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Summary. Local refinement is vital for efficient numerical simulations. In the context of Iso-
geometric Analysis (IGA), hierarchical B-splines have gained prominence. The work applies the
methodology of truncated hierarchical B-splines (THB-splines) as they keep additional prop-
erties. The framework is further enriched with Bézier extraction, resulting in the multi-level
Bézier extraction method. We apply this discretization method to 2D magnetostatic problems.
The implementation is based on an open-source Octave/MATLAB IGA code called GeoPDEs,
which allows us to compare our routines with globally refined spline models as well as locally
refined ones where the solver does not rely on Bézier extraction.

1 Introduction

In IGA [1], the Basis splines (B-spline) and Non-Uniform Rational B-splines (NURBS) func-
tions used to represent the CAD geometry are also employed to approximate the field variables
within the numerical model. This approach reduces the geometric discretization errors inherent
in finite element models that use an approximated computational geometry.

A key topic is the generalization of spline constructions, enabling local refinement by breaking
the global tensor product structure of multivariate splines. Several methods have been devised
to address this limitation of tensor product structures, such as T-splines [2], locally refined
B-spline (LR-splines) [3], and hierarchical B-splines (HB-splines) [4]. HB-splines operate on a
multi-level structure with a sequence of different levels of detail and perform local refinement by
activating and deactivating of B-splines on these levels. The HB-splines can be extended with
a truncation mechanism, which leads to truncated HB-splines (THB-splines) [5]. Additional
information about the THB-splines will be discussed in the corresponding section.
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This work introduces an adaptive IGA framework based on THB-splines, which is extended
with the discretization technique of classical Bézier extraction [6]. This approach could poten-
tially implement the hierarchical B-spline shape functions into an existing finite element (FE)
solver by utilizing Bézier element with a standard single-level basis (Bernstein polynomials), in
other words, multi-level Bézier extraction [7, 8].

Our implementation relies on GeoPDEs, an open-source Octave/MATLAB IGA code [9],
where we can provide proper comparisons as the tool already offers adaptivity based on THB-
splines. For the numerical example, we solve a scalar 2D magnetostatic problem. In addition, a
posteriori error estimator is introduced, which requires further investigation for more complex
geometries, but it can promise refinement without an exact solution.

2 Background

This section summarizes the relevant concepts to offer a clear overview of how the adaptivity
method is employed in IGA by utilizing multi-level Bézier extraction. Starting with B-splines,
followed by the multi-level structure based on THB-splines, and finally applying the Bézier
extraction technique.

2.1 B-splines

In IGA, B-splines serve as the basis functions for representing geometry and performing the
simulation analysis [1, 10]. B-spline basis functions are defined by degree p, and a knot vector,

Ξ = {ξ1 ≤ ... ≤ ξn+p+1}, (1)

where n is the number of the basis functions. The Cox-de Boor recursion formula defines the n
functions, by starting from degree p = 0, up to the prescribed degree,

Ni,0 =

{
1 for ξi ≤ ξ < ξi+1

0 else
(2)

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ).

A B-spline curve can be constructed as the linear combination of the basis functions,

C(ξ) =

n∑
i=1

Ni,p(ξ)Pi, (3)

where Pi ∈ Rd are the control points associated to the basis functions.
In general, B-spline functions are piece-wise polynomials, they are non-negative over their

domain, they constitute a partition of unity, they have local support, and finally, their continuity
depends on knot multiplicity k, Cp−k. In Fig. 1, we have a quadratic B-spline that represent all
the aforementioned properties.

For higher dimensions, we need to construct multivariate B-splines as a tensor product of
univariate B-splines, as indicated in Fig. 2. Considering R2, the degrees p and q and knot vectors
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Figure 1: B-spline function with knot vector, Ξ = [0, 0, 0, 0.25, 0.5, 0.75, 0.75, 1, 1, 1] and degree p = 2.
Left: basis functions. Right: curve with control points.

Figure 2: Reference domain with the basis function in 2D, as tensor product structure.

Ξ = {ξ1 ≤ ... ≤ ξn+p+1} and H = {η1 ≤ ... ≤ ηm+q+1}, define each dimension of a surface. Thus,
two sets of basis functions along with the control net Pi,j with i = 1, 2, ..., n, j = 1, 2, ...,m,
describe the surface,

S(ξ, η) =
n∑

i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Pi,j . (4)

2.2 Multi-level structure with THB-splines

A multi-level structure with hierarchical B-splines offers a state-of-the-art method for adap-
tive refinement, especially in representing complex geometries. Knot insertion algorithms con-
struct the individual levels, ℓ. We follow the dyadic refinement technique with 2d · nel elements
for each new level of refinement (d is the dimension and nel number of elements in ℓ − 1), so
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the levels preserve the same polynomial degree. This multi-level structure consists of sequence
of nested spline spaces of univariate splines, S(0)(Ω) ⊂ S(1)(Ω) · · · ⊂ S(ℓmax)(Ω). In Fig. 3, a
univariate quadratic B-spline with two additional levels of refinement is depicted. The geom-
etry and the parametric representation do not change under the refinement process, but the
relation between the levels occurs by an operator called subdivision matrix S. The parent func-

tions, N(ξ)
(ℓ)
i,p of the level ℓ are a linear combination of fine-scale functions N̂j,p(ξ)

(ℓ+1) (children
functions) of level ℓ+ 1,

N(ξ)
(ℓ)
i,p =

n̂∑
j=1

Sj,iN̂j,p(ξ)
(ℓ+1). (5)

THB-splines [5] enhance traditional hierarchical B-splines by restoring the partitioned unity
property and thereby reducing their overlap. As a result, THB-splines provide a more flexible
and powerful tool for local refinement. The black basis functions in Fig. 3, are the overlapping
ones, where we apply the truncation mechanism. The truncated basis functions are defined as,

truncN(ξ)
(ℓ)
i,p =

∑
j∈ηℓ+1

D

S
(ℓ)
ji N(ξ)

(ℓ+1)
j,p . (6)

As previously stated, in a hierarchical structure, each basis function at level ℓ is a linear
combination of basis functions at level ℓ + 1, encoded in the subdivision matrix (5). At that

point, the global multi-level extraction operator, Mglob
ℓ , can be defined by applying a sequence

of nested spline spaces, where the goal is to extract the hierarchical functions supporting each
element at the specific level. For levels ℓ = 0, . . . , ℓmax the Mglob

ℓmax
can be obtained by joining the

rows, corresponding to the active basis, of the refinement operators S(ℓ,ℓmax) [7]. For example,
the multi-level operator for level 2, M(ℓ2), is derived by the operators S(ℓ0,ℓ1),S(ℓ1,ℓ2),S(ℓ2,ℓ2) and
M(ℓ2) ∈ Rn×m, where n is the active basis functions of ℓ0 plus the the active basis functions of
ℓ1 and ℓ2 and m is the total number of basis functions of ℓ2.

2.3 Standard Bézier extraction

Similar to standard finite elements, there is a desire for an element-by-element assembly
routine to increase the computational efficiency of the assembly procedure. One way to achieve
this is Bézier extraction, which maps a piecewise Bernstein polynomial basis into a B-spline
basis and vice versa [6]. This mapping allows using C0 Bézier elements as the finite element
representation of smooth splines.

We use Bézier decomposition, which is accomplished by repeating all interior knots of a knot
vector until they have a multiplicity equal to the degree of the polynomial [6]. A representation
of Bézier extraction for a univariate B-spline function is depicted in Fig. 4. An important
feature is that the initial curve geometry remains unchanged by changing only the basis and
the corresponding control points. The B-spline functions, N, can be expressed as a linear
combination of Bernstein polynomials B with the Bézier extraction operator E.
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Figure 3: Left: a univariate quadratic THB-spline with two additional levels of refinement. Right: a
2D representation of a tensor product quadratic THB-splines.

E

E⊺

N = EB

Figure 4: Left: B-spline basis and curve. Right: Bézier basis and curve.

3 Multi-level Bézier extraction

The combination of those two techniques of multi-level THB-splines and Bézier extraction
results in multi-level Bézier extraction, which decompose B-spline basis functions into a series
of simpler Bézier elements across multiple hierarchical levels.

To construct the multi-level Bézier extraction operator, C, for the spline basis, we localize
the global multi-level extraction operator Mloc

e and the Bézier extraction operator Eloc
e , for an

element-by-element approach. This creates a direct mapCe from a standard set of reference basis
functions equal for each element (Bernstein basis, B) to the multi-level local basis (hierarchical
basis, He),

He = Mloc
e Eloc

e B = CeB. (7)

In Fig. 5, there is a uni-variate B-spline element on the left side with basis functions from
different levels of the refinement. This element can be transformed directly to a Bézier element
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N
(1)
6

N
(1)
7

N
(2)
14

 = Mloc
e3 E

loc
e3

B0

B1

B2



Figure 5: Translation from hierarchical spline space to local Bernstein polynomials.

with Bernstein basis functions only through the application of the operator Ce3 = Mloc
e3 E

loc
e3 .

The same procedure can be extended into multipatch domains, where the computation do-
main Ω is divided into ni non-overlapping subdomains Ωi or patches. Therefore more complex
geometries can be handled with greater detail. The geometrical mapping from the reference
domain, Φi, corresponds to each patch to construct the physical geometry. Section 4 presents a
numerical example of a multipatch domain for a scalar magnetostatic 2D problem.

3.1 Problem assembly for numerical simulation

The multi-level Bézier extraction operator can be used to assemble the system of matrices
and vectors of the discretized problem. For instance, the calculation of the stiffness matrix of
B-spline elements usually requires special types of algorithms, able to handle elements with a
non-standard set of basis and hierarchical structure. In this work, GeoPDEs [9] is employed due
to its implementation of local refinement techniques in IGA with THB-splines.
On the other hand, if Bézier elements are considered, allow for an element-wise assembly as in
standard finite element solvers, we can compute a stiffness matrix of a classic Bézier element and
then transform it to a B-spline element stiffness matrix. For this, a local element-by-element
approach needs to be taken into account, and then with the proper transformation matrix the
global stiffness matrix of the THB-spline basis is computed,

Ke
B−spline = CeKBezier(C

e)T (8)

Kglobal =

nel∑
e=1

T (Ke
B−spline).

The KBezier is the stiffness matrix of a Bézier element on the corresponding level of refinement.
Together with the local multi-level Bézier extraction operators, Ce, the stiffness matrix of the
THB-spline space element is calculated, Ke

B−spline.

3.2 Posteriori error estimator

Let us now look at a posteriori error estimator based on the least-square formulation [11].
Here the refinement follows consecutive refinement levels to consider the areas of interest locally.
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In brief, first, the initial discretized system needs to be solved,

[
Ah Bh

BT
h 0

] [
p

u

]
=

[
f

0

]
. (9)

Here, Ah ∈ RMY ×MY , is the stiffness matrix of the fine mesh, Bh ∈ RMY ×MX , is the stiffness
matrix of the coarse mesh, mapped onto the fine mesh and f is the source term. The solution
vector consists of the error approximation, p, and the numerical solution u. With the error
approximation, we evaluate the local error indicators into the coarse mesh,

η2k :=

∫
|∇ph(x))|2 dx. (10)

Finally, a marking strategy determines the elements that need refinement. In this work, the
Dörfler criterion is applied with a minimal set M ⊂ N where N , is all elements in the coarse
mesh and M , is the subset of elements marked for refinement based on the error indicators,

∑
k∈M

η2k ⩾ θ
∑
k∈N

η2k, (11)

where θ is a parameter in the range 0 < θ < 1.
As an example of this error estimator, a Poisson problem with non-homogeneous Dirichlet

boundary conditions in a unit square domain with a peak value in the middle was computed.
The results in Fig. 6, measure the true error between the numerical and the exact solution
(blue line) and the behavior of the estimator (red line). The two lines converge similar and
that indicates that the error estimator captures the behavior of the true error in the numerical
solution. This gives the potential to extend the use of the error estimator to more complex
problems with more detailed geometries.

Figure 6: Estimator results for the Poisson problem.
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4 Numerical example

GeoPDEs [9], an open-source FE solver for IGA, implemented in Matlab/Octave, is applied
for the numerical example of this contribution. We have a 2D scalar magnetostatic problem
with a horseshoe magnet and a metal sheet. This is a multipatch geometry with 30 patches and
3 different materials, air, iron, and neodymium magnet, as shown in Fig. 7.

Figure 7: The thick lines indicate the boundaries of the patches. The variation in colors represents the
different materials. The blue is the air, the grey is the iron and the light green is the neodymium magnet.
The arrows indicate the direction of the magnetic field.

To solve the magnetostatic problem in magnetic vector potencial form, the following deriva-
tion is applied. We start with the Ampére–Maxwell equation, given in terms of the magnetic
field strength H, where the displacement currents are disregarded, and the Gauss’s law for
magnetism, B is the magnetic flux density,

∇×H = Jf (12)

∇ ·B = 0.

Then the definition of the magnetic vector potential and the material law (constitutive equation)
are introduced.

B = ∇×A, =⇒ ∇ ·B = ∇ · (∇×A) , (13)

B = µH+Br ⇒ H = µ−1 (B−Br) ,with µ = µ0µr,

where µ0 is the vacuum permeability and µr is the relative permeability. The 3D equations
reduce to a 2D form by assuming that all variations along the z-axis are zero and the fields
vary only over the xy-plane. By expressing the magnetic flux density, B, in terms of the vector
potential, A, and substituting it into the constitutive relations and Ampére–Maxwell Law, we
derive a scalar differential equation.

∇×
(
µ−1 (∇×A−Br)

)
= J, (14)
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and in the 2D case,

∂

∂x

(
µ−1

(
−∂Az

∂x
−Bry

))
− ∂

∂y

(
µ−1

(
∂Az

∂y
−Brx

))
= Jz. (15)

Note that in 3D edge elements (15) must be used to discretize (14) [12], in 2D nodal elements
are sufficient.

To demonstrate the correctness of the Bézier approach, we do not apply the error estimator
of Section 3.2 but use a numerical reference solution. The reference solution is obtained using
a uniformly refined mesh with a high density of elements and many degrees of freedom to the
specific problem (No. elements = 108000, DoFs = 112302). With that reference solution u, the
true error approximation with a prescribed tolerance is applied. The quality of the approximate
solution uh is assessed by the L2-error,

ϵL2 =

(∫
Ω
|u− uh|2 dx

)1/2

. (16)

An element is marked for the refinement if,

ϵL2,n > tolerance = 10−8. (17)

The final locally refined mesh is in Fig. 8.

Figure 8: Local mesh refinement.

The boundary conditions are homogeneous Dirichlet conditions, i. e. , a flux wall, to ensure
that no magnetic field exists outside our domain, see Fig. 9 left. Then, the magnetic flux density
can be derived by the definition of the magnetic vector potential, as shown in Fig. 9 right.

Finally, the efficiency of the multi-level Bézier extraction for local refinement can be described
by the relative L2-error approximation between uniform and local refinement, as shown in Fig. 10.
As expected, the local refinement converges faster with fewer degrees of freedom, but at the same
time, this verifies the effectiveness of multi-level Bézier extraction.
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Figure 9: Left: magnetic potential lines. Right: magnetic field density.

Figure 10: L2 norm relative error, local and global refinement.

5 Conclusions

We discussed the extension of the Bézier extraction technique to truncated hierarchical B-
splines (THB-splines). We demonstrated the behavior of this approach in the context of 2D
magnetostatic simulation. The multi-level Bézier extraction can be compatible with other hier-
archical spline spaces and is not restricted to THB-splines. The example of multipatch domains
demonstrates that multi-level Bézier extraction applies to complex geometries, where the cal-
culation of Bézier elements suffices to simulate over hierarchical spaces. Since the assembly
is performed element-by-element with a subsequent multiplication of the extraction operators,
integrating THB-splines into other Bézier element-based isogeometric analysis (IGA) codes is
straightforward. Additionally, the use of standard FE codes is simplified significantly. The
approximation error drives the refinement process. The error was computed using an error
estimator based on consecutive levels of refinement in one example, while the other utilized a
reference solution.
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[5] Giannelli, C., Jüttler, B. and Speleers, H., 2012. THB-splines: The truncated basis for
hierarchical splines. Computer Aided Geometric Design, 29(7), pp.485-498.

[6] Borden, M.J., Scott, M.A., Evans, J.A. and Hughes, T.J., 2011. Isogeometric finite element
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traction for hierarchical local refinement of Isogeometric Analysis. Computer Methods in
Applied Mechanics and Engineering, 328, pp.147-174.

[8] Grendas, A. and Marussig, B., 2023. Multi-level Bézier extraction of truncated hierarchical
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