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ABSTRACT  
The surface wave method (SWM) and  the screw weight sounding (SWS) are employed as a geophysical exploration 
method and a sounding test, respectively to identify the spatial distribution of the stiffness of an earth-fill dam in the 
present study. The ensemble Kalman filter (EnKF) is used as a data assimilation technique. It can estimate the spatial 
distribution of the Young’s modulus as the stiffness of an earth-fill dam by assimilating the travel time to the first arrival 
of the surface waves. By the ensemble data assimilation, the measured data from the SWM is applied to simultaneously 
estimate the Young's modulus and evaluate the uncertainties. The SWS results are employed as the prior information to 
generate the initial ensemble through the sequential Gaussian simulation (sGs). Proposed method has been applied to the 
actual data of the SWM and the SWS measured at an earth-fill dam site.  Consequently, it has been clarified the proposed 
approach could identify the appropriate random field of Young's modulus. 
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1. Introduction 
Although boring and standard penetration tests are 

usually conducted to examine the inside of geo-structures, 
the interval of the test points must be sparse due to low 
efficiency and the possibility of damage to the structures. 
Consequently, weak locations may be overlooked. To 
deal with these shortcomings, the screw weight sounding 
test (SWS) (JGS 2015) is employed in this study as the 
static sounding method for obtaining detailed 
information on the inside of an earth-fill and the 
underneath ground. The SWS is advantageous in that it 
makes short-interval exams possible, which are highly 
efficient, and it causes little damage to the structures. 
Additionally, the surface wave method (SWM), which is 
the one of the geophysical survey methods, is employed 
to obtain information for a wider area, since it is a much 
more efficient approach. The SWM has been widely used 
in investigation. For the SWM, almost traditional 
inversion processes lead to a deterministic spatial 
distribution of the S-wave velocity (Jongmans et al. 
1993). That means the uncertainty of the estimation 
cannot be evaluated. To examine a wide area of an earth-
fill efficiently and accurately, two methods, namely, the 
SWS and the SWM, are theoretically combined with a 
data assimilation method.  

Although the sounding results are reliable to estimate 
the stiffness of the ground, only the information of the 
point estimate is available. While, the geophysical 
exploration can present the spatially averaged 
information of the stiffness. In this study, two kinds of 

the test results are synthesized by the data assimilation 
technique, and the technique is applied to the identify the 
spatial distribution, namely random field of the stiffness. 
The ensemble Kalman filter (EnKF) (Evensen 2009) is 
used as a data assimilation technique. It can estimate the 
spatial distribution of the Young’s modulus as the 
stiffness of an earth-fill dam by assimilating the travel 
time to the first arrival of the surface waves.  

Using the Monte Carlo method, the EnKF can 
calculate the probability distributions of the parameters 
with a group of realizations. Compared to other data 
assimilation methods, such as the particle filter (PF), due 
to the hypothesis whereby the probability density 
function (pdf) is Gaussian in the EnKF, a relatively 
accurate probability distribution can still be obtained 
when the number of realizations is small. It brings the 
computational cost of the forecast model applied to each 
ensemble member to an acceptable level. 

The EnKF method is widely used in meteorology and 
oceanography (Annan et al. 2005, Ueno et al. 2007), and 
is gradually being applied in mechanical engineering 
(Akita et al. 2010), petroleum engineering (Liu and 
Oliver 2005), and geotechnical engineering (Franssen  
and Kinzelbach 2008). By assimilating the measurements, 
the EnKF can modify the poorly known parameters and 
lead to best-guess estimates. There should be a 
correlation between the measurement data and the 
parameters to be updated. For different models, 
appropriate measurement data must be carefully chosen. 
For instance, in the study of Evensen et al. (2007), the 
well-log measurements and production rates of oil, gas, 
and water were employed to estimate the fluid contacts, 



 

porosity, and permeability. Akita et al. (2010) utilized the 
displacement of a structure to estimate the spring 
constant. Tao et al. (2020) used EnKF to predict the soil 
settlement of an airport road. Pandurangan et al. (2015) 
used the data of tiltmeter to estimate fracture growth 
parameters. In contrast, there have been relatively few 
studies which applied the EnKF for the parameters of the 
soil strength or rigidity. The study of Caballero et al. 
(2018) involved Young’s modulus of ground. In this 
study, the Young’s modulus of an earth-fill dam is 
identified using the travel time to the first arrival of the 
surface waves, which has a strong correlation with the 
stiffness of the ground. 

By the ensemble data assimilation, the measured data 
from the SWM is applied to simultaneously estimate the 
Young's modulus and evaluate the uncertainties. The 
SWS results are employed as the prior information to 
generate the initial ensemble through the sequential 
Gaussian simulation (sGs) (Deutsch and Journel 1992). 
In the experiments of assimilation, it has been shown that 
the reproducibility of the parameter field is enhanced by 
this initial ensemble generation method, and that the 
uncertainties of the identified parameters can be reduced 
by the assimilation.  

2. Surface wave method 
The measurements obtained by the SWM are utilized 

for the assimilation. According to the study of Hayashi et 
al. (2001), Fig.1 shows the arrangement of the geophones 
and shot points. Regardless of the total length, the 
geophones in this study are always arranged at 2 m 
intervals, and the shot points are placed between the 
geophones and at the ends of them, so that the number of 
shot points is 1 more than the geophones. During the in-
situ tests, a sledgehammer is used to generate surface 
waves by striking it against the shot points, and the shot-
gather obtained by recording the waveforms is used as 
the measurement data for the corresponding times. 

In the data assimilation  to analyze the surface wave, 
the finite element method (FEM)  is employed. The FEM 
allows the boundary conditions of different models to be 
taken into consideration, and can introduce the 
heterogeneity of the ground into the models easily. The 
traditional data analysis method of the SWM uses the 
dispersion properties of the surface waves to calculate the 
wave velocity at different depths. Inasmuch as high-
frequency waves can be filtered out by a larger size grid 
(Zerwer 2002) in a finite element simulation, fairly tiny 
meshes are required to meet the conditions for an analysis 
of the dispersion. The fact that the model size should be 
consistent with real tests leads to models with lengths of 
30 m to 40 m. For models that perfectly simulate high- 
frequency waves, the computational cost is too large for 
practical use. Therefore, only the first arrival time of the 

surface waves is used as the measurement in this study in 
order to avoid having to assimilate the frequency of the 
surface waves, which allows for a model with relatively 
large grids to be used. The first arrival time of each 
waveform needs to be determined manually because of 
the noise included in the real surface wave data. As the 
noise in realizations can be eliminated with appropriate 
boundary conditions, the first arrival time can be 
determined automatically. 

3. Screw weight sounding test 
The spatial distribution of the strength parameters of 

decrepit earth-fill dams is discussed, and an identification 
method for the distribution is proposed.  Generally, the 
identification of spatial correlation of the soil parameters 
is very difficult, since the number of the sampling  points 
is limited to model the spatial variability. The difficulty 
can be solved by the sounding tests, since they can be 
conducted at widely spread points. Although the strength 
of earth-fill dams is generally predicted from standard 
penetration test (SPT) N-values, screw weight sounding 
(SWS) tests are employed in this research as a simpler 
method to obtain the spatial distribution of the N-values.  
The SWS has two advantages, compared with other 
major sounding methods.  

1) The exams with very sort interval is possible, since 
it is a static souring and does not give damage to old and 
deteriorated earth-fills. This is very advantageous to 
identify the correlation lengths. 

2) The examinations is possible in the narrow spaces, 
or in the test sites difficult to access with the large 
equipment such as the electric cone penetration test 
(CPT).  

The relationship between the SPT N-value and the 
SWS N-values is modelled;  

                                  (1) 

in which NSWS is the N-value derived from SWS, NSW is 
the number of half rotations and WSW is the total weight 
of the loads. 

Next, the N-values are required to be transformed in 
to Young's modulus.  A roughly suitable model which 
makes the measurements of initial spatial distribution of 
the Young's modulus  get close to the real measurements 
by the data assimilation could be chosen for convenience. 
The transformation model used in this study is 

E = cN                                                   (2) 

where c is a constant transformation coefficient. It is 
common for c to be 700 or 2800 (e.g. for borehole load 
tests or horizontal load tests).  

NSWS = 0.067NSW + 0.002WSW

 
Figure 1. Arrangement of geophones and shot points. 

 



 

4. Identification of random field  

4.1. Identification method 

The N-value distribution derived from the SWS tests 
is spatially interpolated with the Monte Carlo method 
(MCM). The random field theory has been used to depict 
the spatial variability of soil properties. Nishimura  et al. 
(2016)  employed the geostatistical method with data 
from cone penetration tests to create a reasonable N-value 
field. The spatial distribution of the ground in this section 
is created by the analogous method. The data from the 
SWS tests, taken from the same site as the SWM tests, 
are used to establish a statistical model for the N-value 
field (the spatial distribution of SWS N-value).  

A representative variable for the soil propertieswhich 
is logN in the present study, s, is defined by Equation (3) 
as a function of location X=(x, z). Variable s is assumed 
to be expressed as the sum of mean value m and random 
variable U, which is a normal random variable in this 
study. 

                                                     (3) 

The random variable function, s(X), is discretized 
spatially into random vector st=(s1,s2,...,sM), in which sk is 
a point estimation value at location X=(xk, zk). The soil 
parameters, which are obtained from the tests, are defined 
here as St=(S1,S2,..., SM). Symbol M signifies the number 
of test points. Vector S is considered to be the realization 
of random vector st=(s1,s2,...,sM). If variables s1, s2,...,sM 
constitute the M - variate normal distribution, the 
probability density function of s can then be given by the 
following equation: 

        (4) 

in which mt=(m1,m2,...,mM) is the mean vector of random 
function st=(s1,s2,...,sM); it is assumed to be the following 
regression function. In this research, a 3-D statistical 
model is considered, namely, horizontal coordinate x, 
which is parallel to the embankment axis, vertical 
coordinate z, and another horizontal coordinate, y, which 
is perpendicular to the embankment axis. x and y are 
introduced here. The element of the mean vector is 
described as 

            (5) 
s X( ) =m X( )+U X( )

fS s( ) = 2π( )−
M
2 C −12 exp −
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2 + a5xk zk

 
Figure 2. Plan view of SWS and SWM test locations. 

 

 
Figure 3. N-values derived from SWS and trends. 

 



 

in which (xk, zk) means the coordinate corresponding to 
the position of parameter sk, and a0, a1, a2, a3, a4, and a5 
are the regression coefficients.  
C is the M×M covariance matrix, which is selected 

from the following four types in this study: 

          (6) 

       

in which the symbol [Cij] signifies an i-j component of 
the covariance matrix, σ is the standard deviation, and lx 
and lz are the correlation lengths for the x and z directions, 
respectively. Parameter Ne is related to the nugget effect. 
Akaike’s Information Criterion, AIC, is defined by 
Equation (7) considering the logarithmic likelihood. 

               (7) 

in which L is the number of unknown parameters 
included in Equation (4). By minimizing AIC (MAIC), 
the regression coefficients of the mean function, the 
number of regression coefficients, the standard deviation, 
σ, a type of covariance function, the nugget effect 
parameter, and the correlation lengths are determined. In 
other words, the determined parameters and the selected 
covariance function correspond to the minimum AIC. 

4.2. Spatial distribution of N-value on studied 
site 

Fig.2 shows the plan view and the SWS  test points of 
the studied site of the earth-fill dam located in Okayama. 
The test results are depicted in Fig.3. The trend function 
of log𝑁, obtained by the method described in the 
previous section, is as follows: 

                 (8) 

This trend function, namely, the regression curve 
drawn for each measurement point, is shown in Fig.3 
with the measured N-values. The black points are the 
logarithms of the N-values and the red curve is the 
regression curve given by Equation (8). The number at 
the top of each plot indicates the location of the 
measurement point, which is the value of 𝑥 in Equation 
(8). It can be seen that the trend function calculated by 
the MAICE is relatively consistent with the 
measurements.  

The horizontal correlation distance is identified as  
15.7 m, while the vertical correlation distance is 1.24 m 
respectively, in this study, and the covariance function is 
as follows:. 

            (9) 

Based on this statistical model, the random fields of 
N-values are generated by the sGs and converted to 
Young’s modulus fields.  

5. Ensemble Kalman filter 
The inversion process of the EnKF consists of the 

evolution step and the update step. In the evolution step, 
a group of numerical models (the ensemble) with 
different initial states are used to forecast the evolution 
of a real system to calculate those measurements. Then, 
the states of the numerical models can be calibrated by 
the difference between the measurements of the 
numerical models and those of the real system in the 
update step. The EnKF is successful in many high-
dimensional, nonlinear, and non-Gaussian application 
(Katzfuss, et al. 2016). In the present study, the finite 
element method (FEM) is used to solve the numerical 
models and predict those measurements. There are two 
kinds of analysis schemes for updating, that is, the 
stochastic analysis scheme and the deterministic analysis 
scheme. The stochastic analysis scheme is used in the 
present study; it includes 

																							(10)	

where 𝑥(!|!#$
(&)  is a set of forecast state vectors, which 

consists of all the state variables that needed to be 
estimated at time step 𝑡 − 1 and 𝑥*!|!

(&) is a set of updated 
state vectors at time step 𝑡. N is the number of ensemble 
members. 

The state vectors here actually refer to the joint state 
vectors, which include the 𝑚 parameters to be estimated 
(Young’s modulus) and the 𝑛 states to be assimilated 
(first arrival time of the surface waves). 𝑦𝑡 is the 
measurement vector (𝑛-dimensional), which consists of 
all the measurements at time step 𝑡, and 𝑦(!

(&)  is the 
measurement vector of the 𝑖th ensemble, given by the 
following linear observation equation: 

																													(11) 

where 𝐻𝑡 is an observation operator used to extract the 
predicted measurements from the joint state vector and 
𝑤!
(&)∼𝑁(0,𝑅𝑡) is the perturbation component. In Equation 

(12), 𝐾𝑡 is the Kalman gain which is given by 

C = Cij⎡⎣ ⎤⎦ =
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		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	(12) 

where𝑉6 𝑡|𝑡−1 is the ensemble covariance at time step 𝑡; it is 
represented by 

		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (13)	

		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (14) 

The 𝑅6! in Equation (12) is the covariance matrix of 
perturbation, given by 

	                                       (15) 

When the number of measurements is larger than the 
number of ensemble members (i.e., 𝑛 > 𝑁) the inverse 
matrix in Equation (12) cannot be calculated. 
Accordingly, the generalized inverse is applied, even 
when 𝑛 < 𝑁. The utilization of the generalized inverse is 
elaborated in the study of Evensen (2009). The joint state 
vector is given by 

																																																								(16) 

where vector 𝐸𝑡 consists of all Young’s moduli and 𝑎𝑡 
consists of the measurements of the first arrival time of 
the surface waves at time 𝑡. According to Equation (10), 
not only Young’s moduli, but also the first arrival time of 
the surface waves, are calibrated in the updating process. 
However, only the updated parameters are propagated, 
and the state is recalculated from the simulation, which is 
presented by the function f	in Equation (17), namely, the 
FEM at each time step. 

		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (17) 

In the updating process, the EnKF may lead to 
unrealistic geological parameters, for instance, a negative 
Young’s modulus. Consequently, the logarithm (base 10) 
of Young’s modulus is updated, and then all the updated 
Young’s moduli which will be used in the simulation are 
positive. The original measurements give rise to an error 
covariance matrix, which excessively modifies the 
logarithm of Young’s modulus. In other words, 
compared with the logarithmic state vectors, the 
increments in the measurements are too large. 

Accordingly, an attenuation factor b, greater than zero 
and less than one, is applied to reduce the error 
covariance matrix, which is determined by the 
measurements and the increments in measurements. A 
rational size of b depends on the numerical model (i.e., 
Equation (17)). It can be determined by trial and error so 
that the increments in the state vectors in each updating 
process are sufficiently small. The joint state variable 
being updated is 

																																																														(18) 

For the time evolution, the parameters of the physical 
system can be considered as time-invariant because the 
data acquisition in the SWM can be accomplished in a 
short time. Therefore, the evolution equation of Young’s 
modulus is given by 

								             	 (19) 

and the state at time 𝑡 + 1 is calculated by a numerical 
simulation as well. 

																																																																													(20)	

where �̂� is the vector of the first arrival time given by the 
simulation. 

6. Application result for studied site 

6.1. Analytical model 

In this section, a model to simulate SWM tests for the 
studied site, is utilized. Corresponding to the 
arrangement of the geophones, there are 17 measurement 
points. There are 18 shot points in total, and the shot 
points are struck sequentially. Each hit is regarded as a 
time step, in which the EnKF should be updated. The 
height of the grid used for the analysis is 1 m, with a total 
height of 9 m. Within a radius of 1 m of a shot point, the 
length of the grid is set to be very small (0.05 m) in the 
horizontal direction, and the rest of the grid is 1 m in 
length. It is necessary to resort to this mesh division for 
removing the parasitic oscillation in the waves. The FEM 
model is shown in Fig.4. 

Based on trial and error, this grid size ensures a 
relatively acceptable simulation and minimizes the 
computational cost. As such, the grid of the FEM model 
is rebuilt at each time step; however, a static grid is 
necessary for applying the EnKF updating. Therefore, the 
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Figure 4. Example of mesh design of FEM model.  



 

grid created for the sGs during the formation of the initial 
ensemble is used in the following updating, and the 
parameters of the elements for the FEM model in the next 
time step are determined by applying the updated grid. 
The Young’s modulus of every element in the FEM 
model actually equals the average Young’s modulus of 
every element in the updated grid, which falls within the 
search square centered at the location of each element. 
The side length of the search square is 1 m in this 
experiment. 

In a homogeneous medium, shear wave velocity 𝑉𝑠 is 
given by 

																																																						(21)	

where 𝜈 is Poisson’s ratio, 𝐸 is Young’s modulus, and 𝜌 
is the mass density. Compared with Young’s modulus, 
which may change in a large range, the ranges of 
Poisson’s ratio (0.3 ∼ 0.4 for sandy soil) and mass 
density (19 kN/m3 for most of the sandy soil) are 
relatively small. Therefore, the geological parameters, 
other than Young’s modulus, are assumed to be known 
in order to limit the degrees of freedom of the unknowns. 
Poisson’s ratio is set to be 0.35, and the unit weight is set 
to be and the unit weight is set to be 19 kN/m3. The time 
increment for one step of the FEM is 0.001 s.  

Fig.5 gives an example of a simulation of the surface 
wave propagation. It can be seen that the characteristics 
of the waveform roughly match those of a real surface 
wave, but the calculated frequency of the wave is lower 
than the measured surface wave due to the grid size, as 
has already been mentioned. However, the first arrival 
time of the waves is less influenced by the grid size or the 
frequency. 

The attenuation factor b of the measurements in 
Equation (18) is set to be 0.005, and the distribution of 
the perturbation of the realizations, 𝑤𝑡, is N(0,0.12). In 
addition, the residual sum of the squares (RSS) between 
the ensemble mean of the measurement and the reference 
measurement is used as the criterion for determining 
whether or not the model response has been reproduced. 

																																																					(21)	

where 𝑛𝑡 is the number of measurements at time point 𝑡, 
and 𝑦𝑡,𝑖 and �̂�𝑡,𝑖 are the reference measurement vector and 
ensemble mean of the measurement vector, respectively. 

6.2. Analytical results 

The SWM tests were implemented on the studied site, 
consisting of three parts as shown in Fig.2. The length of 
the first two parts is 46 m, and each part is arranged with 
24 geophones and 25 shot points. The length of the third 
part is 32 m. For the relationship between the sites of the 
SWS tests and those of the SWM tests, the first part of 
the waveform data obtained from the SWM tests 
corresponds to the section from 0 to 46 m (1st part) in 
Fig.2. The second part corresponds to the section from 46 
to 92 m (2nd part), and the third part corresponds to the 
section from 92 to 124 m (3rd part). The plan view of the 
SWM tests is shown in Fig.2 and an example of the 
waveform is shown in Fig.5. Realizations are applied 
with the same perturbations (i.e., 𝑤𝑡 in Equation (11)). To 
improve the accuracy of the estimates, the maximum 
penetration depth in the SWS tests is utilized to 
distinguish the dam and the bedground, which is treated 
as prior information for the EnKF. The portion below this 
maximum penetration depth is considered to be hard 
bedground. 

The Young’s moduli of those grid cells would not be 
updated by the EnKF directly, but characterized by the 
grid cells. In this section, the Young’s modulus of the 
bedground part is fixed to be five times the average of the 
dam part. According to the maximum penetration depth, 
shown in Fig.3, the height of the bedground part 
increases significantly with the increase in horizontal 
coordinate 𝑥. The transformation coefficient 𝑐 is assumed 

Vs =
E

2 1+ ν( )ρ

RSS = yt ,i − ŷt ,i( )2
i=1

nt

∑

 
Figure 5. Example of simulation of surface wave propagation (left) and real measurement (right) 

 
Figure 6. Evolution of RSS in application. 



 

to equal 2800 in presented simulations. The changes in 
RSS of the three parts are shown in Fig.6. The values of 
RSS for the three parts decrease quickly at the early stage 
of the assimilation.  

Figs.7–9 show the spatial distributions of the Young’s 
moduli updated by the EnKF in the first, second, and 
third parts, respectively. Only the Young’s moduli at the 
initial and final time steps are shown in the figures. In the 
assimilation of the measured data, the spatial distribution 
is rapidly calibrated, and there is no longer a very 
significant difference between the spatial distributions at 
the 6th and final time steps. These changes in the spatial 
distributions of the Young’s moduli correspond to the 
changes in the RSS. The large blue portions in Figs.7−9 
represent the bedground. Not only the initial ensemble 

and the measurements, which are assimilated, but also 
prior information on the stratum, affect the estimated 
spatial distribution very strongly. 

Fig.10 shows the spatial distribution of the 
coefficients of variation in the first part. It is actually the 
ensemble spread at the initial and final time steps. The 
spatial distribution of the coefficients of variation 
represents the uncertainties of Young’s modulus. As such, 
the probability distribution of the Young’s modulus on 
each grid cell is described by the ensemble spread and the 
ensemble mean. Aside from the bedrock, there are some 
places in Fig.10 where the coefficient of variation is 0. 
These places are actually the locations of the SWS tests, 
and the parameters on these corresponding grid cells are 
treated as true values when random fields are generated 

 
Figure 7.  Young’s moduli in 1st part at initial step (left) and final step (right). 

 
Figure 8.  Young’s moduli in 2nd part at initial step (left) and final step (right). 

 
Figure 9.  Young’s moduli in 3rd part at initial step (left) and final step (right) 

 
Figure 10.  Young’s moduli in 1st part at initial step (left) and final step (right) 



 

using sGs. As for the other regions, it can be seen that the 
uncertainties decrease substantially after the assimilation 
of the EnKF. 

7. Conclusions 
(1) The proposed method employed the measurement 

data from SWM tests conducted on an earth-fill dam 
located in Okayama, Japan. As prior information, the 
data from the SWS tests were used to distinguish the 
bedground and the dam, and to introduce the spatial 
variability of the Young’s moduli.  

(2) The first arrival time of artificially excited surface 
waves was assimilated to estimate the Young’s modulus 
of an earth-fill dam model. With updating, the RSS 
between the ensemble members and the actual 
measurements obviously decreased in most cases, and the 
spatial distribution of the Young's moduli  could be 
identified. 

(3) In the present study, it has been found that the 
EnKF is able to evaluate the uncertainties of the 
parameters. With the assimilation, the coefficient of 
variation was seen to have substantially decreased. The 
ability of the EnKF to reduce the uncertainties of the 
parameters has been verified. 
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