasi-region-specific model uncertainty 
of simplified liquefaction triggering 
analysis 

3.1. Hierarchical Bayesian model 

To capture the statistical uniqueness of each data 

group in a generic soil/rock database, a hierarchical 

Bayesian model (HBM) was formulated by Ching et al. 

(2021a). HBM can characterize the inter-group and intra-

group correlation of each group of soil/rock property data. 

The structure of the HBM shown in Fig. 2 is a two-level 

hierarchical tree. The top level contains hyper-

parameters (μ0, C0, Σ0, υ0) which are modeled to 

characterize the inter-group correlation. The second level 

comprises the statistical parameters of each group (the 

mean vector, μi, and the covariance matrix, Ci) in the 

database, which is modeled the intra-group uniqueness. 

The bottom level is houses the soil/rock data in which are 

modeled as Gaussian distributed.  

f(𝑥𝑖𝑗|𝜇𝑖, 𝐶𝑖) = |𝐶𝑖|
−
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Figure 2. Model structure of HBM (modified from Ching 

et al., 2021a). 

The procedure for performing HBM can be divided 

into two steps. The first step is referred to as the “learning 

step”, and the second one is the “inference step”. The 

former yields the hyper-parameters characterizing inter-

group correlations based on a generic database, and the 

latter comes out the quasi-group-specific distribution of 

the target group inferred based on the sparse data from 

the target group and the hyper-parameters driven at the 

“learning step”.  

The effectiveness of constructing quasi-site-specific 

models along with the computational efficiency of HBM 

have been demonstrated via several real cases in previous 

studies (e.g., Ching et al., 2021a; Ching et al., 2021b; 

Ching et al., 2022). Its closed-form probability structure 

is attributed to that computational efficiency, such that it 

become a desirable candidate for the issue of this paper 

concerns. However, HBM cannot accommodate 

categorical parameters (e.g., liquefied soils or non-

liquefied soils), such that it cannot learn the data group 

uniqueness of liquefaction triggering in our liquefaction 

potential database for driving a liquefaction triggering 

analysis model. As it transpired, HBM should be 

modified for liquefaction triggering analysis. 

3.2. HBM for liquefaction triggering analysis 

This paper proposes a modified HBM considering a 

“group” as a “region”. This modified HBM is called as 

“GR-Liq-HBM”. Its model structure is shown in Fig. 3. 

The main modifications can be enumerated below: 

1. A model factor (denoted by m) modelled log-

normally distributed is introduced into GR-Liq-

HBM. It is defined as follows: 

m =
𝐹𝑆𝑎

𝐹𝑆𝑛
 (2) 

where FSa is the actual value of anti-liquefaction 

factor of safety (FS) which indicates the soil actually 
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liquefies or not: FSa < 1 indicates the soil liquefies 

whereas FSa ≥ 1 points out the soil does not liquefy. FSn 

is the nominal FS computed via simplified procedures of 

liquefaction triggering analysis (e.g., Youd et al., 2001; 

Boulanger and Idriss, 2016).  

 

 
Figure 3. Model structure of GR-Liq-HBM. 

2. An indicator (L) is also introduced in GR-Liq-

HBM. L can be derived from the nominal FS 

incorporated with the model factor (m). L = 1 as 

the soil liquefies, whereas L = 0 as the soil does 

not liquefy.  

3. The region-specific variance of soil properties (xij) 

and the model factor (mij) are modelled separately 

in GR-Liq-HBM. It is worth noting that the values 

of model factors cannot be observed in reality, 

whereas the soil properties can be acquired via site 

investigation, such that the uncertainties of soil 

properties (xij) and the model factor (mij) can be 

significantly different, which cannot be 

considered by the original HBM. This is because 

the original HBM models the variance of soil 

properties (xij) and the model factor (mij) in one 

covariance matrix which is governed by one 

parameter υ0.  

4. Due to the independence of modelling the 

variance of soil properties (xij) and the model 

factor (mij), the region-specific covariance matrix 

should be modified as follows: 

𝐶𝑖 = 𝑆𝑖𝑅𝑆𝑖 =

[

𝜎𝑖,1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜎𝑖,𝑚

] [
1 ⋯ 𝜌1𝑚
⋮ ⋱ ⋮

𝜌𝑚1 ⋯ 1
] [

𝜎𝑖,1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜎𝑖,𝑚

] (3) 

where Si is a diagonal matrix composed by the ith 

region-specific standard deviation of each uncertain 

variables of xij and mij; R is the correlation matrix of xij 

and mij. Their conditional probability structures are 

elaborated on below. 

A common choice of the prior distribution for the 

Bayesian updating for the variance of a Gaussian 

distributed variable is inverse-gamma distribution 

(Gelman et al. 2014). Thus, this paper modelled the prior 

distribution of the region-specific variance of xij and mij 

are inverse-gamma distributed: 

𝜎𝑖,𝑘
2 ~IG(𝛼𝑘, 𝛽𝑘) (4) 

where σ2
i,k is the kth uncertain variable in the ith region 

of soil data; IG(.) is the inverse-gamma PDF; αk and βk 

are the shape parameters and the scale parameters of 

inverse-gamma distributed variances respectively.  

αk and βk are hyper-parameters but not group-specific 

parameters. They also need prior settings for Bayesian 

inference: 

• prior for αk: For the inference of the shape 

parameter of an inverse-gamma distribution, there 

is not a conjugate prior distribution. Besides, the 

shape parameter cannot be negative due to the 

properties of the inverse-gamma distribution. 

Thus, this study adopts a uniform distribution, [-

104, 104], as the prior of each ln(αk). That is, ln(αk) 

~ U([-104, 104]). 

• prior for βk: For the inference of the scale 

parameter of an inverse-gamma distribution, the 

conjugate prior is the gamma distribution 

(Gelman et al. 2014). Thus, this study adopts the 

gamma distribution as the prior for inferencing βk. 

For fair non-informativity of prior, the parameters 

for this prior distribution are set as αβ = 0.5, ββ = 

104. Namely, ln(βk) ~ Gamma(0.5,104). 

On the other hand, the correlation matrix of xij and mij, 

R, is modelled as an inter-region parameter in this paper. 

That is, R denotes a correlation matrix universally 

applicable across all regions in the database. 

For inferencing R, it is also necessary to select a 

probabilistic distribution as a prior, while this selection is 

not quite intuitive. It should be noted that R is a special 

matrix: it should be symmetric, its diagonal entries 

should be one, and its off-diagonal elements should be 

bounded within [-1, 1]. Fortunately, have proposed a 

distribution to model the uncertainty of correlation 

matrix, which is so-called LKJ distribution 

(Lewandowski et al. 2009): 

R~LKJ(𝜂) (5) 

where η is a positive scalar parameter which tunes the 

strength of the correlations. If η = 1, the density is 

uniform over all correlation entries. For non-

informativity of a prior, this study adopts η = 1 as the 

parameter of LKJ distribution to infer the correlation 

matrix, R. 

3.3. Quasi-region-specific model uncertainty 

Based on the model settings mentioned above, the 

quasi-region-specific model uncertainty of a simplified 

liquefaction triggering analysis procedure applied to the 

region of concerns can be obtained by two steps. This 

two-step procedure is shown in Fig. 4. 

The first step (Step 1) is to learn the inter-region 

characteristics from the soil liquefaction potential 

database. In this paper, the learning outcomes of GR-Liq-

HBM are the posterior PDF of the hyper-parameters f(μ0, 

C0, α, β, R|D) along with its Gibbs samples, where D is 

the liquefaction potential database. For the consistency of 

Gibbs sampling, the burn-in period is set as 1000, the 

interval of sampling is 10, and the total iterations is 

20,000, such that the number of total Gibbs samples of 

the hyper-parameters comes out to be 2,000. These 
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samples stand for the “prior” information for the next 

step.  

The second step (Step 2) aims to update the learning 

outcomes from the Step 1 to infer the quasi-region-

specific distribution of the model factor conditioning 

three information: the hyper-parameters learning from 

the global liquefaction potential database, the 

investigation data from the target site, and the 

liquefaction histories of the target region. The first two 

information is required for this current step, while the 

third one is optional but beneficial to improvement for 

prediction of liquefaction occurrence, which is 

demonstrated in Sec. 4.  

The first piece of required information for the Step 2 

can be obtained from the Step 1 by this study, such that 

the project engineers (i.e., the users) do not put their 

efforts into acquiring it. On the other hand, the site-

investigation data of the site where the project focus on, 

the require information of the Step2, should be 

investigated by project engineers (i.e., the users).  

Step 2 yields a posterior PDF of the quasi-region-

specific model uncertainty and its Gibbs samples as well: 

𝑓[𝜇𝑚, 𝜎𝑚
2 |Θ, 𝐷, 𝐷𝑅 , 𝐷𝑠] ∝

𝑓(Θ|𝐷)𝑓(𝜇𝑚, 𝜎𝑚
2 |Θ)𝑓(𝐷𝑅 , 𝐷𝑠|𝜇𝑚, 𝜎𝑚

2 ) (6) 

where Θ = {μ0, C0, α, β, R}; DR denotes the data of the 

liquefaction histories of the target region; Ds denotes the 

investigation data of the target site; μm and σ2
m are the 

mean value and the variance of the quasi-region-specific 

model factors, respectively.  

 

 
Figure 4. Two-step procedure of GR-Liq-HBM for 

inferring quasi-region-specific model uncertainty.  

4. Application to a real case 

This section approaches to demonstrate how the 

proposed model performed in inferring the quasi-region-

specific model uncertainty of simplified procedures and 

to yield the liquefaction probability of the target site.  

A site located in North Kaiapoi, Canterbury, New 

Zealand is indicated to be a liquefied site given the shock 

of the 2011/2/22 Canterbury earthquake (Shen et al. 

2016). For demonstration and validation, let us consider 

this liquefaction information is unknown, and a 

construction project aims to evaluate the liquefaction 

potential of this site. For this evaluation, the project 

engineers need at least two pieces of information: the 

site-investigation data, and the ground motion condition 

of concern. 

For the former, the investigation report shows that the 

critical liquefiable layer of that site is located at 3.5-4.5m 

in depth, with a median depth of 4.0m. The report also 

presents CPT data of that stratum: the average cone 

resistance qc ≈ 5.55MPa, the average sleeve friction fs ≈ 

0.028MPa, and the soil behavior index Ic ≈ 1.83 (Shen et 

al. 2016). For the latter, on the other hand, let us consider 

the scenario the 2011/2/22 Canterbury earthquake occurs. 

In accordance with the motion record (Shen et al. 2016), 

the peak ground acceleration ≈ 0.18g, and the moment 

magnitude ≈ 6.3.  

Based on the above information, the nominal factor 

of safety (FSn) can be evaluated via a CPT-based 

simplified procedure (Juang et al. 2003) ≈ 1.45, which 

says that the stratum of concerns does not liquefy. Note 

that in fact, it was liquefying given the shock of the 

2011/2/22 Canterbury earthquake, but in this illustration 

this liquefaction information is set unknown, such that 

the model uncertainty of the liquefaction potential 

assessment should be further inferred.  

4.1. Inference of quasi-region-specific model 

uncertainty 

A project engineer can derive the quasi-region-

specific model uncertainty of the concerned region by 

performing the Step 2 of the proposed model, if the Step 

1 is finished by this study. To infer the concerned model 

uncertainty, the project engineer can perform the Step 2 

in either two options: conditioning liquefaction history 

data of other sites in this region, or conditioning no 

liquefaction information. The former information can be 

found in the liquefaction potential database compiled in 

this paper.  

Those two conditioned inference results of model 

uncertainty via the proposed model along with the Gibbs 

sampler are shown in Fig. 5: where Fig. 5(a) shows the 

inference of statistical parameters of model uncertainty 

of the target region, and Fig. 5(b) shows the inference of 

model uncertainty of the liquefaction potential evaluation 

of the target stratum.  

In accordance with the inference results in Fig. 5(a), 

the posterior mean of the quasi-region-specific model 

factor conditioned on the regional liquefaction histories 

is evidently lower not only than the one conditioned on 

no regional liquefaction histories, but also than zero, 

which points out that the bias of the liquefaction potential 

evaluation in this target region exists. These inference 

results yield the posterior samples of the model factor of 

the target stratum, which is shown in Fig. 5(b). 

4.2. Liquefaction occurrence prediction 

The posterior samples of the model factor of the target 

stratum can yield the liquefaction probability of the layer:  

𝑃𝐿 ≈
1

𝑁
∑ 𝟙(𝑚𝑖 × 𝐹𝑆𝑛 < 1)𝑁
𝑖=1  (7) 

where PL stands for the liquefaction probability; N is the 

number of total posterior samples of model factor; mi is 

the inferred model factor via the proposed model; 𝟙(.) is 

the indicator function.  
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Figure 5. Quasi-region-specific model uncertainty 

The liquefaction probability is adopted to predict the 

occurrence of liquefaction: PL ≥ 0.5 indicates that the 

target stratum liquefies, while PL < 0.5 indicates that the 

target stratum does not liquefy. 

The figures of liquefaction probability estimated via 

traditional model (Juang et al. 2003) and GR-Liq-HBM 

are enumerated in Table 1. Among these predictions, 

only the one by the GR-Liq-HBM with regional 

liquefaction history for the target stratum is correct, while 

the others by the traditional model (Juang et al. 2003) and 

the GR-Liq-HBM without regional liquefaction history 

are misleading. 

For further comparison, this paper derives a “generic” 

probabilistic model for liquefaction triggering analysis 

based on the liquefaction potential database compiled in 

this study. This generic probabilistic model contains a 

generic model factor characterized by the improved 

transitional Markov chain Monte Carlo (TMCMC) 

approach (Ching and Wang 2016). The posterior generic 

model factor also can yield the liquefaction probability of 

the target stratum using Eq. (7). The estimation is shown 

in Table 1. However, its prediction of liquefaction 

occurrence is also misleading.  

Table 1. The liquefaction probability in the target stratum 

via four models. 

Model  PL 

Generic probabilistic model 

(Juang et al. 2003) 

0.016 

Generic probabilistic model 

(Derived based on our database) 

0.292 

GR-Liq-HBM 

(Without regional liquefaction history) 

0.326 

GR-Liq-HBM 

(With regional liquefaction history) 

0.642 

 

5. Conclusions 

It is believed that taking the liquefaction histories of 

vicinity into account when determining the liquefaction 

potential of the target site is quite intuitive for engineers 

in practice. However, engineers rely on their empiricism 

to evaluate the liquefaction potential of sites they concern 

due to the absence of the approaches that incorporate 

regional liquefaction histories and the target site 

investigation data. As the era of digital transformation 

approaches, data-centric measures should be gradually 

developed to address this issue. 

This paper aims to propose a hierarchical Bayesian 

model, GR-Liq-HBM, for data-centric liquefaction 

triggering analysis. The model characterizes the inter-

region and the intra-region correlations between the soil 

properties and the model uncertainties of the simplified 

procedures for liquefaction triggering analysis. The 

characterizing outcomes can assist engineers yielding the 

model uncertainty of the target region adaptively, and the 

liquefaction probability of the target site under a given 

ground motion condition. Also, the model can 

accommodate the regional liquefaction history data and 

the target site investigation data to infer the quasi-region-

specific model uncertainty and the liquefaction 

probability of the target site.  

A real case in New Zealand is adopted to illustrate 

how to perform GR-Liq-HBM on a target site to acquire 

quasi-region-specific model uncertainty and the 

liquefaction probability of the target site. The illustration 

shows that GR-Liq-HBM, along with the regional 

liquefaction history data, yields an improved prediction 

of liquefaction occurrence, which is believed to benefit 

the site characterization work in practice.  
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