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Summary.
The design domain has significant influence on the result of topology optimization. Thus,

when several components are to be topology optimized separately, the allocation of the available
space to each of them will be crucial for the resulting mechanical performance of the system
[1, 2, 3]. Unfortunately, the optimal allocation depends on the results of component optimiza-
tions which are not known initially. This chicken-or-egg problem was solved in [2] by solving
several component topology optimization problems for varying design domains as preparation
and making the relationship between resulting component mass and design space available as
sample data. Based on this sample data, good design domains could be chosen manually. Unfor-
tunately, this technique is limited to very simple design problems. To extend it to more complex
design problems and to automate the approach, this paper proposes the following alternative:
For several samples with varying design domains, topology optimizations are performed for each
component. Then, based on the produced dataset, meta models are trained to estimate (1) the
physical feasibility and (2) the mass of individual components, as a function of the dimensions
of the allocated design domain. The actual design domains are then allocated by numerical
optimization using these meta models. Final geometries are determined by detailed topology
optimizations based on the previous optimization results. The method is applied to the steering
mechanism of a glider plane. A reduction in mass by 10.1%, compared to a manual distribution
of design domains could be achieved.

1 INTRODUCTION

There are various approaches for topology optimization, all aiming for an optimal distribution
of material in a given design domain with respect to certain objectives [4]. This makes topology
optimization a versatile tool for generating structures when boundary conditions and loads
are known. However, the results strongly depend on the optimization settings and problem
formulations chosen [5, 1]. Further, in a generic development process, as shown in Fig. 1,
system-level design is usually performed at an earlier stage, therefore influencing the detail
design. For example, topology optimization design domains are usually allocated to components
in the phase of systems design. For simple structures, such as beams or tubes, analytical
solutions, e.g., on the deflections for a given load, are analytically available. So, combining
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Figure 1: Modified design process from [6]. The scope of the introduced approach is highlighted by the
green circle.

components into a system is straight forward, and the resulting quantities of interest can be
calculated in the system’s design phase. Unfortunately, when combining multiple topology-
optimized components, relevant mappings between design variables and quantities of interest
are not known a priori. There exists a chicken-or-egg problem, since for optimally distributing
design domains, information from the detail design is required. The goal of this paper is to
inform system-level design about feasible, topology optimized structures and their corresponding
structural performance using machine learning.

This paper is organized as follows: After the Introduction in Section 1, the State of the
Art has been reviewed in Section 2. Section 3 describes a use case, before in Section 4 the
automated approach is illustrated and problem formulations are introduced. Then, in Section
5, the approach is applied to the use case, where a shared design domain inside the wing of a
glider is divided and allocated to three individual brackets. The paper ends with a discussion
of the results in Section 6 and a conclusion in Section 7.

2 STATE OF THE ART

The use of machine learning (ML) to improve the conventional framework for topology op-
timization is a growing research branch showing numerous approaches and applications [7].
Considering multi-component systems, one can find a few works exploiting ML methods. In
[3, 8] and summarized in [9], an approach was used for system decomposition involving topology
optimization, where stiffness requirements were distributed for connected components to satisfy
system requirements and minimize system mass simultaneously. Information from the detail-
level design was obtained through trained meta models that could predict structural responses
for the optimization of various robotic arms. Design domains, defining the position of the inter-
face between components, remained unchanged throughout the process. In [8] the same meta
model, considering different design domain sizes, was used for all components in the system, to
reduce training effort. However, again, design domain sizes were not treated as design variables
in the system optimization. Only mass and stiffness budgets were distributed, enabling the
decomposition of system requirements into decoupled requirements for individual components.
This way, the simultaneous design of different components was enabled [10]. However, when
topology optimization is applied, the system architecture, i.e. sizes of components or design
domains, is usually prescribed and not part of an optimization problem [11].

2



Felix Endress, Sergi Pagés i Diaz and Markus Zimmermann

Modifying the design domain in a topology optimization problem has been addressed
in other studies, mainly with the goal to overcome performance limitations imposed by a fixed
design patch [12, 13]. These efforts have been directed towards the optimization of single com-
ponents, where better topologies were found by allowing the design domain to grow or adapt to
the specific problem. In Maute and Ramm [12], Bézier splines were used to fit and re-mesh the
design domain to the material distribution in the ongoing iteration, increasing the smoothness
and performance of the final result by reducing the number of design variables. In Kim and
Kwak [13], the design domain was incorporated into the optimization algorithm as an additional
variable, obtaining better minima as a result. However, the scope in these publications was
the design of isolated components, thus interactions and compromises occurring in system-level
design were not considered. In some applications such as robotics, there exists extensive litera-
ture on the design of component lengths and linkage locations, e.g. topology synthesis, usually
with the goal of an optimal trajectory for a specific task. Therefore, the system architecture
is set fixed, and the potentials for lightweight design may be lost. Nevertheless, a few studies
on mechanism design have been conducted where component topology optimization and link-
age locations are computed simultaneously. Swartz et al. [14, 15] proposed an approach for
multi-body planar systems where component topology optimization is performed, together with
finding the best location of rotational joints. Still, this approach follows a layered mesh scheme
where the design domain of each component remains unchanged, meaning there exists no inter-
action nor dependencies between the design domains of components on the system-level. In the
work of Sun et al. [16, 17] an approach is presented for variable-length mechanisms based on
Moving-Morphable-Components. Since design domains are affected by changes in component
length, virtual design domains are introduced to transform the dynamic response of the problem
into a static one, reanalyzing the sets of equivalent static loads. Still, in their work the topology
optimization is posed as a minimum-compliance problem. An optimization of design domain
on system-level is not performed with information from topology optimization. Similar to dis-
tributing design domains, in [18] joint locations and topologies of components are optimized
simultaneously. However, whilst joint locations are continuously movable, the initial design do-
mains remain unchanged throughout the optimization, and, individual stiffness requirements on
component-level were not considered.

3 USE CASE

A system of three brackets is considered, as described in [2]. A common design domain
is shared by three components, as illustrated by the dashed lines in Fig. 2. The individual
component’s function is to maintain a bearing in position. On system-level, a maximal height
of hreq = 60 mm must not be exceeded and the length of both components must equal the
distance between the attachment areas, which measures to lreq = 80 mm. The maximal width
of the system is wreq = 60 mm. Two different bracket types are considered in this study. As
shown in Fig. 2, the concept of bracket A is that the bearing is located at the bottom of the
design domain, whereas for bracket B it is located at central height. The bearing was simplified
and modelled as solid elements, spanning a height of hb = 3 mm (dark grey in Fig. 2). The
stiffness of these elements can be modified. Above (and for bracket B also below) the bearing,
a cylindrical void region was modelled to ensure the accessibility of the machine element. For
each component, two load cases were given from the application as FA = [−450,−900,±600] N
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Figure 2: Sketches of the complete design domain and the different types of brackets.

for bracket A and FB = [−330,−1100,±770] N for bracket B. For all load cases a maximum
deflection of ±0.1 mm was prescribed to all directions (see coordinate system in Fig. 2).

4 METHODOLOGY

In this paper, the system optimization of Endress et al. [2] is performed using surrogate
models. The approach is based on two trained estimators as ML models, for each component’s
response, and two optimization problem formulations: one at the component-, the other one at
the system-level.

4.1 MASS AND PHYSICAL FEASIBILITY ESTIMATORS

The method to distribute design domains requires two meta models per component to per-
form the system optimization. Thus, in a first step, a bottom-up mapping is created using a
sampling strategy (see [10]) by running multiple topology optimizations and assessing the re-
spective performance, with varying design domains. This provides a database for the model
training. As it is shown in Fig. 3, the models enable decoupling of individual geometries, found
by applying topology optimization, from the higher levels in the graph.

Firstly, a mass estimator is trained, predicting the component’s mass for a given design
domain. Secondly, since some components may not fulfill requirements on the displacement,
even when the volume-fraction reaches 100%, a classifier is used to predict physical feasibility.
This becomes especially relevant for components with high lengths. During sampling, to reduce
time to create a database, topology optimizations were aborted when the volume fraction reached
85%. For the surrogate modelling two different types of models are used: black-box models and
an interpretable glass-box models. The black-box models chosen follow [3], where artificial
neural networks (ANNs) were used. The models were combined with Bayesian Optimization
to optimize the number of hidden layers, neurons per layer, and activation functions. For the
classification of physical feasibility, a two-class Support Vector Classifier was trained with kernel
functions of polynomial order p = 3. The models were trained and used in MATLAB using the
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Figure 3: Dependencies in the system before (left) and after the introduction of meta models (right).
Dashed lines indicate predictions made using the introduced meta models.

Machine Learning Toolbox. A 80% / 20% split for training and validation was used for both,
the mass and physical feasibility estimators. For the mass predictor, only physically feasible
samples were used to train the model.

For the interpretable model a Generalized Additive Model (GAM) is used [19]. The Explain-
able Boosting Machine (EBM) was implemented in python using the interpret package [20]. For
the regressor, the dataset was split in 80% training data and 20% test data. Again, only feasible
data points were used for training the mass estimator. For the feasibility estimator a split of
only 10% training data was used, as there were only a few infeasible designs.

4.2 OPTIMIZATION PROBLEM STATEMENTS

The presented approach consists of system and component optimization. In the system
optimization the total mass of the system is to be minimized, such that geometric constraints
are fulfilled. The geometric constraints come from the use case considered, but could be of any
form that can be parametrized (e.g. other shapes than boxes). Further, physical feasibility is
required, which is also a constraint in the problem statement. For both, see in Equation 1,
component mass mi and feasibility pi are realized using the machine learning estimators m̂i

and p̂i introduced in Section 4.1:

min
Si

m̂ =
∑
i

m̂i(Si) with Si = [li, hi, wi]

s.t. l =
∑
i

li = lreq,

h =
∑
i

hi ≤ hreq,

wi ≤ wreq,

p̂i(Si) ≤ 0.

(1)

For detailed design, i.e. component optimization, a topology optimization problem is
solved. For a prescribed design domain, minimization of mass is realized while constraining de-
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flections at the load introduction in all three directions. Formally, the optimization formulation
at the component-level reads for each component i:

min
ρe

m =

Ne∑
e=1

ρe

s.t. ux ≤ ucx,

uy ≤ ucy,

uz ≤ ucz,

KU = F,

0 < ρmin ≤ ρe ≤ 1,

(2)

where m is the component’s mass, K is the stiffness matrix, F and U are the nodal load and
displacement vectors respectively, ρe are the element densities, and Ne is the number of elements.
A continuation scheme was applied by increasing the penalization from 1 to 4 in steps of 0.1
every 10 iterations. A density based filtering was used with a radius of 1.2 mm. Young’s modulus
was set to E = 105, 000 MPa and Poisson’s ratio to ν = 0.3. The solver used is the MMA by
[21], basis for the implementation in code was [22].

5 RESULTS

5.1 Bottom-Up Mapping: Sampling and Training of Models

After parametrizing the design domain of the brackets as boxes with individual heights,
lengths and widths, shown in Fig. 4, bounds for the design domain dimensions (in mm) are
chosen as

lA ∈ [20, 70], hA ∈ [15, 30], wA ∈ [30, 60],

lB ∈ [20, 80], hB ∈ [15, 40], wB ∈ [30, 60].
(3)

A latin hypercube sampling was performed with n1 = 50 data points, for which topology op-
timizations were performed. Each sampling point is characterized by a different design domain.
Results of the topology optimizations are the masses of components that are required to fulfil
the displacement constraints, given the corresponding design domains (see Fig. 5). In a second

Concept Parametrized, box-shaped design domains

Figure 4: Concept for the brackets (blue for bracket A/ left, green for bracket B/ right) and parametriza-
tion of design domains as boxes (from [2]).
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Figure 5: Sampling data for bracket A with three physically infeasible designs

step, the database for bracket B was increased by another n2 = 10 data points in the area of
high lengths. The same sampling was repeated for a different bearing model, where its stiffness
was set to quasi rigid.

In the next step, ML models were trained, as described in Section 4, for different components
(bracket A and B) and for different bearing models (elastic and quasi rigid). For training the
mass estimators infeasible solutions were excluded. For the elastic bearing model, using the
ANN, a R2 score for bracket A resulted in 0.991 and for bracket B in 0.989. For the GAM for
bracket A, R2 = 0.890, and for bracket B, R2 = 0.970. For the rigid bearing model the trained
ANN led to an R2 = 0.976 for bracket A and R2 = 0.968 for bracket B. For visualizations of data
points using the elastic bearing model, represented in Fig. 6, the width of components is set to
its maximum (wi = 60 mm). For the physical feasibility estimator, by manually selecting the
training and validation sets, a reasonable training and test database could be defined. For both
models, all designs were correctly classified (F1-score and accuracy of 1.00). For the interpretable
model, error bounds could also be used to identify regions where further data would be favorable
for training.

5.2 Top-Down Design

5.2.1 System-level Design

The constrained non-linear multivariable optimization problem is solved for the ANNs and
interpretable models with different functions. For system optimization with ANNs, in MATLAB,
an interior-point algorithm was used to search for the global optimum (fmincon). In the python
implementation of the interpretable models, differential evolution was used (SciPy, optimize).
The starting point was always S0 = [40, 30, 60, 40, 15, 60] mm as S0 = [lA, hA, wA, lB, hB, wB]
for both optimizations. For the differential evolution algorithm a maximum of 10,000 iterations
was chosen. The system optimization produces design domains which are shown in Tab. 1.

7



Felix Endress, Sergi Pagés i Diaz and Markus Zimmermann

20
40

60
80

10
15

20
25

30
0

200

400

600

800

Length [mm]Height [mm]

M
as
s
[g
]

Bearing Model: Elastic

20
40

60
80

10
15

20
25

30
0

200

400

600

800

Length [mm]Height [mm]

M
a
ss

[g
]

Bearing Model: Quasi rigid

Figure 6: Meta models of bracket A at wi = 60mm with the bearing modelled as elastic elements (left)
and as quasi rigid (right)

5.2.2 Detail-level Design

The results from system optimization, i.e. optimal design domains, are used for the compo-
nent problem formulations. To find the actual mass of the system using the optimized domains,
topology optimizations on both brackets are performed. Resulting topologies are shown in Fig.
7. In Tab. 1 the corresponding masses are shown. Since bracket A is mounted twice in the
assembly (see Fig. 4), the total system mass is computed as m = 2mA +mB. Also in Tab. 1,
comparisons to the rigid modelling of the conventional domain distribution are marked with ∗.

Table 1: Results of system optimization with realized masses for the single components and the corre-
sponding system.

Nr. Bearing model mA mB m ∆ lA hA wA lB hB wB

g g g % mm mm mm mm mm mm
Artificial Neuronal Network

1 Elastic 90 194 374 -10.1 33 15 30 47 30 60
2 Quasi rigid 98 154 350 -4.6* 38 22 30 42 15 30
3 Elastic 112 172 396 -4.8 38 22 30 42 15 30

Interpretable Machine Learning EBM
4 Elastic 36 327 399 -4,1 23 16 58 57 28 51

Benchmark - Intuitive Distribution
5 Elastic 141 134 416 - 40 20 60 40 20 60
6 Quasi rigid (*) 125 117 367 - 40 20 60 40 20 60
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mB = 134 g mB = 194 g
Bracket A Bracket B Bracket A Bracket B
mA = 141 g mA = 90 g

Conventional design Design domain distribution approach

Figure 7: Topologies for an intuitive (left) and optimized (right, using the ANN) distribution of design
domains. Bracket A is twice in the system, leading to a total mass of 374 g for the optimized and 416 g
for the conventional design domain distribution.

6 DISCUSSION

6.1 Performance

Using ANNs for surrogate modelling, a mass reduction of -10,1% was realized, compared to
an initial intuitive distribution of design domains. This indicates a great weight-saving potential
when using the presented approach for systems design with topology optimization.

A loss of accuracy in the surrogate models might reduce lightweight potentials (compare
mass reduction of -10.1% using the ANN with -4.1% using the EBM). Many data points are
required to train the models to obtain highly accurate predictions. However, this comes with
high computational effort to produce the database, and a compromise between computational
effort and dataset quality must be achieved.

6.2 Decoupling Detail Design from System-level Design

It was shown that an engineer’s choice in the detail design phase affects system-level design.
In the presented use case, it was demonstrated that the specific structural properties of the
bearing must be known in order to establish reasonable bottom-up mappings. The sampling
requires topology optimizations depending on modelling details, such as solid and void elements
for accessibility, as well as boundary conditions. Design domains, as well as resulting system
mass changed when different bearing models were used. With the presented approach, these
dependencies are resolved. System-level design obtains information from the detail-level thanks
to the machine learning models, resulting into a decoupled optimization problem.

7 CONCLUSION

With the presented problem formulation, the response of the detail designs is modeled to
optimize the system performance. In order to optimally distribute the design domains, the
models must sufficiently represent reality, e.g., through appropriate modelling of the bearings
and component attachments. Thus, information from the detail design is required in terms
of component performance (here physical feasibility and mass), but also in terms of boundary
conditions (connection, load introduction, solid and void areas). Besides missing information,
the availability of data is an important factor in carrying out systems optimization based on
surrogate models. In the case study presented, the database should be expanded to improve
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quality of fit, especially for the GAM.
Future research will focus on systems where stiffness requirements are formulated at the

system-level. For example, when components are stacked, i.e. attached to each other. In this
case, in addition to design domains, stiffness budgets should also be distributed optimally within
components.
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