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ABSTRACT  
Site characterisation necessarily relies on engineering judgement, usually combined with some level of statistics to define 
characteristic values for design purposes. A suitable method for this task is quantile regression, which allows for the 
definition of lower, upper, and best-estimate characteristic values. The application of quantile regression to homogeneous 
profiles is relatively straightforward. Although such sites are common in some areas, there is need for a more 
comprehensive approach to quantile regression that covers the more general scenario of heterogeneous stratified profiles. 
This paper takes piezocone penetrometer data from a relatively complex seabed site and demonstrates the streamlined 
application of quantile regression, highlighting and analysing some of the assumptions and choices behind the approach. 
The work shows the nuances of the method and suggests workarounds for potential scenarios where its application may 
be challenging. 
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1. Introduction 
The geotechnical design of foundations for offshore 

infrastructure often involves the definition of lower and 
higher estimate design lines, in order to address the 
sometimes conflicting requirements of assessing capacity 
and installability. Such profiles rely on engineering 
judgement supported by statistical tools and methods, 
such as Quantile Regression (QR). A model commonly 
used in econometrics (Koenker 2017), QR is a 
generalised version of linear regression that modifies the 
loss function to account for levels of exceedance, making 
it ideal for applications where lower and upper bounds 
are required. While Uzielli et al. (2019) demonstrated the 
use of QR to define undrained shear strength (su) profiles 
for a site offshore northern Australia, to the best 
understanding of the authors its application remains 
relatively rare in geotechnical practice and research. 

A version of QR, utilising its main concepts (fitting 
functions associated with levels of exceedance) is 
referred to in this paper as Percentile Regression (PR). 
PR involves dividing the data into discrete intervals at 
arbitrarily chosen depths (i.e., ‘binning’ the data) and 
then ranking the data from each bin from lower to higher 
to find relevant percentiles that represent the variability 
of each bin. Least squares linear functions are then fitted 
to these percentiles.  

This paper explores the use of QR and PR and the 
nuances of their application in both a uniform synthetic 
dataset and a relatively complex seabed site.  

2. Design lines in geotechnical engineering 
Traditionally, defining characteristic values to 

represent the mechanical behaviour of soils has been a 
subjective task, with engineers using their judgment to 

select design lines. However, the integration of statistical 
tools into geotechnical engineering practice has allowed 
for more objective definitions of the term ‘design line’. 

Phoon (2023), for example, cites Eurocode 7 (clause 
2.4.5.2(2) (CEN 2004)), where the characteristic value of 
a geotechnical parameter is defined as a ‘cautious 
estimate of the value affecting the occurrence of the limit 
state’. This definition, as explained by Ching et al. 
(2020), can be approached from two perspectives; first, 
the physics of the problem needs to be understood to 
determine the value affecting the occurrence of the limit 
state, and second, providing a cautious estimate requires 
an assessment of the uncertainty and variability of the 
mobilised value (i.e., the statistics of the problem). 

Both parts of the definition should be considered 
when assessing the consequences of the occurrence of the 
limit state. This consequence assessment, in turn, should 
indicate how cautious the estimate should be. A question 
then arises as to how to objectively measure the level of 
caution of an estimate. 

Eurocode 7 (Clause 2.4.5.2(11)) provides a useful 
(yet debatable) approach to this question by suggesting: 
“If statistical methods are used, the characteristic value 
should be derived such that the calculated probability of 
a worse value governing the occurrence of the limit state 
under consideration is not greater than 5%”.  

In addition to the practical implications of Eurocode’s 
definition (and aside from discussions around the 
appropriateness of a single quantile (5th) for different 
problems), linking design lines to levels of exceedance is 
particularly useful and opens the door to models such as 
QR and PR, where this is explicitly addressed. 

This was illustrated by Uzielli et al. (2019), who 
applied QR for the analysis of undrained shear strength 
(su) data derived from offshore Piezocone Penetration 
Tests (PCPT, also called CPTU). They provided a lower 



 

limit for bearing capacity (i.e., a low quantile) and an 
upper limit for installation (i.e., a high quantile).  

Two things distinguish the current study from what 
was presented by Uzielli et al. (2019). Firstly, the 
analyses presented in this paper were performed on net 
cone pressure (qnet) profiles (O’Neill et al. 2022b) – this 
choice was made to avoid introducing additional 
uncertainty beyond the paper’s scope, by avoiding the 
need for correlations between qnet and su (i.e., Nkt). 
Secondly, the PCPT dataset used in this work was 
acquired on a site with greater variability, which 
introduces additional considerations regarding layering.  

The qnet profiles used in this study were derived from 
offshore PCPT data through the following formulation: 
𝑞!"# = 𝑞$ + 𝑢%(1 − 𝛼) − 𝜎&, where 𝑞$ and 𝑢% are the 
measured cone resistance and pore pressure, respectively, 
𝛼 is an area ratio that represents the shape of the cone 
penetrometer and 𝜎& is the total in situ vertical stress. 

2.1. Linear models 

Linear models, such as Eq. (1) below, are commonly 
used to represent the trend of soil resistance (or strength) 
increasing with depth. It is worth noting that the 
soundness of such models depends on the variability and 
genesis of the soils being represented, but they are 
appropriate for most cases in a single soil layer. 

As mentioned above, the analyses presented in this 
paper were conducted on qnet profiles, meaning that the 
function for representing soil resistance will be as 
follows: 

𝑞!"# = 𝑎 + 𝑏 ∙ 𝑧	 (1)	

where a and b are fitting coefficients, and z is the depth 
below the mudline (seabed).  

The following subsections will provide a brief 
introduction to QR and PR and demonstrate their 
application to synthetic data. The objective is to illustrate 
how to generate linear functions, like the one presented 
in Eq. (1), that are associated with arbitrary levels of 
exceedance (i.e., arbitrary quantiles). 

2.2. Quantile regression 

QR, as formalised by Koenker and Hallock (2001), 
involves minimising a generalised objective function 
𝜌'(𝑢), defined as follows: 

𝜌'(𝑢) = 𝑢1𝜏 − 𝐼(𝑢 < 0)6	 (2)	

Here, 𝜏 is the quantile of interest, 𝐼 is an indicator 
function, and 𝑢 is the residual error, which is calculated 
using the formula 𝑢 =	𝑦( − 𝑋()𝛽, where 𝑦( is the 𝑖#* 
observation of the response variable, 𝑋( the vector of 
predictors for the 𝑖#* observation, and 𝛽 is the vector of 
coefficients to be estimated.  

To determine, for example, a regression of the 10th 
quantile of the data 𝜏 is set to 0.1. Then, the equations 
representing a model such as the one presented in Eq. (1) 
are as follows: 

𝑋() = [1 𝑧(]	 (3)	

𝛽 = ?
𝑎+,-.
𝑏+,-.@	 (4)	

𝑢( =	𝑞!"#( − [1 𝑧(] ?
𝑎+,-.
𝑏+,-.@	 (5)	

𝜌'! = 𝑢(10.1 − 𝐼(𝑢( < 0)6	 (6)	

min∑ (𝑢()!
(/- 10.1 − 𝐼(𝑢( < 0)6	 (7)	

Finding the values of 𝑎+,-. and 𝑏+,-. that minimise 
the sum shown in Eq. (7) gives the regression for the 10th 
quantile of the data. The notation for such a fit is shown 
below. 

(𝑞!"#)+,-. = 𝑎+,-. + 𝑏+,-. ∙ 𝑧	 (8)	

2.3. Percentile regression 

Some geotechnical practitioners use a variant on the 
concept of QR, which in this paper is referred to as 
Percentile Regression (PR), and which also aims to find 
regressions conditioned on levels of exceedance. 

PR is based on bin statistics, where the data are 
divided depth-wise, into bins of constant size, as shown 
in Fig.1, where the bins are 1 m deep. The data within 
each bin are sorted to determine the required percentiles. 
Once the percentiles have been determined, their values 
are assigned to a depth in their respective bin’s average 
depth. Subsequently, traditional linear regression 
analyses are carried out to determine the PR fits.  

When determining the percentiles, care should be 
taken to select algorithms that provide exclusive 
percentiles (i.e., the formulation assumes that the data are 
only a sample of the population and more extreme values 
are possible). 

It is also important to note that the bin-statistical 
analysis required for this approach should be performed 
on the residuals (detrended data) rather than on the raw 
measurements. Failure to use detrended data results in an 
artificial increase in the variability of the data. 

To explain the concepts of trend and residuals, we can 
divide the data into two components (Phoon and 
Kulhawy 1999): a mean process (or trend) and a 
deviation process. The residuals are the values that the 
deviation process takes. In this framework, the spatial 
variation of stationary soil properties can be modelled as 
follows:  

𝑞!"#(𝑧) = 𝑡𝑟𝑒𝑛𝑑(𝑧) + 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑧)	 (9)	

where 𝑧 is the depth. The trend function of geotechnical 
properties is typically modelled as a deterministic linear 
function such as the ones shown in Eq. (1); and the 
random deviation process is typically modelled as a 
Gaussian process with zero mean and an autocorrelation 
structure (Cai et al. 2019).  

In the context of QR and PR, and for Gaussian 
stationary data, the trend component would be given by 
the 50th quantile (i.e., the median), with the deviation 
process fluctuating around it.  

Note that a rigorous implementation of the PR 
method requires the modelled soil property to follow a 
Gaussian distribution (which is not always found in 
natural deposits) and prior knowledge of the trend, which 
creates a circular problem. A workaround for this issue 
(when sufficient data is available) is to use relatively thin 



 

bins (e.g., 20 cm) to minimise the effect of the trend in 
the variation of the property.  

3. Synthetic data 
A simple synthetic stationary dataset was generated 

for the demonstration of QR and PR. The rationale 
behind doing this, instead of using real data, lies in the 
fact that the trend and variability are known in the 
synthetic dataset, which allows for the discussion to 
focus on the performance of the regression methods 
rather than on the data properties. 

 
Figure 1. (a) Synthetic qnet profiles. (b) bin-wise distribution 

of residuals. (c) bin-wise distribution of the raw data. 

Fig. 1 shows five synthetic stationary 𝑞!"# profiles. 
These profiles were generated by adding a trend function,	
𝜇, and a random deviation process, with no 
autocorrelation function, 𝑁(0, 𝜎%). The values for the 
constants are provided below. 

𝑞!"# = (0.2	 + 𝑧 ∙ 0.1) + 𝑁(0, (0.05)%)	[𝑀𝑃𝑎]	 (10)	

It is acknowledged that Eq. (10) could also be 
expressed in logarithmic values, which would allow for a 
more practical modelling approach by avoiding negative 
values. The need for this is avoided in the (synthetic) case 
by using an offset of 0.2 MPa at mudline. The values 
shown in Eq. (10) were chosen subjectively to avoid 
negative values and to provide what would be a 
homogeneous site in geotechnical practice. 

The term ‘homogenous’ is used here to describe 
sediments with a single geological origin and relatively 
low variability. These sediments typically produce qnet 
profiles similar to those shown in Fig 1 (a). 

Table 1 presents the constants a and b for six 
regression analyses, three PR and three QR, performed to 
obtain regressions for the 10th, 50th and 90th percentiles.  

The analyses were conducted according to the 
formulations presented in the previous subsections. It is 
important to note that the PR was performed using 

residuals that were obtained by subtracting an assumed 
trend (as would be done in a real-world application), 
which was calculated as the average of the five profiles.  

Regarding the regression results (shown in Fig. 2), 
both PR and QR perform well in capturing the properties 
of the trend process (first term in Eq. (10)). These results 
are shown in Table 1 in the rows corresponding to	
(𝑞!"#)0,1. and (𝑞!"#)+,1.. Additionally, it is noteworthy 
that the PR fit is marginally closer to the known/real 
values.  

Table 1. QR and PR fits for the synthetic dataset. 
Case a b 
(𝑞!"#)$%&' 0.1314 0.1007 
(𝑞!"#)(%&' 0.1300 0.1016 
(𝑞!"#)$%)' 0.1995 0.1005 
(𝑞!"#)(%)' 0.1991 0.1007 
(𝑞!"#)$%*' 0.2700 0.0981 
(𝑞!"#)(%*' 0.2670 0.0986 

 
When comparing these regression approaches, given 

their almost identical results, it is important to consider 
the practicality of their implementation.  

On one hand, QR is a straightforward approach that 
does not need assumptions to be made or conditions to be 
met; it is necessary, nevertheless, to program it (in 
languages such as Python or R or using spreadsheets). 

On the other hand, PR requires a set of steps 
(illustrated in Fig. 2 (a)) that are relatively easy to follow 
using built-in spreadsheet tools. Firstly, a bandwidth for 
the binning of the data must be set, this decision should 
be made case by case with consideration of the 
characteristics of the studied dataset. Subsequently, it is 
necessary to assume a trend process, which needs to be 
checked for consistency. After this, the percentiles are 
determined and assigned to a representative depth. Only 
after all these steps are the actual regression analyses 
performed. 

Of all the steps mentioned above, the most critical is 
the assumption of a trend process. It must be ensured that 
the assumed trend effectively represents the whole 
dataset. This is typically done by checking that the 
resulting residuals follow a normal distribution with 
approximately zero mean. The dependence of PR on 
trend selection makes it a potentially subjective 
approach, especially in sites with great variability. 

This potential subjectivity can be avoided by 
practitioners by determining the percentiles from the raw 
data instead of selecting a trend. This, however, needs to 
be done carefully. Fig. 3 (a), below, shows (in dotted 
lines) the plots of PR fits resulting from raw data; for 
context, QR fits are shown as well. 

It is evident that the 10th and 90th PR fits tend to more 
extreme values. This is due to the influence of the trend 
in the distribution – its value is small for the first values 
of each bin and large for the last, artificially increasing 
the variability of the data. This is illustrated in Fig. 1 (b) 
and (c), which display the distribution and standard 
deviation of each bin. Visually, the histograms for the 
raw data (Fig. 2 (c)) appear to have heavier tails, which 
is confirmed by the larger standard deviation values 
(0.06).  



 

 
Figure 2. (a) PR fits. (b) QR fits. 

The variability is said to be artificially increased as 
the real value (the one with which the data was generated) 
is 0.05. To address this issue, a practical solution is to 
decrease the bin width. This reduces the influence of the 
trend on the data distribution at each bin. Fig. 3 (b) 
illustrates how the PR fits move towards the QR when 
the bin width is reduced to 0.2 m. 

 
Figure 3. Comparison of QR and PR fits done with raw data. 

(a) Analyses with 1.0 m wide bins. (b) Analyses with 0.2 
m wide bins. 

The above discussion introduced the key concepts 
behind QR and PR, and demonstrated their 
implementation in statistically homogenous (i.e., 
stationary) soil profiles. In the case adopted, both QR and 
PR produce consistent regressions associated with levels 
of exceedance, demonstrating the methods’ potential to 
be used as tools for design line selection. A comparison 

of their performance showed that QR stands out for its 
relative simplicity and the authors believe it should be 
preferred for practical applications. 

4. Regression analyses on layered profiles 
Although uniform sites, like the one simulated in the 

previous section, do occur in some areas, they are likely 
to be an exception rather than the rule – especially for the 
current focus on offshore wind, with such developments 
tending to be in shallower waters and more variable 
ground conditions. Therefore, methods for site 
characterisation, particularly those that aim to define 
design lines, must be able to accommodate and represent 
layering. 

This section presents the implementation of QR and 
PR on a site with relatively high variability. 

4.1. Selected real-world dataset 

Soil deposits are typically made of layers of materials 
with varying origins that have undergone different 
geological processes, which creates marked differences 
in mechanical behaviour. The dataset used in this part of 
the work is an example of that. It consists of 13 PCPTs 
shown in Fig. 5, covering an area (sketched in Fig. 4) of 
approximately 105 m x 105 m. 

 
Figure 4. Plan view of the location of the PCPTs. 

All tests but PCPT13 reached a depth of 20 m, for 
which cone refusal was reached at 12.1 m. The data were 
obtained at a deep-water site offshore north west 
Australia. The seabed in this region is composed mainly 
of carbonate sediments (Watson et al. 2019).  

The qnet profiles were derived from qc and u2 
measurements taken at 0.02 m depth intervals using 15 
cm2 projected area cones with 60o tips, with an area ratio 
𝛼 = 0.59. Subsequently, the net resistance was 
calculated using the effective unit weights shown in 
Table 2 to determine the total in situ vertical stress. As 
the data were originally acquired in a slightly irregular 
manner (i.e., the readings were taken at depths that were 
not multiples of 0.02 m), for the purposes of this study 
the qnet datapoints were linearly interpolated to 0.02 m 
multiples – in order to simplify processing for PR. 



 

Table 2. Effective unit weights for data processing. 
Depth (m) 𝜸+%𝒌𝑵/𝒎𝟑	+ 

0 - 10 5.2 
10-16 6.4 
16-20 6.3 

 
Figure 5. Profiles of net cone resistance (qnet). 

In terms of mechanical behaviour and statistical 
properties, the stratigraphy of this site can be divided into 
two distinct layers: 

1. The first is from the mudline to a depth that varies 
between 8.5 m and 13 m, is a relatively soft layer 
that is described (in geotechnical reports for the 
site) as comprising interbedded turbidites (very 
soft carbonate sandy mud) and pelagic sediments 
(very soft carbonate mud). Fig. 6 details the first 
5 m of the profile and it is interesting to note how, 
besides some occasional peaks, this pelagic layer 
is strikingly similar to the synthetic dataset used 
in the previous section. This similarity suggests 
stationarity in the statistical properties of this 
layer – and such uniformity would allow direct 
implementation of QR or PR in this depth range. 

2. The second layer covers the remainder of the 
profile to 20 m, and has highly variable conditions 
and (overall) higher resistance. This layer has 
been described as comprising debris flow material 
consisting of carbonate clasts, sands and clays. 
This mixture of materials produces a 
nonstationary layer – and the non-stationarity of 
the statistical properties manifests in the non-
normally distributed histograms and wide ranges 
of values shown in Fig. 7. 

The difference in magnitude and distribution between 
the first and second layers implies that it is virtually 
impossible to find single trend and deviation processes to 
accurately represent the whole site. 

Aside from the cone resistance values in each layer, 
an additional feature worth analysing is the depth at 
which the transition from the first to the second soil unit 
(shown in brackets below the name tags in Fig. 4 and in 

profile form in Fig. 7). It is interesting to note that this 
depth is spatially dependent – and such dependence 
should be considered when assessing the appropriateness 
models such as QR and PR, as regression models produce 
functions that are completely independent of the plan 
location (x-y-wise) of the data. This is not to say that the 
models should not be used, but rather than in such sites it 
is important to recognise that their outputs are more a tool 
for characterising a site as a whole site, rather than a tool 
for predicting profiles at specific locations. 

 
Figure 6. qnet data for the first five metres. (a) profiles. (b) 

data distribution. 

 
Figure 7. qnet data from 8.5 to 13.5 m depth. (a) profiles. (b) 

data distribution. 

4.2. PR and QR analyses 

This subsection details the authors’ approach to 
implementing QR and PR for design line selection based 
on the 20 m profiles shown in Fig. 5. 

It is crucial to note the subjective nature of this 
subsection – and it is accepted that some decisions are 
subject to debate. The exercise is intended to explore the 
key questions and challenges practitioners might face 
when implementing these models to real-world 
problems. 



 

The initial question is: how to determine the 
appropriate quantiles? Addressing this starts with an 
exploration of the applicable codes and standards. 
However, interpreting and interrogating the codes 
requires a nuanced process that considers the intended 
uses of the analysis outputs and the potential 
consequences of design failure – for instance, distinctions 
between the repercussions of an offshore wind turbine 
foundation failure and those of an onshore bridge pier 
underscore the need for tailored quantile selection. 

Beyond the normative considerations, quantile 
selection must also recognise that the fits from these 
regression analyses essentially provide a form of ground 
profile – and therefore, their value should be calibrated 
within the framework of Burland’s geotechnical triangle 
(1987). According to this framework, a comprehensive 
ground profile should integrate findings from ground 
exploration, description, and testing, and incorporate an 
understanding of the geological processes responsible for 
sediment formation. Such a profile must also seamlessly 
interact with the conceptual idealisation of the soil as part 
of an engineered system. 

 
Figure 8. Fits to the qnet dataset without consideration to 

layering. (a) PR. (b) QR. 

This conceptualisation necessitates a clear definition 
of the specific use for each output of the regression 
analyses. For instance, in foundation design for offshore 
infrastructure, two design lines are often defined: a low 
estimate for bearing capacity computation, and a high 
estimate for installation requirements definition. In this 
paper three quantiles – 10th, 50th and 90th – were selected, 
which does not rule out the existence of extremes. For 
example, opting for a 90th quantile introduces the 
possibility of overlooking localised hard layers, while 
using the 10th (rather than the 5th, as Eurocode 
recommends) can yield a rather optimistic estimate of the 
profiles’ resistance. 

Following the quantile selection, QR and PR 
regression analyses can be conducted. The fits illustrated 
in Fig. 8 show what would be obtained in analyses 

undertaken without considering the layering (i.e. using 
the full profile). They are clearly not optimal, with the 
following points standing out: 

• The PRs show negative intercepts at the mudline, 
attributed to the stronger sediments of the second 
layer tilting the regression lines and resulting in 
negative values for the initial depths, as 
demonstrated in Fig. 9. 

• Although the QRs do not exhibit negative values, 
there is still some tilting in the fits. Notably, the 
90th percentile fit significantly exceeds the values 
of the data for the first layer of the profile. 

The results of this first exercise pave the way to the 
second question a practitioner would face: how to address 
the challenge of layering in practice? 

 
 Layering 

As outlined above, the profile of this site can be 
simplified as a two-layer system. A first attempt to 
address this would be to designate a single depth for the 
transition from the first to the second layer. Employing 
11 m as the transitional depth, the QR and PR fits shown 
in Fig. 9 were derived. 

 
Figure 9. Fits to the qnet dataset using a two-layer system with 

a single transitional depth of 10 m. (a) PR. (b) QR. 

While this improves the characterisation of the first 
layer (by preventing negative values in the PR fits), it 
overlooks the significant spatial dependence of this 
transitional depth on the site – thereby introducing risk in 
design. Notably, within the 90th quantile fits, a layer of 
relatively high resistances between 9 and 11 m is 
overlooked, and the ‘tilting’ effect described above 
causes the PR90 fit to cross the other two regression lines, 
as Fig. 9 (a) shows. 

To address this, a more nuanced strategy was adopted 
involving a 0.2 m bin-statistics analysis. Here, the 
strategy involved plotting the bin-wise qnet values for the 
selected quantiles, as illustrated in Fig. 10. Examination 
of this figure led to the definition of a system with 
separate transitional depths (O’Neill et al. 2022a): 



 

• For the 10th and 50th quantile fits, a single 
transitional depth, at 13.6 m and 12.0 m, was 
respectively adopted. 

• Two transitional depths for the 90th quantile fits, 
at 9.0 m and 11 m. 

This refined approach addressed not only the spatial 
nuances in the transitional depth, but also provided a 
more accurate representation of the site's profile – 
overcoming the limitations observed in the initial single-
depth designation. This improvement in the model’s 
ability to represent the site comes, nevertheless, at the 
cost of some statistical rigour.  

 
Figure 10. 10th, 50th and 90th of the 0.2 m binned qnet dataset.  

 Final regression analyses 

Fig. 11 presents the outcomes of the analyses, 
featuring the application of QR and PR models to the 
layered data. The comparison in Fig. 12 displays the 
results generated by both models, utilizing 0.2 m-bin 
quantiles as a frame of reference. From this figure it is 
worth noting how, under certain conditions, PR and QR 
can produce virtually identical results.  

The approach to regression analyses for design line 
definition shown in this paper is part a practical guide for 
the implementation of such models in real-world 
problems and is intended to prompt further discussion, as 
it shows how these models struggle to represent such 
variable sites and require significant input from the 
engineer – which increases the degree of subjectivity in 
the analyses.  

5. Conclusions 
This paper was motivated by the need to highlight the 
utility of models that can generate design lines associated 
with levels of exceedance. Two such models (PR and 
QR) were employed to analyse both synthetic and real 
datasets. The results demonstrate that under specific 
conditions both approaches yield practically identical 
outcomes. However, it was observed that these 
conditions are site-specific and susceptible to subjective 
handling of the data. Notably, PR appears to produce less 
reliable results compared to QR. 

 
Figure 11. Fits to the qnet dataset. (a) PR. (b) QR. 

 
Figure 12. Comparison of the PR and QR fits to the qnet 

dataset. 

The observed disparities in performance can be 
attributed (in part) to the fact that PR is a simplified 
approach to generating such design lines, whereas QR 
stems from a more rigorous mathematical foundation. 
Consequently, for rigorous analysis, the authors believe 
QR should be prioritized over PR. 

One of the main advantages of QR is its potential to 
reduce the subjectivity in design line definition. 
However, the approach still requires a fair degree of 
expertise from the engineer, particularly in the selection 
of quantiles for the regression analyses and the definition 
of an appropriate layering system. 



 

Despite the usefulness and flexibility of QR, it has a 
crucial limitation – namely its independence from the 
location of the input data. This independence translates 
into an inability to address spatial variability, meaning 
that it produces a single output regression for the whole 
dataset and cannot be used to predict location-specific 
profiles. An alternative use of the model to overcome this 
limitation would involve running location-specific 
regressions using relevant subsets of data – for instance, 
to get an interpolated qnet profile for a point located at x 
= 30 m and y = 50 m (referring to Fig. 4), QR fits can be 
obtained using PCPTs 5, 6, 7, and 11. However, these 
accommodations require judgement about which parts of 
the data set are relevant to a specific location (and infer 
statistical stationarity in that region) – this implies that 
part of the data goes unused, which is not an ideal 
scenario as it could lead to the overlooking of important 
features of the site. Approaches to consider spatial 
variability explicitly have been developed (Uzielli 2022) 
and a companion paper at this conference (Valderrama et 
al. 2024) shows the implementation of such a model – 
GeoWarp (Bertolacci et al. 2024), for the analysis of the 
same real-world dataset used for this work. 

In summary, regression models are valuable tools in 
providing an overall understanding of the features and 
variability of a site, but they should be used carefully in 
geologically complex sites. 
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