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Abstract. The asymmetric Stockbridge vibration damper is commonly employed in overhead 

power cables to mitigate Aeolian vibration, which is the oscillation of conductor cables within 

the 3–150 Hz frequency range. The damper's effectiveness is determined by its resonant 

frequencies, which increase power dissipation to exceed the wind-induced power input. While 

the basic symmetric Stockbridge damper has two resonant frequencies, the asymmetric 

version can exhibit up to four. Previous studies have shown that changes in the 

counterweight's geometry can increase the natural frequencies. This paper presents 

experiments on a modified asymmetric damper and uses an analytical model from Vaja et al. 

(2018), to confirm their findings. employed in overhead transmission lines to mitigate Aeolian 

vibration 

 

1 INTRODUCTION 

Generating electrical power necessitates the utilization of overhead power cables to 

transport it from power stations to dispersed substations situated at varying distances. 

However, these transmission lines are subjected to diverse wind patterns, inducing vibrations 

that significantly impact their longevity. Three primary wind-induced vibrations affect these 

transmission lines: conductor galloping, Aeolian vibration, and wake-induced oscillation [1, 
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2]. Wake-induced oscillation mainly affects power lines with bundled conductors, resulting 

from aerodynamic forces acting on the downstream conductor within the bundle as it moves 

in and out of the wake of the upstream conductor [3]. Strategies to mitigate this phenomenon 

include maintaining appropriate conductor spacing, varying sub-span lengths, and tilting the 

conductor bundle. Typically, this motion exhibits amplitudes within the range of 10 conductor 

diameters, with oscillation frequencies falling between 1 and 10 Hz [1, 2]. Conductor 

galloping, on the contrary, is characterized by high amplitude, low-frequency vertical 

conductor motion, occurring when freezing rain forms icicles and irregular ice shapes on 

transmission towers and conductors. High winds and uplift forces drive these icicles and 

conductors, inducing a galloping motion. Aeolian vibration, the most prevalent wind-induced 

motion, leads to fatigue and eventual overhead transmission line failure [4]. It is characterized 

by high frequency, ranging from 3 to 150 Hz, and low amplitude, dependent on the cable 

diameter [1, 5]. In this scenario, wind speeds typically fall within the range of 1 to 7 m/s, with 

the frequency of aeolian vibration fluctuating between 3 and 150 Hz. These variations depend 

on factors such as conductor diameter and wind speed, as indicated by studies conducted by 

[6], [7], [8], and [9]. 

To reduce vibration amplitudes and maintain them within permissible fatigue thresholds in 

transmission lines, protective mechanisms have been created and implemented. Among these, 

the Stockbridge-type vibration damper stands out as a widely adopted solution, initially 

conceived by Stockbridge in 1924. The Stockbridge damper is a turned mass absorber, only 

effective at certain resonance frequencies. At general frequencies, it is not a mass absorber or 

damper. Notably, this damper is respected for its efficiency across a diverse spectrum of 

frequencies, as highlighted by the findings of researchers such as [7], [10], [11], and [12].  

Despite the development of a linear analytical model to reveal the characteristics of the 

vibration damper, a more intricate model was deemed necessary to explore the impact of 

nonlinear factors on its vibration characteristics [13]. Luo et al. (2016) presented a 

comprehensive finite element model of the Stockbridge vibration damper, wherein contact 

conditions were considered by employing the linear perturbation method. The investigation 

focused on the relationships between contact conditions and mode frequencies. The findings 

demonstrated the significant influence of contact conditions between each pair of damper 

parts on the overall structure's stiffness. The numerical model's results were in good 

agreement with those derived from experimental data. Lastly, the numerical model was 

employed to examine how the bonding material between the counterweight and steel strand 

cable affected the mode frequencies of the vibration damper [13]. 

A single distributed Jenkin element was employed to represent the damper cable of a 

Stockbridge damper in a simulation by Sauter and Hagedorn (2002). The objective was to 

replicate damper impedances based on data acquired from a previous experiment involving a 

segment of damper cable. The significance of such simulation models lies in their 

contribution to the design of new dampers, which, historically, have often been developed 

through a trial-and-error approach. Particularly, the exploration of the new generation of 

asymmetric dampers with four resonances could also be facilitated through this modeling 

approach. The simulation model was anticipated to yield favorable outcomes, encompassing 

the damper impedance's dependence on the clamp velocity amplitude. While the results 

obtained thus far have shown promise, there is room for improvement in the vicinity of the 

second resonance. Currently, an investigation is underway to determine whether the inclusion 
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of shear deformation and, potentially, a second Jenkin element is sufficient for achieving an 

accurate model [14].  

 Notably, the most recent model was formulated by Barry et al. (2015), Vaja et al. (2017), 

Vaja et al. (2018), and Yin et al., 2021. The nonlinear dynamics of a Stockbridge damper 

were investigated [15]. The nonlinearity in this context resulted from both damping effects 

and the geometric stretching of the messenger. The Stockbridge damper was conceptualized 

as two cantilevered beams with attached tip masses. The equations of motion and boundary 

conditions were derived using Hamilton's principle by Barry et al. (2015). Importantly, the 

developed model was valid for both symmetric and asymmetric configurations of Stockbridge 

dampers. The research provided explicit expressions for key parameters, including the 

frequency equation, mode shapes, nonlinear frequency, and modulation equations. 

Additionally, experiments were conducted to validate the proposed model, assessing its 

accuracy and reliability. 

Vaja et al. (2017) conducted modeling and vibration analysis of Stockbridge dampers, 

highlighting the close relationship between the design of a Stockbridge damper, particularly 

the messenger cable, and the size of the overhead power cable. However, it was not easy to 

analytically model the complex geometry of the messenger. Since the messenger consisted of 

a bunch of thin helical wires with nonlinear contact conditions, determining an equivalent 

stiffness was necessary to incorporate into the analytical model [16]. The research examined 

the bending stiffness of the cable and discussed the effect of this stiffness on the natural 

frequencies. The derived equivalent stiffness accounted for the assumption of representing the 

messenger as a rod. 

Vaja et al. (2018) addressed the necessity of enhancing the conventional Asymmetric 

Stockbridge damper in a recent discussion. Building upon previous investigations that 

highlighted the potential for maximizing resonant frequencies through changes in 

counterweight design, a novel vibration damper was developed. A mathematical 

representation of the vibration damper was presented in the research, and the results obtained 

from the analytical model underwent validation through a numerical model. The resonant 

frequencies of the Asymmetric damper were assessed using both numerical modeling 

techniques and experimental data [17]. The findings demonstrated a notable increase in 

resonant frequencies with the implementation of the new design, indicating enhanced 

damping performance compared to the traditional Stockbridge damper.. The study also 

identified the unique geometric characteristics of the novel vibration damper as adjustable 

parameters, suggesting potential for further optimization to enhance damping and resonance 

characteristics.  

In their 2021 study, Yin et al. (2021) developed approximate calculation formulas for 

determining the natural frequencies of the one-side subsystem in a Stockbridge-type vibration 

damper. The researchers also performed a design sensitivity analysis on these natural 

frequencies, employing partial differential equations that considered multiple parameters. 

These parameters encompassed the length of the steel strand, the mass of the counterweight, 

the eccentric distance, and the radius of gyration of the counterweight. The objective of this 

investigation was to assess the influence of each parameter on the natural frequencies by 

examining the associated partial differential equations [18].  

The experiment was conducted on the modified asymmetric Stockbridge damper to check 

if it could produce more than four resonance frequencies [19]. This paper focused on 
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experimental results and the analytical model was developed. The analytical model results 

were validated using experimental results. The messenger cable was represented as an Euler-

Bernoulli beam, with an assumption of linear behavior. The equations describing motion and 

the conditions at boundaries were deduced utilizing Hamilton's principle [17].  

 

2 EXPERIMENTAL SETUP 

The experimental setup presents three methods that will be used in the experiments. The 

first experiment will be conducted on the asymmetric and modified asymmetric dampers to 

get the graphs of acceleration vs resonance frequency using the Puma system. The second is 

the VIP (Vibration Isolation Platform) Damper tests to be conducted to get graphs of force vs 

resonance frequency, impedance vs resonance frequency, and power vs resonance frequency. 

The third method will be to use the analytical model developed by Vaja et al. (2018).  

2.1 Experimental setup using the Puma system 

The oscillations experienced by the messenger cable of the damper involve both linear and 

rotational motions. Replicating these real-world vibrations in a lab necessitates costly trials of 

the Stockbridge damper on a testing rig. Moreover, the rotational effect on the damper is 

negligible, allowing it to be disregarded during experimentation. All data gathered from testing 

the damper using the electrodynamic shaker was derived solely from applying vertical motion 

to the clamp [1, 2] 

The apparatus utilized for these tests is shown in Figure 1, and research studies were 

performed on asymmetric Stockbridge dampers sticking to the specifications outlined in the 

Institute of Electrical and Electronics Engineers (IEEE) 664 guidelines. A normal and modified 

asymmetrical Stockbridge damper has undergone testing on a shaker, with the test being 

repeated twice. Three accelerometers (100 mv/g) were affixed to each damper's weights, and 

one was attached to the shaker base using glue, as shown in Figures 2 and 3. Figure 4 shows 

the damper with added masses on both weights alternatively. An electro-dynamic shaker 

(TIRA Model, Type TV 56263/LS-340) was employed to administer an input force to the 

damper. An amplification apparatus was utilized to regulate the voltage or current supplied to 

the shaker. A computer-controlled data acquisition system served as the control mechanism, 

and a compressor was employed to prevent excessive loads. 

Table 1 shows the masses added to the inner parts from damper number 1 to damper 

number 6. Each damper was tested twice to get a graph of acceleration versus frequency. In 

total twelve tests were conducted. The frequency range during the tests spanned from 5 to 200 

Hz, with the shaker consistently operating at a fixed speed of 0.1 m/s for 30 minutes in each 

test.      
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Figure 1: Components of the vibration test system on the shaker base: (a) controller. (b) Amplifier. (c) Shaker, 

asymmetric damper, and accelerometers (100 mv/g).  (d) Compressor. 

 

Figure 2: The  damper with three accelerometers (100 mv/g) on each mass 

 

Figure 3: The damper with the addition of small masses on each side inner part of each mass 
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Figure 4: The top view of the damper with added masses on the inner parts of each weight. 

 

 

Table 1: Sizes of added masses to the inner and the outer sides of both weights 

Damper 

number 

Masses on the 

smaller weight in 

grams 

Masses on the 

bigger weight in 

grams 

1 0 0 

2 10 20 

3 25 50 

4 50 100 

5 100 200 

6 120 230 

 

2.2 Experimental setup using VIP (Vibration Isolation Platform) 

A second VIP (Vibration Isolation Platform) Damper tests were conducted in which each 

of the five dampers with different added masses and one damper with no added masses were 

tested separately on the shaker. VIP Damper Tests focuses exclusively on testing vibration 

dampers that are directly mounted on a shaker. The facility is equipped to conduct a 

comprehensive range of dynamic tests mandated by major international standards and 

specifications such as IEC, IEEE, DIN, BS, and others. Figure 5 illustrates the layout of the 

test stand used for evaluating the dynamic response of dampers at the VIP Damper Test 
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facility. The sweep test ranges between 5 and 100 Hz and the peak-to-peak (constant 

amplitude) was set to 0.5 mm. One accelerometer (90,74 mv/g) was stuck on the base of the 

shaker and two force transducers (21,43 mv/N and 21,3 mv/N) were stuck on either side of 

the jig as shown in Figure 6. The arrangement of added masses from damper number 1 to 

damper number 6 is shown in Table 1. Each damper was tested twice to get a graph of force 

versus frequency, power versus frequency, and impedance versus frequency. In total thirty-six 

tests were conducted. 

 

Figure 5: The layout of the test stand used for evaluating the dynamic response of dampers at the VIP Damper 

Test facility. 

 

Figure 6: The accelerometer stuck on the base of the shaker and two two force transducers stuck on both sides 

of the jig 
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2.3 Analytical model 

Figure 7 presents a comprehensive, physical representation at full scale of the vibration 

damper.. However, due to its large size, developing a comprehensive mathematical model for 

the entire damper is challenging. To streamline the computational process, a half-scale model 

of the damper is utilized, as depicted in Figure 8 [17]. This half model utilizes three 

coordinate systems, labeled as 𝑂1, 𝑂2, and 𝑂3. The configuration is treated as consisting of 

three beams and three masses. The initial coordinate system, 𝑂1, is situated at the clamp, with 

mass 𝑀1 positioned at the far end. The second and third coordinate systems are located on 

either side of the mass 𝑀1, with masses 𝑀2 and 𝑀3 positioned at their respective extreme 

ends. Mass 𝑀1 is assumed to have rotational degrees of freedom about an axis perpendicular 

to the length of the messenger cable, while masses 𝑀2 and 𝑀3  are treated as point masses. 

The vibration displacement along the j coordinate is denoted as Y1, Y2 and Y3, corresponding 

to the first, second, and third coordinate systems, respectively.  

 

 

Figure 7: Vibration damper (Vaja et al., 2018). 

 

Figure 8: Schematic of the half model of Vibration damper [17]  

In developing the analytical model, the equations presented in Appendix A from Eqs (1) to 

(11) by Vaja et al. (2018, p. 712) were utilized. The potential and kinetic energy of the system 

can be expressed through Eqs. (1) and (2) respectively. 

In Eqs. (1) and (2) from Appendix A, primes denote derivation concerning x, while dots 

signify derivation concerning time. E represents Young’s modulus, and 𝐼1, 𝐼2, and 𝐼3  stand 

for the area moment of inertia of the messenger cable and beams, respectively. J denotes the 

rotational inertia of the mass 𝑀1, 𝐿1is the length, and 𝑚1 is the mass per unit length of the 

cable. 𝐿2and 𝐿3represent the lengths, and 𝑚2 and 𝑚3are the mass per unit length of the 
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beams, respectively. By employing Hamilton’s principle, the system’s equations of motion 

are derived, Eqs. (3), (4), and (5). If the system is considered to exhibit harmonic motion, Eqs. 

(6), (7), and (8) can be formulated as shown in Appendix A. There, ω represents the natural 

frequency, and the configurations of the modes are specified in Eqs. (9), (10), and (11). 

Vaja et al. (2018, p. 712) applied the boundary conditions, and the characteristic equation 

was derived by imposing the specified boundary conditions on the general solution. This 

process results in the formulation of twelve simultaneous equations that are homogeneous, 

which are then organized to construct the coefficient matrix detailed in Appendix B Eq. (12). 

The characteristic equation is subsequently obtained by setting the determinant of the 

coefficient matrix equal to zero. 

3 RESULTS AND DISCUSSION 

This section discusses the results of the three methods that have been used to conduct 

experiments. 

3.1    Experimental Results and Discussion for Puma System 

Drawing from the initial findings of the investigation concerning the asymmetric damper, 

it was observed that the damper exhibits four degrees of freedom and possesses the potential 

to generate additional resonance frequencies through modification [19, 20]. The frequency 

versus acceleration graphs presented in Figures 9, 10, 11, 12, 13, and 14 show the outcomes 

of experiments where different masses were introduced to the inner parts from damper 

number  1 to damper number 6. 

Points 1,2 3 and 4 in Figure 9 show the results of an asymmetric damper with no additional 

masses added to the inner parts of the bigger and smaller weights of the damper. Points 3 and 

4 in Figure 9 on the graph represent the inner parts of the bigger and smaller weights of the 

damper. The two lines at points 3 and 4 are approximately the same at the same peak point, 

showing there are no added masses on the damper and there is no rotational motion on them. 

The asymmetric damper confirms that it is a four-degree of freedom or 4R [1, 2]. The findings 

indicated that a Stockbridge damper with an asymmetric design can dampen four different 

resonance frequencies.   

In Figures 10 to 14, points 1 to 6 on each graph correspond to resonance frequencies 

resulting from the modified damper. Points 1, 2, 4, and 6 on the graphs represent resonance 

frequencies inherent to the asymmetric damper, whereas points 3 and 5 indicate resonance 

frequencies attributed to the additional masses. These findings demonstrate that the modified 

asymmetric damper when augmented with two alternating masses, can generate six resonance 

frequencies [19]. This aligns with the observations made by other researchers in their study of 

the modeling and analysis of a vibration absorber designed for overhead power lines using 

simulation methods [17]. Consequently, the modified asymmetric damper can be classified as 

a six-degree-of-freedom system. The findings indicated that a modified Stockbridge damper 

design can dampen six different resonance frequencies [19]. The number of resonance 

frequencies produced by the damper is a critical factor in its effectiveness. A higher number 

of resonance frequencies indicates that the damper can target or counteract a broader range of 

vibrational frequencies produced by the overhead power lines. This suggests that the modified 

damper is designed to be more effective in reducing the amplitude of vibrations in the power 
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lines in cases where other frequencies are present. The most important part observed was that 

the bandwidths of the modified damper were shorter than the bandwidths of the damper 

producing four resonance frequencies. The additional frequencies are quite low which is a 

good result as they can apply to a larger range of power lines   

The acceleration increases as the additional masses are introduced to the damper. If the 

acceleration of the modified damper increases, it suggests that the damper absorbs more 

energy. The resultant force equals the product of the mass being accelerated and the 

acceleration (Fresultant = ma) [21]. In the context of vibration damping, this could indicate that 

the modified damper is more effective at dissipating energy from the vibrating system. A 

higher acceleration typically implies that more force is being exerted on the damper, which, in 

turn, means that the damper is absorbing more energy from the vibrations of overhead power 

lines. This increased absorption of energy suggests that the modified damper is effectively 

dissipating energy, which is crucial for reducing the amplitude of vibrations in the overhead 

power lines and improving system stability.  

 

 

Figure 9: The damper with no added masses 
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Figure 10: The damper with masses of 10  and 20 grams added to it. 
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Figure 11: The damper with masses of 25 g and 50 g added to it. 
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Figure 12: The damper with masses of 50 and 100 grams added to it. 
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Figure 13: The damper with masses of 100 and 200 grams added to it. 
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Figure 14: The damper with masses of 120 and 230 grams added to it. 

 

 

3.2 Experimental Results and Discussion for VIP (Vibration Isolation Platform) 

The graphs of forces, powers, and impedances versus frequencies for damper number one 

to damper number six are presented in Figures 15 to 32. The force is imparted by the 

electrodynamic shaker to the damper. This force causes the damper to move and respond to 

the vibrations. The power is imparted on the damper by the electrodynamic shaker which is 

the rate at which the shaker does work on the damper. Impedance of the damper can be 

measured by applying a known force and measuring the resulting velocity. Two tests were 

conducted for each damper  

To summarize the results of Damper numbers 1 to 6, there is a noticeable change produced 

by the addition of different sizes of masses to each inner part of the dampers. The resonance 

frequencies generated by the dampers vary as different masses are incrementally added to 

each internal part of the damper during testing Table 2 shows the count of resonance 

frequencies generated by each damper. The graphs of force, power, and impedance versus 

frequency for the damper numbers 3 and 4 show the increase in the count of resonance 

frequencies generated compared to the other dampers tested. Power is equal to the product of 

force and velocity ( Power = Force x Velocity) [21]. Each point of resonance frequency 

produced leads to the power that could be absorbed and dissipated by the damper from 
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overhead transmission lines [22]. The damper numbers 3 and  4 seem to be optimal dampers 

for the test conducted. They performed particularly well or demonstrated desirable 

characteristics during the conducted tests. 

The impedance is a measure of the damper's resistance to the movement or transmission of 

vibrations within transmission lines [14, 22, 23]. This resistance is crucial for reducing the 

impact of vibrations and ensuring the stability and reliability of the transmission lines. 

Standard Stockbridge dampers undergo design considerations to closely align their 

mechanical impedance with the optimal damper impedance identified for the cable under 

protection [14, 22, 23]. As explained, the number of resonance frequencies produced by 

damper numbers 3 and 4 in the impedance graphs is more than the number of resonance 

frequencies produced by damper 1, 2, 5, and 6 tested. This suggests their higher effectiveness 

in reducing vibration compared to the latter group. 

 

Figure 15: The graph of force vs frequency for damper number 1 
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Figure 16: The graph of power vs frequency for damper number 1 

 

 

 

Figure 17: The graph of impedance vs frequency for damper number 1 
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Figure 18: The graph of force vs frequency for damper number 2 

 

Figure 19: The graph of power vs frequency for damper number 2 
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Figure 20: The graph of impedance vs frequency for damper number 2 

 

 

Figure 21:: The graph of force vs frequency for damper number 3 
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Figure 22:The graph of power vs frequency for damper number 3 

 

 

Figure 23: The graph of impedance vs frequency for damper number 3 
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Figure 24: The graph of force vs frequency for damper number 4 

 

 

Figure 25: The graph of power vs frequency for damper number 4 
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Figure 26: The graph of impedance vs frequency for damper number 4 

 

Figure 27:: The graph of force vs frequency for damper number 5 



Zakhele M. Zondi, Tiyamike Ngonda, Modify A.E. Kaunda and Rob Stephen 

 23 

 

Figure 28: The graph of power vs frequency for damper number 5 

 

 

Figure 29: The graph of impedance vs frequency for damper number 5 
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Figure 30: The graph of force vs frequency for damper number 6 

 

 

Figure 31: The graph of power vs frequency for damper number 6 
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Figure 32: The graph of impedance vs frequency for damper number 6 

 

Table 2: Number of resonance frequencies produced by each damper during the tests conducted 

Damper 

numbers 

Masses on the 

smaller weight in 

grams 

Masses on the 

bigger weight in 

grams 

Number of 

resonances 

produced by the 

graph of force 

Number of 

resonances 

produced by the 

graph of power 

Number of 

resonances 

produced by the 

graph of impedance 

1 0 0 4 3 4 

2 10 20 4 3 4 

3 25 50 5 4 5 

4 50 100 5 4 5 

5 100 200 4 3 4 

6 120 230 4 3 4 

 

3.3 Experimental Results and Discussion for Analytical Model 

The determination of the resonance frequencies of the vibration damper was carried out 

using the analytical model. To validate these results, the experimental model was employed. 

Tables 3 offer a comparison of the resonance frequencies acquired from both methodologies. 

The maximum variation observed was 3,194 %. Both models confirm that the new vibration 
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damper exhibits six resonant frequencies within the Aeolian vibration frequency range. This 

represents a significant increase in the number of resonant frequencies compared to the 

conventional Stockbridge damper, which has four resonant frequencies. This represents a 50% 

increase in resonant frequencies. Since energy is absorbed at resonant frequencies, this 

increase suggests improved effectiveness of the damper. 

Good agreement was observed between experimental and analytical model results, except 

for one data point where the percentage error was -16,4667 %. The derivation ranged from 

0,165766 % to 3,194013% for the percentage error in the range from 20.5973 to 65.4241 Hz 

(Analytical Model results). This indicates that the model performs well for higher frequencies 

rather than low frequencies. It must be noted that the analytical model developed by Vaja et 

al., (2018) was not forced vibration, it was developed based on free vibrations. The 

electromagnetic shaker applied a force to the modified asymmetric Stockbridge damper 

during the conduction of experiments, meaning it was a forced vibration system  

 

Table 3: Resonance  frequency of the experimental model and the analytical model of the Vibration using damper 

number 6 

Added masses of 120 and 230 g on the damper 

Modes  Experimental natural 

frequency (Hz) 

Analytical Model 

results (Hz) 

Percentage error 

(%) 

1 7.06889  8.2329 -16,4667 

2 20.6315 20.5973 0,165766 

3 26.8423 26.4511 1,457401 

4 42.0061 40.8910 2,654614 

5 50.2934 48.8279 2,913901 

6 67.5827 65.4241 3,194013 

 

 

4 CONCLUSION 

The results showed that it is possible to build a prototype damper with an increased 

number of resonance frequencies than the current damper producing four resonance 

frequencies. Previous research has indicated that modifying the counterweight design could 

optimize resonant frequencies. Consequently, a new vibration damper could be developed. 

The paper presented an analytical model for the vibration damper, and the analytical model's 

outcomes were verified through an experimental model. Resonant frequencies of the 

asymmetric damper were determined using experimental data. The findings demonstrated a 

distinct rise in resonant frequencies with the new design, signifying superior damping 

performance compared to the conventional Stockbridge damper. The unique vibration 

damper's geometric features can be further adjusted to attain improved damping and 

resonance characteristics. The paper is in support of the research conducted by Vaja et al., 

(2018). 
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Appendix A  
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𝑉 =
1

2
𝐸𝐼1 ∫ 𝑌′′2(𝑥1, 𝑡)

𝐿1

0
 𝑑𝑥 +

1

2
𝐸𝐼2 ∫ 𝑌′′2(𝑥2, 𝑡)

𝐿2

0
 𝑑𝑥 +

1

2
𝐸𝐼3 ∫ 𝑌′′2(𝑥3, 𝑡)

𝐿3

0
 𝑑𝑥              (2) 

𝑚1�̈�1 = −𝐸𝐼1𝑌1
𝐼𝑉      (3) 

𝑚2�̈�2 = −𝐸𝐼2𝑌2
𝐼𝑉     (4) 

𝑚3�̈�3 = −𝐸𝐼3𝑌3
𝐼𝑉     (5) 

𝑌1(𝑥1, 𝑡) = 𝐹(𝑥1)𝑒
𝑖𝜔𝑡      (6) 

𝑌2(𝑥2, 𝑡) = 𝐺(𝑥2)𝑒
𝑖𝜔𝑡     (7) 

𝑌3(𝑥3, 𝑡) = 𝐻(𝑥3)𝑒
𝑖𝜔𝑡     (8)

  

𝐹(𝑥1) = 𝑎1 sin 𝛽1𝑥1 + 𝑎2 cos 𝛽1𝑥1 + 𝑎3 sinh 𝛽1𝑥1 + 𝑎4 cosh𝛽1𝑥1     (9) 

𝐺(𝑥2) = 𝑎5 sin 𝛽2𝑥2 + 𝑎6 cos 𝛽2𝑥2 + 𝑎7 sinh 𝛽2𝑥2 + 𝑎8 cosh 𝛽2𝑥2     (10) 

𝐻(𝑥3) = 𝑎9 sin 𝛽3𝑥3 + 𝑎10 cos 𝛽3𝑥3 + 𝑎11 sinh 𝛽3𝑥3 + 𝑎12 cosh𝛽3𝑥3     (11) 
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Appendix B  

(12) 

[
 
 
 
 
 
 
 
 
 
 
 
𝐴1

0
𝐶1

𝐷1

𝐸1

𝐹1

𝐺1

𝐻1

0
0
0
0

       

0
𝐵2

𝐶2

𝐷2

𝐸2

𝐹2

𝐺2

𝐻2

0
0
0
0

       

𝐴3

0
𝐶3

𝐷3

𝐸3

𝐹3

𝐺3

𝐻3

0
0
0
0

       

0
𝐵4

𝐶4

𝐷4

𝐸4

𝐹4

𝐺4

𝐻4

0
0
0
0

       

0
0
𝐶5

0
𝐸5

0
𝐺5

0
𝐼5
𝐽5
0
0

       

0
0
0
𝐷6

0
0
0
𝐻6

𝐼6
𝐽6
0
0

        

0
0
𝐶7

0
0
0
𝐺7

0
𝐼7
𝐽7
0
0

       

0
0
0
𝐷8

0
0
0
𝐻8

𝐼8
𝐽8
0
0

       

0
0
0
0
𝐸9

0
𝐹9

0
0
0
𝐾9

𝐿9

       

0
0
0
0
0

𝐹10

0
𝐻10

0
0

𝐾10

𝐿10

       

0
0
0
0

𝐸11

0
𝐹11

0
0
0

𝐾11

𝐿11

       

0
0
0
0
0

𝐹12

0
𝐻12

0
0

𝐾12

𝐿12 ]
 
 
 
 
 
 
 
 
 
 
 

 .

[
 
 
 
 
 
 
 
 
 
 
 
𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

𝑎9

𝑎10

𝑎11

𝑎12]
 
 
 
 
 
 
 
 
 
 
 

= 0          

 

 

Where   

𝐴1 = 1; 𝐴3 = 1 

𝐵2 = 1;𝐵4 = 1 

 

𝐶1 = sin 𝛽1𝐿1 ; 𝐶2 = cos𝛽1 𝐿1; 

𝐶3 = sinh 𝛽1𝐿1 ; 𝐶4 = cosh𝛽1 𝐿1 

𝐶5 = 𝛽2; 𝐶7 = 𝛽2 

 

𝐷1 = sin 𝛽1𝐿1 ; 𝐷2 = cos𝛽1 𝐿1; 

𝐷3 = sinh 𝛽1𝐿1 ; 𝐷4 = cosh𝛽1 𝐿1 

𝐷6 = −1;𝐷8 = −1 

 

𝐸1 = 𝛽1 cos 𝛽1 𝐿1;  𝐸2 = −𝛽1 sin 𝛽1𝐿1  
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𝐸3 = 𝛽1cosh𝛽1 𝐿1 ;  𝐸4 = 𝛽1sinh 𝛽1𝐿1 

𝐸9 = 𝛽3;  𝐸11 = 𝛽3 

 

𝐹1 = 𝛽1 sin 𝛽1 𝐿1;  𝐹2 = 𝛽1 cos 𝛽1𝐿1 

𝐹3 = 𝛽1sinh𝛽1 𝐿1 ;  𝐹4 = = 𝛽1cosh 𝛽1𝐿1 

𝐹10 = −1; 𝐹12 = −1 

 

𝐺1 = − 𝐸𝐼1𝛽1
3cos 𝛽1 𝐿1 − 𝑀1𝜔

2sin 𝛽1𝐿1  ;  𝐺2 = 𝐸𝐼1𝛽1
3sin 𝛽1𝐿1 − 𝑀1 𝜔2cos 𝛽1𝐿1 

𝐺3 = 𝐸𝐼1𝛽1
3cosh𝛽1𝐿1 − 𝑀1𝜔

2sinh 𝛽1 𝐿1 ;  𝐺4 =𝐸𝐼1𝛽1
3sinh 𝛽1𝐿1 − 𝑀1 𝜔2cosh 𝛽1𝐿1 

𝐺5 = −𝐸𝐼2𝛽2
3 ;  𝐺7 =  𝐸𝐼2𝛽2

3 

𝐺9 = −𝐸𝐼3𝛽3
3 ;  𝐺11 =  𝐸𝐼3𝛽3

3 

 

 

𝐻1 = −𝐸𝐼1𝛽1
2 sin 𝛽1𝐿1 + 𝐽𝜔2 𝛽1cos 𝛽1𝐿1;  𝐻2 = −𝐸𝐼1𝛽1

2cos𝛽1𝐿1 − 𝐽𝜔2𝛽1sin 𝛽1 𝐿1 

𝐻3 =  𝐸𝐼1𝛽1
2sinh𝛽1𝐿1 + 𝐽𝜔2𝛽1cosh 𝛽1𝐿1 ;  𝐻4 = 𝐸𝐼1𝛽1

2 cosh 𝛽1𝐿1 + 𝐽𝜔2𝛽1sinh 𝛽1𝐿1 

𝐻6 = 𝐸𝐼2𝛽2
2 ;  𝐻8 = 𝐸𝐼2𝛽2

2 

𝐻10 = −𝐸𝐼3𝛽3
2 ;  𝐻12 = 𝐸𝐼3𝛽3

2 

 

𝐼5 = −𝛽2
2 cos 𝛽2 𝐿2 ;  𝐼6 = −𝛽2

2 sin 𝛽2 𝐿2 

𝐼7 = 𝛽2
2cosh𝛽2𝐿2  ;  𝐼8 = 𝛽2

2sinh 𝛽2𝐿2 

 

𝐽5 = 𝑀2𝜔
2sin 𝛽2𝐿2 − 𝛽2

3 𝐸𝐼2cos 𝛽2𝐿2  ;  𝐽6 = 𝑀2𝜔
2 cos 𝛽2𝐿2 + 𝛽2

3𝐸𝐼2sin 𝛽2𝐿2 

𝐽7 = 𝑀2𝜔
2sinh 𝛽2 𝐿2 + 𝛽2

3𝐸𝐼2cosh 𝛽2𝐿2  ;  𝐽8 = 𝑀2𝜔
2 cosh 𝛽2 𝐿2 + 𝛽2

3𝐸𝐼2sinh 𝛽2𝐿2 
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𝐾9 = −𝛽3
2 sin 𝛽3 𝐿3;  𝐾10 = −𝛽3

2cos 𝛽3 𝐿3 

𝐾11 = 𝛽3
2sinh 𝛽3𝐿3  ; 𝐾12 = 𝛽3

2cosh𝛽3𝐿3 

 

𝐿9 = 𝑀3𝜔
2sin 𝛽3𝐿3 − 𝛽3

3 𝐸𝐼3cos 𝛽3𝐿3 ;  𝐿10 = 𝑀3𝜔
2 cos 𝛽3𝐿3 + 𝛽3

3𝐸𝐼3sin 𝛽3 𝐿3 

𝐿11 = 𝑀3𝜔
2sinh 𝛽3 𝐿3 + 𝛽3

3𝐸𝐼3cosh 𝛽3𝐿3  ;  𝐿12 = 𝑀3𝜔
2 cosh𝛽3 𝐿3 + 𝛽3

3𝐸𝐼3sinh 𝛽3𝐿3 
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