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Abstract

The optimal integration of propulsion systems in the next generation of aircraft is a fas-
cinating and challenging multidisciplinary design problem. To fully realise the combined
potential of next generation aircraft and engine technologies an integrated multiphysics
design approach is key. In this context the German Aerospace Center (DLR), the French
Aerospace Lab (ONERA) and Airbus are currently developing CODA (CFD ONERA
DLR Airbus), a next-generation CFD solver for aircraft and turbomachinery design, de-
vised to be able to fully exploit current and future HPC architectures [1].

To efficiently simulate turbomachinery components a number of specific boundary condi-
tions are necessary. In this paper we discuss the implementation of the so-called mixing-
plane boundary condition in CODA. Due to the relative motion between adjacent blade
rows in compressor or turbine stages, the flows within turbomachinery components are in-
herently unsteady. To nevertheless efficiently simulate such flows in the context of steady
simulations, approximate artificial boundary conditions (mixing-planes), in combination
with some form of non-reflecting boundary condition, are commonly used between blade
rows [2]. The implementation of such mixing-plane boundary conditions (which are non-
local in space) in an highly optimized HPC environment, such as CODA, is nontrivial. In
this work we describe the mixing-plane boundary condition implementation in detail and
outline the approach adopted to minimize its impact on code performance and scalability.

1 INTRODUCTION

Although aircraft fuel efficiency has improved significantly in recent years, the benefit to
the environment has been offset by the growth in air traffic over the same period of time.
Therefore, to meet the European Commission’s ambitious goal of climate neutral aviation
by 2050, disruptive technologies based on revolutionary engine concepts and improved
aircraft technologies will be needed alongside the widespread adoption of sustainable
aviation fuels and Hydrogen [3].

At present, several new engine technologies are under development by all major aircraft
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engine manufacturers, including CFM’s open rotor RISE concept, Rolls-Royce’s UltraFan
and MTU’s Water Enhanced Turbofan. Although these technologies differ conceptually,
they have in common the adoption of very-high bypass-ratio, large diameter (≈ 3.5 m)
fans. This represents a significant increase in comparison to today’s modern aero-engines
with diameters of approximately 2m and therefore presents new and significant challenges
in the context of aircraft integration.

To meet these challenges, DLR, together with its partners ONERA and Airbus, initi-
ated in 2012 [4] the development of CODA, a next-generation CFD solver for aircraft
design, with extensions for the simulation of turbomachinery components, fully capable
of exploiting current and future HPC architectures. To easily operate in the context of
a multidisciplinary design setting, CODA has a Python control-layer and has been de-
signed as a plugin to DLR’s platform for multidisciplinary design analysis, FSDM [5]. To
allow the generation of efficient machine code, whilst at the same time enabling a high
level of abstraction, the code is written in C++17 and makes heavy use of templates to
minimize run-time overhead. To optimize parallel efficiency, CODA has been explicitly
designed to support the multiple levels of parallelism found in modern HPC architectures,
i.e. node-to-node, multicore and SIMD (Single Instruction Multiple Data). In terms of
numerics, CODA supports both the cell-centered Finite Volume and the Discontinuous
Galerkin discretization methods in combination with implicit and explicit time-integration
schemes.

In this work, we present the extensions implemented in CODA to facilitate the efficient
simulation of turbomachinery components. The paper is organized as follows. Firstly,
the extension of CODA to support arbitrary rotating frames of reference is presented.
The next two sections then present the implementation of the periodic and mixing-plane
boundary conditions. Finally, the combined methods are applied to simulate a transonic
fan stage and comparisons with experimental data are presented.

2 TURBOMACHINERY EXTENSIONS

In compressors, turbines or fan stages the relative motion between adjacent blade rows
ensures the flows in these components are inherently unsteady. Whilst it is possible
today with modern HPC resources to numerically simulate the time-dependent interaction
between blade rows, very good estimates of a machine’s performance characteristics can
be obtained using well established modelling assumptions. Firstly, considering an isolated
rotating blade row, it is clearly advantageous to adopt a frame of reference attached to the
rotating blade row as we can generally expect the time-mean flow to be stationary in such
a system. Secondly, neglecting indexing effects and assuming identical blade geometries,
the time-mean flow in all the passages of a given row will be identical, and it is therefore
sufficient to compute the flow in a single passage with appropriate boundary conditions.
Finally, although unsteady, interaction effects between blade rows can impact the flow
in multistage turbomachines, these are generally second-order effects and it is therefore
sufficient to model only the time-mean interaction between the blade rows.

2.1 ROTATING FRAME OF REFERENCE

When simulating turbomachinery components it is convenient to adopt a rotating frame
of reference, stationary relative to the respective blade rows. To this end, CODA has
been extended to support arbitrary axes of rotation. An axis of rotation is defined by the
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combination of an origin of location ō = [ox, oy, oz]
T and a unit direction vector d̄ (see

Figure 1).

Figure 1: Axis of rotation and radius vector r̄ of an arbitrary point p̄ = [px, py, pz]
T .

The rate of rotation is specified separately by a scalar ω, with a positive value correspond-
ing to a rotation in the direction given by the right-hand-rule applied to the unit direction
vector d̄. For such a system the relative velocity ū at an arbitrary point p̄ is

ū = v̄ − w̄ = v̄ − ω̄ × r̄
= v̄ − ω̄ × (p̄− ō) (1)

where v̄ is the velocity in the absolute system, ω̄ = ωd̄ and r̄ = (p̄− ō) − d̄
(
(p̄− ō) · d̄

)
is the component of the position vector p̄ perpendicular to the axis of rotation d̄. The
introduction of a (non-inertial) rotating frame of reference leads to the appearance of two
fictitious forces in the governing equations: the Coriolis force and the centrifugal force.
The Coriolis force is defined as fcor = −2ρ (ω̄ × ū) and the centrifugal force by fcen =
−ρ ω̄ × (ω̄ × r̄) and appear as source terms in the momentum conservation equations.
I.e. the Navier-Stokes equations, in the absence of external forces, in a rotating frame of
reference take the form:

∂

∂t

∫
Ω
ρdΩ +

∮
S
ρū · dŜ = 0 (2)

∂

∂t

∫
Ω
ρūdΩ +

∮
S

(
ρū⊗ ū+ p ¯̄I − ¯̄τ

)
· dŜ = −

∫
Ω
ρ (2 (ω̄ × ū) + ω̄ × (ω̄ × r̄)) dΩ (3)

∂

∂t

∫
Ω
ρEdΩ +

∮
S

(
ρūI − k∇̄T − ¯̄τ · ū

)
· dS̄ = 0 (4)

where ρ is the fluid density, p is the fluid pressure, ¯̄I is the 3 × 3 unity matrix, ¯̄τ is the
viscous stress tensor, T is the fluid temperature, E = e+ 1

2

(
ū2 − (ω̄ × r̄)2) is the relative

total energy, I = h+ 1
2

(
ū2 − (ω̄ × r̄)2) is the rothalpy, and h = e+ p

ρ
is the enthalpy. Due

to the work which arises from the centrifugal forces1, the total enthalphy is augmented
by the term 1

2
(ω̄ × r̄)2, such that the total rothalpy becomes the conserved quantity in

steady, invisicid and adiabatic flows2.

1The Coriolis forces produce no work since (ω̄ × ū) · ū = 0.
2Where, in Equation 4, the vector identity ω̄ × (ω̄ × r̄) = − 1

2∇|ω̄ × r̄|
2 has been used to write the

centrifugal force in the form of a gradient.
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Assuming a calorically perfect gas, the fluid pressure is related to the relative total energy
by

p = (γ − 1)
[
ρE − ρ

2

(
ū2 − (ω̄ × r̄)2)] (5)

where γ = cp
cv

is the ratio of specific heats at constant pressure cp and at constant volume
cv. The fluid temperature is determined from the ideal gas law, p = ρRT .

2.2 PERIODIC BOUNDARY CONDITION

Periodic boundary conditions are a crucial solver acceleration technique for the simulation
of turbomachinery components. They allow the consideration of only a single blade
passage instead of the full annulus, hence roughly decreasing the computational cost
by a factor equal to the number of blades of the current stage. For stationary simulations,
in the context of the mixing-plane model, this comes without a loss in accuracy.

2.2.1 IMPLEMENTATION

(a) Matching one to one periodic boundary (b) Overlapping periodic boundary

Figure 2: Different implementation concepts of periodic boundary conditions

Periodic boundaries enforce a condition, in which the periodic repetition of a domain
merged with the original domain still yields a solution which fulfils the governing equa-
tions everywhere. The classic approach is to use a periodically matching mesh and use
the opposite cells as neighboring cells of a one to one connection as shown in Figure 2a.
CODA uses a more general formulation which does not require a periodically matching
mesh and even allows the meshes to overlap, see Figure 2b. In this later case, the external
states and gradients on the integration points of the periodic boundary faces are computed
by reconstructing the corresponding states and gradients on the periodic shift of the inte-
gration point into the flow domain as shown in Figure 2. By integrating the functionality
into the existing framework for Overset grids as described in [4], communication can be
done together with all other boundary conditions in one step. While scalar quantities such
as density or energy can simply be transferred without further care, vectors or tensors
must be rotated by the periodic shift in the case of rotational periodicity. CODA features
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a generic engine which automatically identifies vectorial or tensor quantities at compile
time and applies a rotation functor accordingly. E.g. in the case of a vectorial quantity,
the state components belonging to the vector are multiplied with a rotation matrix T , as
shown in figure Figure 2a.

2.3 MIXING-PLANE BOUNDARY CONDITION

To facilitate the simulation of multi-row turbomachinery configurations artificial bound-
aries between the blade rows are introduced and the computational domain is then decom-
posed into a number of (non-overlapping) subdomains, one per blade row. The interfaces
between the blade rows are typically located approximately midway between the adja-
cent blades. A (rotating) frame of reference can then be defined for each subdomain, in
which the respective blade row is stationary. Finally, numerical boundary conditions are
introduced at the interfaces to couple the adjacent subdomains. In unsteady simulations
a boundary condition is required, that allows the conservative exchange of the instanta-
neous flow data between the adjacent subdomains. By contrast, if one is interested only
in (an approximation of) the time-mean flow in each blade row, then it is sufficient to
exchange only the circumferentially averaged flow variables between the adjacent blade
rows using the so-called mixing-plane approach [6].

2.3.1 THEORY

The mixing-plane approach comprises two main components: (i) the definition and com-
putation of average flow states, and (ii) the exchange of the average flow states between the
neighboring subdomains. Whilst originally developed in the context of two-dimensional
problems, the approach is easily extended to three-dimensions by the definition of ra-
dial bands, along which the two-dimensional theory can be independently applied. For
each radial band it is possible, in general, to define several average states, e.g. mass-
averaged, area-averaged or flux-averaged states. In turbomachinery applications, flux-
averaged states are preferred since they ensure the conservation of mass, momentum and
energy. However, as the implementation of flux-averaging is ongoing, in this work we
employ simple, but robust, area-averaged states, i.e.

φ̄FA =

∑
i φ

F
i Ai∑
iAi

(6)

where the summation is across all cell faces in a given radial band, and φF denotes an
arbitrary flow variable at face integration point, reconstructed from the local interior
boundary element. Following this approach, area-averaged states are computed for both
sides of the interface. In the converged state we require that both area-averaged states are
consistent. To achieve this we formulate the differences between the up- and downstream
state values in terms of characteristics variables and use one-dimensional non-reflecting
boundary condition theory to update the state values, i.e.

δφ̄FA = φ̄F+
A − φ̄

F−
A (7)

where the superscripts + and − denote the up- and downstream sides of the mixing-plane
interface, and δφ̄FA = [δρ̄, δūx, δūθ, δūr, δp̄]

T . The band-average characteristic variables
are given by the linear transform
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δc̄ = M · δφ̄FA (8)

where δc̄ = [δc̄1, δc̄2, δc̄3, δc̄4, δc̄5]T and

M =


−1
ρ̄

0 0 0 1
ρ̄ā2

0 0 1
ā

0 0
0 0 0 1

ā
0

0 1
ā

0 0 1
ρ̄ā2

0 −1
ā

0 0 1
ρ̄ā2

 (9)

Here, ρ̄ and ā are the local band-averaged density and speed of sound, respectively. In
accordance with characteristic theory, the first mode c1 corresponds to an entropy wave
that travels with speed ūx, the second and third modes c2 and c3 are vorticity waves
which also travel with speed ūx, and the fourth and fifth modes are acoustic waves which
propagate with the speeds ūx + ā and ūx − ā, respectively.

On the upstream side of the interface, only the upstream running acoustic mode (δc̄5)
influences the face state. Similarly, on the downstream side of the interface, only the
downstream running mean characteristics (δc̄1, . . . , δc̄4) are used to update the face state.
Following this approach the band-averaged state can be updated in an iterative manner
as the simulation progresses, i.e.

φ̄F,n+1
A = φ̄F,nA + αM−1 ·

[
δc̄in, δc̄out

]T
(10)

where α is a scalar relaxation parameter and the superscripts (in, out) denote incoming
and out-going waves, respectively. The incoming waves are computed using Eqn. 8 and
the out-going mean characteristics are set to zero.

In addition to the band-averaged states, the spatial variations (from the local side of
the interface) in the flow state variables along each radial band need to be considered
in the boundary treatment to avoid spurious numerical reflections. To accurately treat
two-dimensional flows non-local boundary conditions are generally needed [2]. As a first
step, however, we again use simple one-dimensional characteristic boundary conditions
to demonstrate the basic mixing-plane functionality in this work. At each face the local
perturbation in the primitive flow variables relative the band-average is computed and
again used to define one-dimensional characteristic variables, i.e.

δci = M · δφi (11)

where δφi = φ(xi) − φ̄A. To suppress reflections at each face the amplitudes of the local
incoming characteristics δcin

i are set to zero. The local out-going characteristics δcout
i

are computed according to Eqn. 11. The local flow state perturbation relative to the
band-average value can then be updated, i.e.

δφn+1
i = δφni +M−1 ·

[
δcin
i , δc

out
i

]T
(12)

Finally, we combine Eqns. 10 and 12 to obtain updated values of the primitive flow state
at each boundary face
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φF,n+1
i = φF,ni +M−1 ·

[
αδc̄in + δcin

i , αδc̄
out + δcout

i

]T
(13)

2.3.2 IMPLEMENTATION

Cylindrical Coordinates

We compute the area-averaged band states as the area-weighted summation across all
integration points of every face associated with a given radial band using the primitive
variables in cylindrical coordinates. To compute the band-averaged velocities the velocity
vectors at each integration point are transformed to cylindrical coordinates using the
orthonormal basis (η̄d, η̄r, η̄θ), where η̄d = d̄

|d̄| is the unit vector parallel to the axis of

rotation, η̄r = r̄
|r̄| is the unit vector parallel to the radial vector r̄, and η̄θ = η̄d × η̄r is the

unit vector in the direction of the radial band, such thatudur
uθ

 =

ηdx ηdy ηdz
ηrx ηry ηrz
ηθx ηθy ηθz

 ·
uxuy
uz

 (14)

Radial Bands

To construct radial bands, the radial vectors r̄, see Figure 1, of all element corner points
p̄ on the mixing-plane interface are first computed as

r̄ = (p̄− ō)− d̄
(
(p̄− ō) · d̄

)
(15)

from which the radii r = |r̄| are determined. To construct the radial bands on each side of
the mixing-plane interface an arbitrary element is first chosen and the radius of each corner
point, ri, computed. Using these data the first radial band is defined with lower and upper
radial bounds given by min(ri) and max(ri), respectively. For the next element an average
radius is computed from the average of the radii at each corner point and compared with
the radial bounds of the first band. If the average radius lies within the radial bounds
of the first band the element is added to the radial band. If not, a new radial band is
created with lower and upper radial bounds determined from the values at each corner
point of the element. By repeating this process for each interface element, radial bands
are created across the whole interface. In Figure 3 a simple radial band is visualized in
a computational domain comprising three domains. In this basic configuration a mixing-
plane interface couples a rotating block row (red) with a downstream stationary block
row (blue). For visualization purposes the radial band is displayed at the inflow of the
computational domain. The downstream, stationary block row comprises two domains
(or blocks).

In its current implementation the mixing-plane boundary condition requires the mesh
to have an implicit band structure (see Figure 3). In future work, however, it will be
extended to support arbitrary mesh topologies. As indicated in Figure 3, at the interface
between domains I and II, the number of radial bands on each side of the mixing-plane
interface do not need to be equal. To achieve this the (band-averaged) contributions from
all radially overlapping partner bands are integrated radially using a simple area-weighted
approach, i.e.
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Figure 3: Mixing-Plane interface between three computational domains.

φ̄±A(ri) =

NBands∑
j=1

w∓(rj)φ̄
±,donor
A (rj) (16)

where the weights w∓(rj) of the down- and upstream sides of the interface are only non-
zero if the donor bands overlap with the local (i-th) band. For the case in which the
bands overlap, the area weight is given by

w(rj) =
rmax − rmin

∆ri
(17)

where rmax = min(rownupper, r
opp
upper), rmin = max(rownlower, r

opp
lower), and ∆ri = rownupper − rownlower.

Exterior States

The mean characteristics δc̄ are calculated from the differences between the up- and
downstream transformed states as outlined earlier. The element local characteristics δci
are computed as the difference between the transformed interior states of the local face
and the band-averages. With these values, Equation 12 is used to update the individual
face states. In a final step, the exterior boundary states are extrapolated from the local
interior states using the updated face states, i.e.

φexti = 2φFi − φinti (18)

where the superscripts int and ext denote the interior and exterior elements, respectively.

Parallel Communication

In simulations performed on multiple CPUs it is necessary to communicate the flow field
data between processors. Within the context of a mixing-plane interface the data from
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both sides of the interface must be communicated to all processors with boundary faces
on the mixing-plane. As in general, it must be possible to split the domain in an arbitrary
fashion to optimize load balancing, the number of processors with contributions to a given
mixing-plane interface is essentially arbitrary. Various strategies exist to optimize parallel
efficiency in large scale numerical simulations. Figure 4 highlights two possible strategies
for computing and using band-averages in the context of a three block (processor) problem.

(a) Multistep communication (b) Singe-step communication

Figure 4: Comparison of communication patterns for the computation of band averages.

In the multistep approach sketched in Figure 4a all participating processors first communi-
cate their data to a single worker processor that first gathers all necessary data for a given
band, then (alone) computes the band-averages and applies the mixing-plane boundary
condition, before finally communicating (scattering) the computed updated boundary val-
ues to all participating processors. This approach has the advantage that the work can be
distributed among the participating processors. However, it requires numerous communi-
cation steps which can be bottleneck in large scale simulations. Therefore, in the context
of CODA, the mixing-plane boundary condition is implemented such that only a single
communication step is required, as sketched in Figure 4b. In this approach each partic-
ipating processor communicates its data to all other participating processors. Following
this step, each processor can then work independently of the other processors without
the need for further communication. The disadvantage with this approach is that the
computational work associated with the mixing-plane boundary condition is duplicated
across the participating processors.

3 APPLICATION

3.1 FAN STAGE

To demonstrate the turbomachinery extensions described in the previous sections, CODA
is applied to compute the NASA/GE Source Diagnostic Test (SDT) test case [7, 8]. The
SDT test case is a high bypass ratio fan stage with a supersonic design tip speed tested by
NASA in the Glenn Research Center 9- by 15-Foot Low Speed Wind Tunnel in Cleveland.
The fan stage comprises 22 wide chord rotor blades and (in the baseline configuration,
investigated here) 54 stator blades, with a rotor hub-to-tip ratio of 0.3 (see Figure 5).
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Figure 5: NASA SDT: Schematic representation showing the inflow and outflow bound-
aries and the mixing-plane interface.

In the experimental work a large collection of data were acquired. These include near-
and far-field acoustic measurements, as well as performance data, velocity profiles and
total pressure and total temperature radial profiles from duct rake measurements. In this
initial study we present comparisons of the radial profiles of total pressure and temperature
alongside the global performance data.

The computational mesh used in all numerical simulations is shown in Figure 6. The mesh
comprises a total of approximately 720,000 cells, with circa 450,000 in the rotor domain
and the remaining cells in the downstream stator domain. In the rotor domain the mesh
has 60 cells in the radial direction with 12 cells located in the tip gap region. In the stator
domain the mesh has 48 cells in the radial direction. All solid surfaces are modelled with
a no-slip, adiabatic wall boundary condition, with the mesh on these surfaces designed to
ensure y+ ≈ 1. The relative velocity of all solid surfaces ūw is zero in both domains, with
the exception of the outer casing wall boundary in the rotor domain, which is station-
ary in the absolute frame of reference and therefore has the velocity ūw = − (ω̄ × r̄w) in
the rotating frame of reference. The inflow boundary is located approximately one rotor
chord length upstream of the rotor, whereas the outflow boundary is approximately five
stator chord lengths downstream of the stator. The mixing-plane is located approximately
midway between the rotor and stator. Importantly, the introduction of the mixing-plane
boundary condition, with the exchange of only circumferentially averaged variables be-
tween the blade rows, ensures the time-mean flows in each blade passage are identical.
It is therefore only necessary to compute the solution in a single passage of each row as
indicated in Figure 6 rather than the full annulus as shown in Figure 5, thereby saving
considerable computational resources.

To compute the flow through the fan stage the compressible, Reynolds-Averaged Navier-
Stokes (RANS) equations, in combination with the Spalart-Allmaras (SA)-neg turbulence
model [9], are solved using CODA. The governing equations are discretized in space using
the Finite-Volume method together with the Green-Gauss method and the Venkatakrish-
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(a) Rotor mesh. (b) Stator mesh.

Figure 6: NASA SDT: Mesh Overview.

nan limiter (with K = 5) to obtain second-order spatial accuracy. Numerical fluxes are
computed using Roe’s approximate Riemann solver. The fluid is modeled as a calorically
perfect gas.

To solve the resulting system of ordinary differential equations a pseudo-time term ∂q
∂τ

is
added to the governing equations and the linearized implicit Euler method, with local
pseudo-time-stepping, is used to discretize the resulting system of equations, to obtain:[

1

∆τ
+
∂R

∂q

∣∣∣∣
qn

]
∆q = −R(qn) (19)

with ∆q = qn+1−qn. The solution to Equation 19 is obtained by iterating in pseudo-time
using a specific number of iterations to drive ∆q → 0. In this work, at each pseudo-
time iteration, Equation 19 is solved with a preconditioned, adjoint-based matrix-free
(restartable) GMRES method using 25 iterations. It is implemented in the sparse linear
system solver library Spliss which is used by CODA and allows for flexible configuration
and combination of different solvers and preconditioners [10]. The GMRES solver is
preconditioned using 50 Jacobi iterations applied to an approximation of the left hand
side matrix. The number of Jacobi iterations in each application of the preconditioner is
kept constant in order to ensure an effectively constant preconditioning matrix P . The
inversion of the (generalized) diagonal is done using an implicit lines inversion method
as described in [11]. Furthermore, an overrelaxation factor of 0.8 for the Jacobi solver
proved beneficial for convergence of the given case.

Results are presented below for simulations performed at 61.7% fan speed, which corre-
sponds to the approach aircraft flight operating point used for engine noise certification.
For this speedline the rotational speed N ≈ 7809 RPM. At the domain inflow boundary
the total pressure and total temperature are specified as 101,325 Pa and 288.15 K, respec-
tively. Additionally, the radial and circumferential flow angles are both zero, so that the
flow is purely axial (in the absolute frame of reference). At the outflow boundary a value
of static pressure is specified and varied between simulations to compute the flow along
the speedline at difference massflow rates. Along both the inflow and outflow boundaries



12

a Riemann invariant based numerical boundary condition is used to suppress spurious
numerical reflections and impose the physical boundary conditions.

Figure 7: NASA SDT: Fan stage performance map.

The results of these simulations are shown in Figure 7 in terms of the overall performance
characteristics of the fan stage. Here the computed speedline at 61.7% the nominal design
speed is shown alongside the experimental data for a number of speedlines ranging from
50% to 100% nominal speed. In addition, the three operating points: approach, cut-back
and takeoff, which are relevant for engine noise certification, are highlighted. The stage
total pressure ratio is the ratio of the total pressure downstream of the stator vanes to
the total pressure upstream of the rotor. Although experimental data are not available
for the entire speedline at 61.7% design speed the trend of the curve matches well with
the 60% speedline. In addition, the approach operating point is accurately predicted.

For a more detailed first analysis of the flow Figure 8 shows a comparison of the computed
and measured radial profiles of the total pressure and total temperature ratios. The data
are shown for the location x = 0.15m, where x = 0 is the location of the fan stacking axis,
which is approximately one stator chord length upstream of the stator. In general the
degree of agreement is very good and basic trends in both plots well captured, e.g. the basic
influence of the hub and tip boundary layers in the total pressure profile (see Figure 8a),
or the higher losses in the tip region due to the rotor tip vortex (see Figure 8b).

4 CONCLUSIONS

The CFD code CODA has been extended to facilitate the numerical simulation of basic
turbomachinery components. To achieve this arbitrary rotating frames of reference, peri-
odic boundary conditions and mixing-planes have all been implemented. Through com-
parison with experiment it has been shown that the implemented extensions are sufficient
to accurately simulate a modern fan-stage. In ongoing and future work the mixing-plane
will be extended to include two-dimensional non-reflecting boundary conditions, flux-
averaged state variables and support meshes without any inherent band structure. It is
also planned to extend the above methods to support the high-order spatial discretization
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(a) Total Pressure Ratio. (b) Total Temperature Ratio.

Figure 8: NASA SDT: Comparison of computed radial profiles with experimental data at
the approach operating point.

methods available within the context of CODA.
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