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Summary. Computational homogenization methods reveal the physical behavior of hetero-
geneous materials, often complex due to intricate manufacturing. Micromechanical techniques
use microstructural data to predict effective behavior. However, processing digital material
data, represented as voxels, involves handling numerous image points. While modern FFT-
based solvers are powerful, performance improvements remain beneficial. The composite voxel
technique, in its original form, enhances accuracy by applying a surrogate material law to vox-
els containing more than one material phase. This work contributes to the understanding and
application of composite voxels for thermal conductivity problems by integrating them into a
level-set-based framework. Using FFT-based solvers, we demonstrate their potential to enhance
computational performance through numerical examples.

1 INTRODUCTION

Computational homogenization methods offer valuable insights into the physical behavior
of materials with heterogeneity at smaller scales. The complex anisotropic properties these
materials develop, often as a result of intricate manufacturing processes, make experimental
characterization both costly and time-consuming. However, micromechanical techniques utilize
the material’s microstructure as a blueprint, enabling the prediction of its effective behavior
based on the phases and their spatial distribution.
In the most common applications, digital material data are typically represented as voxels
(volume pixels), which results in the processing of a considerable number of image points. Due
to the rectangular nature of voxels, interfaces between materials are often jagged, complicating
the generation of high-quality and interface-conforming meshes. A more efficient approach is to
work directly on the regular voxel grid, eliminating the need to store the mesh topology [1, 2].
In order to circumvent the difficulties associated with the generation of interface-conforming
meshes, Moulinec-Suquet’s [3, 4] approach employs regular, rectangular grids and solves periodic
homogenization problems through the use of the fast Fourier transform (FFT) where efficient
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implementations are available [5]. Since the original article, numerous novel insights, improve-
ments and extensions have been presented, as thoroughly reviewed in recent articles [6, 7, 8].
These discoveries have been especially important in material science for addressing challenges
related to mechanical and thermal conductivity.
While FFT-based methods are computationally powerful, there is still value in improving their
performance. One significant advancement in this area is the composite voxel technique, inde-
pendently developed by two research groups [9, 10] addressing mechanical problems, and also
applied to thermal problems [11]. This approach involves representing the microstructure with
greater detail than the voxel mesh used for the simulation. When the microstructure is provided
analytically or as a high-resolution subvoxel image, certain voxels may include multiple phases.
To capture this heterogeneity, these voxels are assigned a composite constitutive law. Various
methods have been tested, and for materials with finite contrast, the most effective strategy
is to apply a laminate constitutive law [12, §9], using accurate volume fractions and aligning
the lamination direction close to the normal of the linear interface approximation within the
composite voxel.
The article at hand contributes to the understanding and application of composite voxels for
thermal homogenization problems, extending our recent work [13]. We shed light on whether
the techniques developed for elasticity also provide accurate predictions for thermal conductiv-
ity. In Section 2, we provide a brief overview of the thermal conductivity problem that we are
addressing. We reintroduce laminate voxels and their application to the thermal conductivity
problem. We demonstrate how to calculate the effective conductivity of a laminate voxel and
how to integrate laminate voxels into a level-set-based microstructure framework, see Section 3.
Last, two numerical examples illustrate the potential of laminate composite voxels to enhance
the computational performance, see Section 4 for details.

2 PERIODIC HOMOGENIZATION OF THERMAL CONDUCTIVITY

2.1 The thermal conductivity problem

Consider a rectangular domain Y ⊂ Rd with spatial dimension d = 2, 3. The objective is
to extract an effective thermal conductivity tensor κeff of a microstructured material by solving
the cell problem for a prescribed (negative) temperature gradient ξ̄. We assume that the local
conductivity tensor

κ : Y → L(Sym(d)), (1)

given on the cell Y , is symmetric, bounded and uniformly positive definite. The set of linear
mappings on the vector space V is denoted by L(V ) and Sym(d) refers to the space of symmetric
d× d tensors. We aim to find a periodic temperature fluctuation field θ ∈ H1

#(Y ;Rd) with

vanishing mean for a given macroscopic temperature gradient ξ̄ ∈ Sym(d). The local negative
temperature gradient is given by

ξ(x) = ξ̄ −∇θ(x), x ∈ Y, (2)

and the constitutive law follows Fourier’s law

q(x) = κ(x)[ξ(x)], x ∈ Y. (3)
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The heat flux q has to fulfill the static heat equation

div q(x) = 0, (4)

leading to the cell problem

div
(
κ(x)[ ξ̄ −∇θ(x)]

)
= 0. (5)

We define the short-hand notation ⟨·⟩Y = 1
|Y |

∫
Y · dx as the volume average of a field variable

over the cell Y . With this notation at hand, the macroscopic temperature gradient satisfies
ξ̄ = ⟨ξ⟩Y . We define the effective heat flux as

qeff
(
ξ̄
)
:= ⟨q⟩Y (6)

It may be equivalently represented in the form

qeff
(
ξ̄
)
= ⟨κ [ξ]⟩Y =

〈
κ
[
ξ̄ −∇θ

]〉
Y
. (7)

Since Eq. (3) is linear, we implicitly define the effective conductivity tensor κeff via the effective
constitutive law

qeff
(
ξ̄
)
= κeff

[
ξ̄
]
, ξ̄ ∈ Rd. (8)

Combining Eq. (7) and (8) leads to an implicit formula for the effective conductivity [14]

κeff
[
ξ̄
]
=

〈
κ(x)

[
ξ̄ −∇θ(x)

]〉
Y
. (9)

2.2 Lippmann-Schwinger formulation

The cell problem (5) may be reformulated as a fixed point equation by introducing a ho-
mogeneous reference conductivity κ0 = κ0I. We obtain the equivalent Lippmann-Schwinger
equation [15, 16, 17, 18]

ξ = ξ̄ − Γ0 [τ ] with the heat-flux polarization τ = (κ− κ0) [ξ], (10)

and the local Eshelby-Green operator Γ0 = 1/κ0 ∇ (div∇)† div , where (·)† refers to the Moore-
Penrose pseudoinverse. Moulinec and Suquet [3, 4] developed an iterative scheme based on the
fixed-point form of Eq. (10), initially for mechanical problems, known as the basic scheme. Their
approach is applicable to thermal conductivity problems resulting in the iterative scheme given
by

ξk+1 = ξ̄ − Γ0
[
τ k

]
with τ k = (κ− κ0) [ξ

k], (11)

which can be interpreted as a preconditioned gradient descent scheme [19]. For any reference
conductivity κ0 and initial temperature gradient ξ0, the basic scheme has a unique fixed point.
The reference conductivity determines the convergence rate of the fix point scheme [20].
A crucial prerequisite for the efficiency of the basic scheme is the possibility to evaluate the
Eshelby-Green operator Γ0 with low computational effort. The FFT enables this task by facil-
itating its computation in Fourier space, leveraging highly efficient FFT implementations [5].
Recently, several research works [21, 22, 23] proposed strategies to impose non-periodic boundary
conditions using the discrete sine and cosine transforms. We refer to the review articles [6, 7, 8]
for details on error estimates, convergence behavior and alternative solving schemes for the
iterative Lippmann-Schwinger equation (11), and a guidance on various discretization schemes.
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3 COMPOSITE VOXELS IN COMPUTATIONAL HOMOGENIZATION

In this section, we discuss the composite voxel method, more precisely laminate composite
voxels, known in the context of voxel-based micromechanics [9, 10, 24] and thermal conductivity
problems [11]. Laminate materials [12, §9] are special microstructures which only vary in a
particular direction. As illustrated in Fig. 1 for a two-phase microstructure, with an analytic
representation of microstructure phases being available, there are heterogeneous voxel elements,
i.e., elements comprising multiple microstructure phases, arising for any discretization on a
regular grid. In their work, Kabel et al. [10] proposed to furnish those non-homogeneous voxels
with the effective properties of an equivalent laminate. More precisely, the approach involves
creating a microstructure layered in a direction approximating the interface normal and the
appropriate cut volume fractions of each phase within the voxel.

Ψ1

Ψ2

Y YI

I

Ilin

Figure 1: Illustration of a material microstructure with two phases Ψ1,2 and an analytically
given smooth interface I on a regular grid. A detailed view of a single interface voxel YI is
presented on the right, including a potential linear interface approximation Ilin.

Originally part of material modeling, the composite voxel approach [10] kept the discrete
kinematic compatibility and equilibrium equations unchanged but modified the constitutive law
of composite voxels compared to homogeneous ones. Although laminate effective properties were
initially used without a layering or periodicity of the ”microstructure” within the voxel, recent
research [13] demonstrated that laminate-type composite voxels can be justified by a kinematic
assumption within a discretization scheme for micromechanical problems.
To obtain the effective properties of the equivalent laminate, we investigate the cell problem for
a multiphased voxel. Let YI be a composite voxel cut by the material interface I, as illustrated
on the right hand side of Fig. 1. Denote by

ϕ1,2 = vol (Ψ1,2) / vol (YI) with YI ≡ Ψ1 ∪Ψ2 (12)

the volume fractions of the composite domains Ψ1,2 ⊆ YI . We further introduce a unit vector
n ∈ Rd representing the normal of a linear interface approximation Ilin between the phases Ψ1,2

inside the composite voxel YI .

4



Jonas Lendvai and Matti Schneider

We are interested in finding the effective conductivity tensor κeff
I for this laminate voxel YI

with an arbitrary direction of lamination n by solving the thermal conductivity problem Eq. (9).
For a temperature gradient ξ̄I , the problem reads

κeff
I

[
ξ̄I

]
=

〈
κ(x)

[
ξ̄I −∇θI(x)

]〉
YI

, (13)

where κI(x) denotes the thermal conductivity of each phase within the laminate voxel. The local
temperature gradient ∇θI(x) is supposed to have a vanishing mean, allowing for a simplification
of Eq. (13) to

κeff
I

[
ξ̄I

]
=

〈
κ(x)

[
ξ̄I
]〉

YI
. (14)

Following Milton [12, §9], we introduce an orthogonal decomposition of the vector ξ̄I using the
projectors

P 1 = n⊗ n, P 1v ∈ {αn | α ∈ R} for any v ∈ Rd, (15)

P 2 = I − n⊗ n, P 2v ∈
{
n · a = 0 | a ∈ Rd

}
for any v ∈ Rd, (16)

in the form

ξ̄I = P 1

[
ξ̄I

]
+ P 2

[
ξ̄I

]
= n⊗ n

[
ξ̄I

]
+ (I − n⊗ n)

[
ξ̄I

]
. (17)

This decomposition allows us to split Eq. (14) into two parts

κeff
I

[
ξ̄I

]
=

〈
κ(x) [n⊗ n]

[
ξ̄I

]〉
YI

+
〈
κ(x) [I − n⊗ n]

[
ξ̄I

]〉
YI

, (18)

which leads to

κeff
I = ⟨κ(x) [n⊗ n]⟩YI

+ ⟨κ(x) [I − n⊗ n]⟩YI
. (19)

As a consequence of the decomposition, we observe a decoupling of the conductivity in both the
parallel and orthogonal directions with respect to the lamination direction n.
With respect to Fig. 1, we specify Eq. (19) for a two-phase laminate and the isotropic conduc-
tivities κ1 = κ1I and κ2 = κ2I.

κeff
I =

1
ϕ1

κ1
+ ϕ2

κ2

(n⊗ n) + (ϕ1κ1 + ϕ2κ2) (I − n⊗ n) . (20)

Therefore, the effective thermal conductivity tensor κeff
I for a laminate composite voxel is given

by a relatively straightforward analytic expression. The tensor is determined solely by the
material constants κ1 and κ2, and the geometric properties of the interface intersecting the
voxel.
In the classical application of the composite voxel method [9, 10, 11, 25], a more refined subvoxel-
based background mesh is utilized to facilitate the computation of the necessary quantities,
specifically cut volume fractions and normals. In the work at hand, an alternative approach
for the extraction of composite voxel properties, based on a level-set description of the material
interface, is used. This method provides accurate volume fractions and normal vectors [13],
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while also ensuring compatibility with digital images. The objective is to identify the optimal
linear level-set function through a linear regression analysis of the intersection points between
the interface and the voxel edges. The regression provides the approximated interface normal
directly. The volume fraction of the emerging polyhedron is computed using an adaption of
Mirtich’s formulas [26] as described in Lendvai-Schneider [27]. We implemented a Newton
method to determine the optimal level-set cutoff value to reach to analytically known targeted
volume fractions of each phase up to a high accuracy.

4 NUMERICAL INVESTIGATIONS

4.1 Setup

In this section, we investigate and compare the numerical performance of laminate composite
voxels for thermal conductivity problems. We integrated the composite voxels into an existing
in-house FFT-based solver, developed in Python with Cython extensions and an OpenMP par-
allelization. Willot’s discretization [28] was used and the linear conjugate gradient method [29]
was employed to resolve the static heat equation up to a tolerance of 10−5 for the natural conver-
gence criterion [8]. Periodic boundary conditions were applied. The simulations were performed
on a workstation computer featuring two AMD EPYC 9354 with 32 physical cores each and a
total of 1.12TB of RAM.
For all computations, we used an isotropic thermal conductivity of 1 W/(m ·K) for the matrix
material and 10 W/(m ·K) for the inclusion material.

4.2 A spherical inclusion

As our first numerical example, we investigate the behavior of laminate composite voxels for
a single spherical inclusion. Each cell contains one spherical inclusion with a diameter of 7/32 π
of the edge length, resulting in an inclusion volume fraction of approximately 17%, see Fig. 2.
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(a) 323 voxels, none (b) 323 voxels, compVoxel
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(c) Relative error vs. resolution

Figure 2: Influence of composite voxels on the heat flux magnitude for a single sphere inclusion
in different resolutions. a), b): Comparison of the local heat flux magnitude |q| in W/m2 on a
resolution of 323 voxels without composite voxels (none) and with composite voxels (compVoxel).
c): Relative errors of the computed effective heat flux qeff in x-direction.
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The diameter was chosen to be irrational to avoid pathological scenarios where the interfaces
intersect the grid nodes frequently. We apply a temperature gradient of 10 K/m in x-direction
as the boundary condition. With this setup at hand, we compare the local heat flux field with
and without composite voxels for a resolution of 323 voxels. In Fig. 2a and 2b, the local heat
flux magnitude |q| is shown. Using no composite voxels, we observe strong voxelization effects at
the interfaces, in particular in the regions of very large and very small heat flux. Furthermore,
there are strong checkerboarding artifacts [28]. As displayed in Fig. 2b, the use of composite
voxels removes the voxelization effects to a large extent. Checkerboarding artifacts are less
pronounced. This behavior is also observable in higher resolutions. All in all, we obtain a
significantly improved solution quality.

We further investigate the effective material behavior under grid refinement by varying the
resolution between 16 and 256 voxels per dimension. In Fig. 2c, the relative error in the x-
component of the computed effective heat flux qeff is shown. We use a numerical solution for
10243 voxels as our point of reference. For the simulations without composite voxels, we see
that the relative error decreases from around 2% to 0.1% with increasing resolution. Using
composite voxels lowers the relative error overall, reaching from 0.2% to below 0.01% for the
finest resolution. The use of composite voxels lowers the relative error about one order of
magnitude compared to the simulations without composite voxels.

4.3 A long fiber-reinforced composite structure

Last, we investigate the behavior of composite voxels for a long fiber-reinforced composite
structure as an example of a material with random microstructure. Obtaining periodic mi-
crostructure images of long fiber-reinforced composites is challenging unless the microstructures
are generated. With the fused sequential addition and migration algorithm [30], we are able to
generate microstructures with long, curved fibers up to industrial volume fractions. We chose
to generate a microstructure with an aspect ratio of 100 in a cubic unit cell with an edge length
of 256µm. The dimensions of the fibers were considered to be 10µm in diameter and 1000µm
in length, reinforcing a matrix at 21% volume fraction with 44 fibers. The fiber orientation was
described by the second-order fiber-orientation tensor A = diag(0.77, 0.17, 0.06), utilizing the
exact closure approximation [31, 32]. Consequently, the fibers wrap around the cell up to three
times.
In order to prevent the formation of triple phase composite voxels, that is, voxels containing
more than one intersecting fiber, the minimum inter-fiber distance was set to 7.2µm. This value
was selected in consideration of the coarsest resolution of 643 voxels, where a fiber is resolved
by 2.5 voxels in diameter. We followed the advice in Lauff et al. [30] and set the maximum
segment length to 25µm, resulting in a maximum of 40 segments per fiber, and the maximum
bending angle between the segments to 60◦. A view on the generated microstructure is provided
in Fig. 3a.

We construct the effective heat conductivity tensor κeff using Eq. (9) and applying three
linearly independent load scenarios. As no analytical solution for the effective properties is
available for this microstructure, we use a high-fidelity computation on 10243 voxels as our
reference solution. The relative error is calculated using the Frobenius norm. The results of a
resolution study using the composite voxel strategy are shown in Fig. 3b and compared to using
only plain, i.e., no composite, voxels. We observe a decrease in the relative error from around
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(b) Relative error vs. resolution

Figure 3: Influence of composite voxels on the effective thermal behavior of a long-fiber reinforced
microstructure. a): View on the generated structure resolved by 256 voxels per dimension. b):
Relative errors of the computed effective conductivity tensor for different resolutions.

3% to 0.5% with increasing resolution without using composite voxels. Using composite voxels
lowers the relative error overall, reaching from 1% to below 0.02% for the finest resolution. The
advantage is about one order of magnitude which roughly amounts to using only one fourth of
the resolution per dimension required for a specific accuracy and avoiding the use of composite
voxels. On the finest resolution, only 6.04% of the voxels are composite voxels compared to
50.51% for the microstructure resolved by 643 voxels. The use of composite voxels results in
an about 20% increase in computational effort, independent of the resolution. This increase
represents an excellent compromise given the savings in total resolution.

5 CONCLUSIONS

The work at hand was devoted to understanding using level-set based laminate compos-
ite voxels in the setting of FFT-based computational homogenization of thermal conductivity.
Consequently, the problem setting of thermal conductivity was reintroduced, and a prelimi-
nary overview of the FFT-based homogenization regarding thermal conductivity problems was
presented. We derived a possible integration of composite voxels into a level-set-based mi-
crostructure description utilizing Milton’s [12] lamination rule and incorporating the precise
computation of composite voxel properties. We demonstrated the advantages of the proposed
method through two numerical examples, specifically a single sphere inclusion and a long-fiber
reinforced composite microstructure. Our findings consistently identified an improvement in
the quality of the computed effective properties, thereby offering the potential for a significant
reduction in the required computational effort.
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