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Summary.
Calibrating restraint systems for crashworthiness is challenging due to the non-linear behav-

ior of input parameters. While expert knowledge provides initial parameter estimates, com-
plementary parameterization and dependencies complicate the task. The presented approach
approximates a distribution on the parameter space that results in a desired observation distri-
bution. We propose initializing the source distribution with the average posterior distribution
and fine-tuning it against the marginal likelihood over the targeted distribution. Additionally,
a weighting function is introduced to obtain stable point estimates from the source distribution.
The method is applicable to various forward models and is demonstrated on a passive safety
rating use case.

1 INTRODUCTION

The parameter vector θ, defining a restrating system, undergos a highly non-linear trans-
formation to result in the observation vector x, describing the crashworthiness of a car. While
expert knowledge and component specifications provide an initial guess on the range and loca-
tion of the correct parameters, complementary parameterization and parameter dependencies
pose challenges to the engineers. Currently, the process of calibration is forward oriented and
iterative. Ideally, it could be inverted and the engineer would define a targeted distribution
p∗(x) on the observation space, to which a distribution on the parameter space is provided that
fulfills the targeted distribution. This is the source distribution p(θ) that we aim to approximate
in this study.
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While desireable, the source distribution is intractable as the relationship between parameters
θ and observations x is defined by a complex simulator [11], which does not provide a tractable
inverse. However, in the case of stochastic simulators, the observation x can be treated as a
sample from the likelihood p(x | θ) given a parameter θ, allowing for Bayesian inversion.

In accordance with a line of work on empirical Bayes, most notably [22, 23], we formulate the
task as likelihood-free source distribution estimation as the forward model does not provide an
analytical form of the likelihood in general [4, 15]. Provided a dataset of parameter-observation
pairs D = {(θi, xi)}Ni=1 and a distribution p∗(x) within the support of the prior predictive
distribution of the simulator, we aim to approximate a source distribution p(θ) that yields the
observations x ∼ p∗(x) when pushed through the forward model.

p∗(x) =

∫
p(x | θ)p(θ) dθ (1)

Due to the complexity of the forward model and the ill-posedness of the problem, finding a
suitable source distribution is a challenging task. We therefore propose to initialize the source
distribution by the average posterior distribution and fine-tuning it subsequently.

Estimating a source distribution is similar to Simulation-Based Inference (SBI) [4], but essen-
tially differs in the distribution being approximated. Particularly, SBI is used here to obtain the
average posterior. This is in contrast to empirical Bayes, where SBI is treated as a downstream
task [22, 23].

Restraint systems require a fixed parameterization via point estimates, conditioned on the
detected crash scenario. We propose to employ a weighting function in the selection process,
taking the stability under perturbation into account. The weighting function can be further
adapted to include economical factors as well.

In the following, we will introduce the necessary background on neural density estimation
(Section 2) and Bayesian inversion (Section 3). The presented method is described subsequently
(Section 4) and is finally applied to a passive safety rating (Section 5).

2 NEURAL DENSITY ESTIMATION

Conditional neural density estimation extends density estimation to model conditional distri-
butions, where the objective is to estimate the density of a target variable x given a conditioning
variable θ [15, 18, 24], with neural networks.

Normalizing flows, a key method within neural density estimation, are adapted to incorporate
the conditioning variable θ into their transformation, resulting in conditional transformations
of the form fk(zk−1, θ), where each fk is a differentiable and invertible mapping (diffeomor-
phism) [15]. By utilizing a sequence of neural networks for their transformations, normalizing
flows allow to model a complex distribution. The variable x is then derived as x = f(z, θ) where
f = f1 ◦ · · · ◦ fk. The conditional density pX (x | θ) is computed using the change of variables
formula, adjusted for the conditional case, where z0 = z, a sample from the base distribution,
and zk = fk(zk−1, θ):

log pX (x | θ) = log pZ(z | θ)−
K∑
k=1

log

∣∣∣∣det(∂fk(zk−1, θ)

∂zk−1

)∣∣∣∣ . (2)

In order to train these density estimators, the Kullback-Leibler (KL) divergence between
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the learned and observed conditional distributions is minimized, which is equivalent to the
minimization of the negative log likelihood [1, 15]. Therefore, the weights are optimized by
minimizing the conditional negative log likelihood (CNLL) over the dataset D = {(θi, xi)}Ni=1:

LCNLL = − 1

N

N∑
i=1

log pX (xi|θi). (3)

3 BAYESIAN INVERSION VIA LIKELIHOOD-FREE INFERENCE

Bayes’ theorem models the distribution of a system’s parameters given observed data. By
combining prior knowledge with observed data, the posterior distribution represents updated
beliefs on the parameter vector. The posterior distribution provides an inverse relation of the
parameter vector and the observed data and is often used for inversion [2, 5, 14].

The posterior distribution is defined as the conditional probability of the system’s parameters
θ, conditioned on the observation x. According to Bayes’ theorem, the posterior is the product of
the likelihood of the observation for a specific parameterization p(x | θ), the prior distribution on
the parameter vector π(θ), and the evidence p(x) =

∫
p(x | θ)π(θ) dθ. However, as the evidence

is intractable in most cases, the posterior can only be established up to proportionality:

p(θ | x) = p(x | θ)π(θ)
p(x)

∝ p(x | θ)π(θ). (4)

By computing the posterior, the inverse relation of the forward model M(θ) = x̃ is estab-
lished, to which the likelihood belongs. The obtained posterior can be conditioned on a specific
observation xo to yield a distribution over parameters θ generating the observation xo with high
probability.

Bayes theorem is difficult to apply to industrial applications as the likelihood of most forward
models M is intractable [4, 15]. To address this issue, neural Simulation-Based Inference (SBI)
defines a parametric approximation qφ(θ | x) ≈ p(θ | x) by learning parts of Equation (4).
In the case of Neural Posterior Estimation (NPE) and Neural Likelihood Estimation (NLE),
conditional neural density estimators (see Section 2) are used to model the conditional densities,
minimizing the KL divergence.

As minimizing the KL divergence is equivalent to maximizing the likelihood of the observed
data under the model, the parameters φ of the conditional density estimator are trained by min-
imizing the conditional negative log likelihood of the data D under the model qφ (see Section 2).

In order to minimized the loss on dataset of samples from the joint distribution, the fact that

p(x | θ)p(θ) = p(x, θ) = p(θ | x)p(x) (5)

is used. Treating observations from a numerical modelM, evaluated at the parameter vector
θ, as sampled from the likelihood p(x | θ), a dataset of samples from the joint distribution p(θ, x)
can be obtained as outlined in Algorithm 1.

We would like to point to the following references for further information on the topic.
Cranmer et al. [4] provide a general overview of old and new approaches to SBI. Papamakarios et
al. [15, 16, 17] describe the step from Approximate Bayesian Computation (ABC) to neural SBI
by using neural density estimation. Lückmann et al. [13] compare different density estimators for
neural posterior, likelihood, and ratio estimation on different tasks and establishes a benchmark.
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Algorithm 1 Sampling from the joint distribution in SBI.
1: Input: Prior distribution π(θ), simulator function M : θ → x, number of samples N
2: Output: Samples from the joint distribution D = {(θi, xi)}Ni=1

3: Initialize an empty list of samples D ← [ ]
4: for i← 1 to N do
5: Sample parameter θi ∼ π(θ)
6: Generate simulated data xi ←M(θi)
7: Append (θi, xi) to the list of samples D
8: end for
9: Return D

Finally, the improvement of neural density estimators is an ongoing line of research with recent
works proposing continuous flows for density estimators [6, 12, 21], score estimation [8, 19], as
well as flexible approaches [9]. Several methods for SBI are implemented in the open-source
Python package Github sbi-toolkit [20], which is used in this work as well.

4 THE INVERSE PROBABILITY METHOD

A common engineering task is to optimize the parameters θ such that the system produces
a certain anticipated or desired result x∗. Provided a forward model M describing our system
under consideration and taking d-dimensional vectors θ to produced a n-dimensional observation
x̃, we have M(θ) = x̃, where θ ∈ Rd and x̃ ∈ Rn.

The difficulty in this task arises from the fact that (1) the modelM is often complex and com-
putationally expensive to evaluate1. In addition, (2) the underlying systems are non-injective,
i.e. allowing for complementary parameterization that result in the same observation. Due to (1),
global optimization of the parameters θ directly is infeasible and due to (2), defining an inverse
mapping M−1 is an ill-posed problem. Finally, an ideal workflow would allow to incorporate
the notion of robustness directly into the formulation of the targeted results x∗.

In order to address the mentioned challenges, the here presented workflow allows to compute
the Bayesian inverse of the forward model M, construct a source distribution that produces a
target distribution of the anticipated results, and select robust point-estimates for final system
parameterization. This way, the engineering workflow is inverted and allows to ask: “What
parameters θ result in the anticipated results x∗ with high probability?”.

4.1 Bayesian Inversion via Simulation-Based Inference

The posterior distribution for a given observation xo is the theoretical construct that defines
the distribution over parameters θ, that are likely to have lead to the observation. In order to
obtain the posterior, as stated in Equation (4), the likelihood is required. Due to the complexity
and dimensionality of the underlying system or the system being a black box, the likelihood is
not tractable analytically [4, 15, 16]. Popular choices in this setting are manually crafting a
likelihood or using a sampling-based approach, e.g. via Markov-Chain Monte-Carlo (MCMC).
However, these approaches don’t scale well to higher dimensions or are not feasible due to

1The physical crash test has a high cost incurred due to the car being damaged as well as the required setup for
running such tests. This includes, among others, fire safety, crash dummy preparation, and wear of the crash-test
facility. Furthermore, complete crash simulations are very complex and take several hours on large clusters.
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The workflow is structured as follows.

1. Define a target distribution for the anticipated results p∗(x).

2. Provide an amortized estimator for the posterior distribution p(θ | x).

3. Obtain a source distribution p(θ) that produces the targeted distribution p∗(x).

4. Incorporate the notion of robustness into the selection of point-estimates for θ.

the high computational cost of the forward simulation. We chose to learn the likelihood in
a data-drive way as detailed in Section 3. For this task, we use a neural density estimator
(see Section 2). Such estimators allow to capture multi-modal distributions, which are required
due to complementary solutions. Utilizing neural networks allows to capture highly-nonlinear
effects within the problem. Depending on the complexity of the problem at hand, the complexity
of the estimator can be adapted to facilitate the required expressiveness [9, 12, 21].

According to Section 3, we choose to compute a likelihood estimate qφ(x | θ) ≈ p(x | θ)
instead of directly learning the posterior distribution. This is due to the facts that (1) the
likelihood allows for hierarchical extensions of the problem without retraining the model. This
includes the case when i.i.d. components are added to the system, which provide their own
likelihood. Furthermore, (2) the likelihood can be treated as probabilistic surrogate model
as well and is easier to validate, when no true posterior is available. In addition, (3) the
parameter dimensionality in passive safety problems tends to be of higher dimensionality than
the observation space, i.e. dim(θ)� dim(x), and (4) the likelihood is required in the robustness
assessment of a point estimate in Section 4.3.

Instead of crafting or learning summary statistics as a preceding step to density estimation,
we propose to use industry-standard rating functions g : Rd → R1. In the case of passive safety,
car assessment protocols evaluate a multitude of sensor measurements x̃ ∈ Rn of a single crash
test to compute the relative injury risk as scalar value x ∈ R1 (Equation (6)). Incorporating this
scalar score as the output effectively compresses the output dimensionality, thereby enhancing
the fidelity of likelihood estimations by aligning with the preferential dimensionality relation
dim(θ)� dim(x). The reduction g is defined as

g(M(θ)) = x, x ∈ R1. (6)

Based on the likelihood estimate qφ(x | θ), the posterior distribution can be proportionally
evaluated via Bayes’ theorem (Equation (4)) for a specific combination of θ and x. A Markov-
Chain Monte-Carlo sampling schema is used to sample from the posterior. As the estimated
posterior is amortized, the posterior can be evaluated for any given observation xo without the
need to retrain the estimator [4].

4.2 Estimation of Source Distribution

Instead of inverting the mechanical model M for a single observation xo, one is interested
in finding a suitable distribution qψ(θ) over the parameter space Θ ⊂ Rd that results in a
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desired distribution p∗(x) on the target space. The targeted distribution is analytically defined2,
describing the location and shape of the observations to be made. This way, engineers can specify
their targeted observations in form of a distribution, incorporating the location and variance of
the allowed observation. To link the source and target distribution, we reformulate the prior
predictive distribution to yield a marginal likelihood distribution q(x) =

∫
p(x | θ)qψ(θ) dθ,

depending on qψ(θ)
3.

q(x) =

∫
p(x | θ)p(θ) dθ

=

∫
qφ(x | θ)p(θ) dθ

=

∫
qφ(x | θ)qψ(θ) dθ

(7)

Therefore, finding a suitable source distribution for p∗(x) requires to minimize the deviation
of the marginal likelihood distribution q(x) and the targeted distribution with respect to the
source distribution. Up to our knowledge, this problem was not yet formulated in this fashion.
It is however similar to problem of empirical Bayes [22, 23], where one is interested in recovering
the true prior distribution with respect to observed data, given a likelihood function.

ψ∗ = argmin
ψ∈M

d (p∗(x), q(x)) (8)

In contrast to empirical Bayes, the targeted distribution p∗(x) is stated analytically, rather
than by observed samples. This way, we are not limited by the number of observations within
a targeted region, but have an analytical function defining the targeted region. This is an
advantage especially for mechanical applications as observations from expensive simulators and
hardware tests are typically scarce. Furthermore, the task focussed here is not to recover a
proposal distribution that led to the observed data but to find a source distribution that produces
the targeted distribution. Therefore, the following assumptions are made: (1) the distance
function d is differentiable w.r.t. to the parameters ψ and capable to measure the deviation
between two distributions, (2) the source distribution qψ(θ) is flexible enough to model the
required source over θ, and (3) the targeted distribution p∗(x) is within the support of the
marginal likelihood.

In accordance with [22] (Equation 2), we use the KL Divergence as distance function. Uti-
lizing the estimated likelihood, obtained in Section 4.1, we minimize the negative marginal
log-likelihood log q(x) of the marginal likelihood over the targeted distribution.

2The (multivariate) Normal distribution can be a good representation of the targeted observations as it’s easily
constructed. By adjusting the covariances, the shape can be adjusted to meet the required observations.

3As the parameterized source distribution qψ influences the marginal likelihood over x, we denote this depen-
dence by adding the parameters as subscript, i.e. q(x).
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log q(x) = logEqψ(θ) [p(x | θ)]
= logEqψ(θ) [qω(x | θ)]
= logEqψ(θ) [p(x | θ)]

≈ log
K∑
k=1

p(x | θk)

= logSumExp [log p(x | θk)]− C

(9)

In Equation (9), θk ∼ qψ(θ) is from the parametric density model and C is a constant
independent of ψ. As Vandegar et al. [22] note, a large number of samplesK is required for a good
approximation of the expectation. They also show that the bias and variance of Equation (9)
decreases at a rate of O( 1

K ). In addition, the here stated formulation allows to introduce
inductive bias into the model in a simple fashion [22]. This especially includes the way the
source model is formulated and resembles the source distribution.

We use a normalizing flow (Section 2) to model the source distribution qψ(θ). The samples
K to approximate Equation (9) are generated by sampling from a base distribution z ∼ pZ(z)
and pushing such through the transformations defining the unconditional flow θ = f(z) where
f = f1 ◦ · · · ◦ fk. As f can be evaluated very effectively, samples are generated very easily and
the usage of a biased estimator does not pose a problem as K can be chosen to be large.

Depending on the complexity of the underlying system under investigation the optimization
of Equation (8) can be challenging. While the dimensionality of the parameter space Θ is
typically high, the system often allows for complementary solutions. This artifact has to be
captured by the source distribution qψ(θ) in a similar fashion as the (approximated) posterior
distribution does. We therefore propose to initialize the source distribution with the averaged
posterior distribution over the targeted distribution Equation (10). As we’ve approached the
problem of Bayesian inversion in Section 4.1 with neural density estimators, we have an efficient
approximation of the posterior.

q
(0)
ψ (θ) =

∫
p(θ | x)p∗(x) dx

≈
∫
qφ(θ | x)p∗(x) dx

(10)

In a following step, q(0)ψ (θ) is “fine-tuned”, optimizing Equation (8), in accordance with [22,
23]. Intuitively, the posterior distribution, conditioned on the observation, defines a distribution
over the parameters, that are likely to have led to the observation. By averaging over all
the targets, we’re interested in, we obtain a distribution that is likely to produce the targeted
observations. The steps taken are summarized in Algorithm 2. We note that [23] has shown that
the average posterior alone is not sufficient to yield an accurate source distribution. However,
the numerical experiment in Section 5 shows that the average posterior is a good starting point
for the optimization.
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Algorithm 2 Optimizing a source distribution to match a targeted distribution.
1: Input: Prior predictive distribution p(x), targeted distribution p∗(x), likelihood approxi-

mation qω(x | θ), number of Monte-Carlo samples K
2: Output: parameterized distribution qψ(θ) s.t. q(x) ≈ p∗(x)
3: Define divergence function d(·) on distributions
4: Define family of parametric density estimator: Q = {qψ(θ) | ψ ∈ Ψ}
5: Initialize source model to average posterior: qψ(θ) =

∫
qφ(θ | x)p∗(x) dx

6: Optimize divergence: ψ∗ = argmin
ψ∈M

d (p∗(x), q(x))

7: Return qψ(θ)

4.3 Distillation of Point Estimates

Based on the source distribution obtained in Section 4.2, the mechanical systems are config-
ured using point estimates. This is also the case for systems in passive safety. Therefore, point
estimates have to be distilled from the source distribution.

While the most likely parameter would be a natural choice, it is of higher interest to select
robust parameters. We therefore propose a selection process incorporating a weighting function
c(θ) ∈ R. Such a weighting function allows to incorporate a notion of robustness as well as
economical factors. While the former is a common for parameter selection, the latter is a
useful option in the application. However, due to scientific reasons, we will focus solely on the
incorporation of robustness here.

The robust point estimate θ∗ is formulated as the maximizer of the weighted distribution

θ∗ = argmax
θ∈Rd

qψ(θ)c(θ) (11)

of the source distribution qψ(θ) with respect to the weighting function c(θ). This way, both
the likelihood of that parameter and its stability are taken into account.

We model this robustness by computing the likelihood of re-observing an initially obtained
safety score x′ ∈ R via θ′, for varying parameter vectors θ ∈ Rd. By varying the parameters
around the generating parameter θ′, we simulate the possibility that an unseen crash scenario
would’ve required a different set of parameters that lead to the assumed safety score. Therefore,
the weighting function c(θ) incorporates the estimated likelihood from Section 4.1:

c(θ′) =

∫
qω(x

′ | θ′ + ε)pN (0,σI)(ε) dε. (12)

In the above formulation, N (0, σI) denotes an isotropic normal distribution with zero mean
and covariance σI. In the same way as in Equation (11), and in alignment with Bayesian
Decision Making [10], the weighting function can be applied to the posterior estimate, in case a
robust point estimate shall be derived with respect to a specific targeted observation x∗.

5 NUMERICAL EXAMPLE

In the assessment of vehicle safety for newly designed cars, different countries state their
requirements in form of new car assessment protocols (NCAPs). These include different tests
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that have to be conducted to assess the car’s overall safety. Based on the measurements obtained
from a crash test, the protocols define how the safety rating is computed.

To demonstrate the application of the proposed IPA, we consider the US NCAP4 as stochastic
simulator to highlight the key features and the steps of the approach. The approach, outlined
in Section 4, is used to estimate the required measurements to obtain during a full-frontal crash,
s.t. the targeted distribution over the ratings is obtained.

Let π(θ) be a prior distribution over the parameter space Θ ⊂ R6 and ε ∼ N (0, σ2) be
Gaussian white noise with variance σ2. The stochastic US NCAP simulator is defined as follows:

x =M(θ) + ε, θ ∼ p(θ), x ∈ R. (13)

The function M is defined by the US NCAP protocol [3, 11] and maps into the reals. The
white noise models aleatoric uncertainty of the underlying model. This particular example was
chosen as it also allows for obvious complementary solutions.

A total of N = 104 samples are drawn from the joint distribution (Algorithm 1), constructing
the dataset D = {(θi, xi)}10

4

i=1. For subsequent steps, the dataset D is split into training and
validation sets, Dtrain and Dvalidation, with 90 and 10 percent of the full data, respectively. The
obtained prior predictive distribution p(x) is depicted as a gray curve in Figure 1.

The first step of the IPA is to define a targeted distribution that lies in the support of the
prior predictive distribution. Here, we aim for a distribution that produces mostly 5-star ratings
with a low risk of obtaining upper 4-star ratings. The targeted distribution was defined with a
normal, centered at µ = 0.6 and a standard deviation of σ = 0.05, i.e. p∗(x) = N (0.6, 0.052).
The resulting distribution w.r.t. to p(x) is depicted in Figure 1 as well.

Figure 1: The targeted distribution p∗(x)
(black) is defined within the support of the prior
predictive distribution (black). The colored ar-
eas of the plot account to the stars of the rating,
relating to the relative risk obtained by the US
NCAP rating.

In the second step, a Neural Spline Flow [7]
qω(x | θ) is trained to approximate the likeli-
hood p(x | θ) using the training dataset Dtrain
by minimizing the conditional negative log-
likelihood (Equation (3)). The sequence of
L = 4 transformations, with 128 units each,
is conditioned on the six-dimensional param-
eter θ (see Section 2). The base pZ is chosen
to be standard normal distribution.

We assess the quality of the trained likeli-
hood by regressing on and recreating the vali-
dation data. For the regression task, the like-
lihood is sampled 10 times per parameter θ of
an input-output-pair (θ, x) ∈ Dvalidation. The
prediction of the likelihood is given by the
function g, computing the average of the 10
samples g(θi) = 1

10

∑10
i=1 x̂i, x̂i ∼ qω(x | θi).

With a coefficient of determination of R2 ≈
0.98, the likelihood is able to capture the vari-

ation of the data generating process well (Figure 3a). Figure 3b compares the distribution of the
4The US NCAP is defined by the National Highway and Safety Administration (NHTSA) to assess the safety

of new cars licensed in the United States of America.
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(a) Regession task (b) Recreation task (c) Proposal (d) Fine-tuned

Figure 3: Figure 3a shows the actual-vs-predicted plot and Figure 3b shows the distribution
of the observations in the validation data compared to the recreated observations. The model
obtained a coefficient of determination of R2 ≈ 0.98 on the regression task and a value of
C2ST ≈ 0.5634 on the Classifier-Two-Sample-Test. Figure 3c depicts the marginal likelihood
obtained after initialization of the source model and Figure 3d after fine-tuning.

observations in the validation data to the recreated observations. The recreated data is obtained
by sampling from the likelihood, conditioned on each parameter in the validation data, once.
A five-fold Classifier-Two-Sample-Test [13], with an average score of C2ST ≈ 0.5634, is used to
quantify the difference between the distributions. As the range of the test is [0.5, 1.0], the model
captures the data generating process well.

Figure 2: The samples of the perturbed likeli-
hood under the MLE (gray) are compared to
the samples obtained using the stability estima-
tor in Equation (12) (red). The latter has less
variance, indicating more stable results.

Utilizing the trained likelihood as a sur-
rogate to the simulator in Equation (13),
the third step of the approach is to mini-
mize Equation (8) to obtain a source distri-
bution, providing the desired targeted distri-
bution p∗(x). As source model, we choose
an unconditional normalizing flow (see Sec-
tion 2) with L = 6 transforms of 128 units
each. Again, the Neural Spline Flow [7] archi-
tecture was used. According to Algorithm 2,
we initialize the density model to the aver-
age posterior w.r.t. the targeted distribution.
The parameters of the source model are opti-
mized using the Adam optimizer with a decay-
ing learning rate, starting fairly low at 10−8.
We depict the resulting marginal likelihoods
after initialization and after fine-tuning in Fig-
ure 3c and Figure 3d. The majority of the dis-

tribution is well fit, however, the observed distribution has slightly too much mass in the tails,
compared to the targeted distribution.

The final step of the approach is to obtain a stable point estimate θ∗. As mentioned in Sec-
tion 4.3, we assume that real crash scenarios differ from such conducted in the lab. Therefore,
the optimal parameterization for such crashes is slightly different. Still, we would like to rely on

10
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the obtained safety result. To model this scenario, we perturb the parameters and observe the
likelihood of obtaining the initial observation. The standard deviation in Equation (12) was set
to σ = 0.1, whilst working on standardized parameters θ. This simulates the shift between the
point estimate and the actually fitting parameter for the scenario. We compare the obtained
stable estimate θ̂stable with the Maximum-Likelihood-Estimate θ̂MLE, which would be a typical
choice. To compare the stability of the two estimates, we sample the original simulator for a
total of 104 perturbed parameters. The resulting observations are depicted in Figure 2. We
notice a narrower distribution of the observations under the stable estimate, indicating a more
stable result.

6 CONCLUSION

In this study, we presented an approach to approximate a source distribution for a targeted
distribution using neural density estimation. To avoid excessive queries to a costly simulator,
we use the likelihood as a surrogate model. This efficient access to the likelihood is also used
to obtain the average posterior and compute a stable point estimate under perturbation. We
added an initialization step using the average posterior, which is beneficial for complex systems
like highly non-linear simulators. For simpler simulators, direct optimization may suffice. Addi-
tionally, we used a weighting function to obtain stable point estimates, which can also include
economic factors. Furthermore, the formulation of the optimization target allows for the in-
clusion of further constraints, which was not shown here. Sensitivity scores of the distribution
could also inform the weighting function. As the distributions are provided as neural networks,
sensitivity scores are easy to compute. Finally, the approach can theoretically be integrated into
hierarchical problems, though specific applications remain to be demonstrated.
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