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Abstract

In this paper a stabilized finite element method to deal with incompressibility in solid mechanics is presented. A

mixed formulation involving pressure and displacement fields is used and a continuous linear interpolation is con-

sidered for both fields. To overcome the Babu�sska–Brezzi condition, a stabilization technique based on the orthogonal

sub-scale method is introduced. The main advantage of the method is the possibility of using linear triangular or

tetrahedral finite elements, which are easy to generate for real industrial applications. Results are compared with

standard Galerkin and Q1P0 mixed formulations for nearly incompressible problems in the context of linear elasticity.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper proposes a possible solution to the problem of incompressibility or near incompressibility in

solid mechanics in the framework of linear elasticity. The objective is to avoid the so called volumetric

locking, an undesirable effect exhibited by all low order elements based on the standard Galerkin formu-

lation. Many successful strategies to avoid volumetric locking based on both mixed and enhanced for-

mulations can be found in the literature [7,9,10], but they generally fail in the case of linear triangular or

tetrahedral elements due to the lack of satisfaction of the Babu�sska–Brezzi condition [1]. Other formulations
have been proposed by Zienkiewicz et al. [12], Taylor [11], O~nnate et al. [8], Klaas et al. [6] etc. to deal with

such elements, mainly motivated by the fact that nowadays for real life geometries tetrahedral meshes are

relatively easy to generate. The main effort in this work is the extension to solid mechanics problems of the

stabilization technique proposed by Hughes in [5], the sub-grid scale approach. An equal order interpo-

lation of the mixed pressure and displacements fields will be introduced followed by a decomposition of the

unknowns into resolvable and sub-grid scales orthogonal to the finite element space, following the works of
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Codina [2,4] for the solution of the numerical instabilities due to the incompressibility constraint of the
Stokes problem. The basic idea is to approximate the effect of the component of the continuous solution

which cannot be captured by the finite element solution and is the cause of the volumetric locking.

In the next section the equations that define the mechanical problem including the condition of in-

compressibility will be presented, introducing also the mixed formulation based on displacement and

pressure fields. In Section 3 the stabilization model using the sub-grid scale approach will be presented.

Some numerical examples are shown in Section 4, comparing the results obtained with the present for-

mulation with the standard Galerkin formulation and the well known mixed Q1P0 approach.

2. Incompressibility problem in solid mechanics

The linear elastic problem will be taken as the reference model to show the incompressibility phe-

nomenon in solid mechanics. Let us begin introducing some standard notation, X stands for an open and

bounded domain of Rndim and X its closure, ndim is the number of space dimensions, its boundary C is

considered split into two disjoint sets such that C ¼ oXu [ oXt and oXu \ oXt ¼ ;. The space of square

integrable functions in X is L2ðXÞ, and HmðXÞ is the space of functions of which its derivatives up to order
mP 0 (integer) belong to L2ðXÞ. The space Hm

0 ðXÞ consists of those functions that belong to HmðXÞ and
vanish on oX. Bold characters are used to denote vector counterparts of the spaces and the inner product in

L2ðXÞ is denoted by ð�; �Þ. Hereafter, orthogonality will be understood with respect to this product.

2.1. Mixed formulation for incompressible elasticity

A formulation of the elasticity problem able to represent the incompressible behaviour can be written

considering the hydrostatic pressure p as an independent unknown, additional to the displacement field u.
The stress tensor r can be expressed in terms of these two variables such as:

r ¼ p1þ 2ldev½rsu�; ð1Þ

p ¼ Kev; with ev ¼ r � u; ð2Þ

where ev and dev½rsu� are the volumetric and the deviatoric part of the deformation, respectively, l is the

Lam�ee constant referred to as the shear modulus and K is the bulk modulus, also referred to as modulus of

volumetric compressibility. As it can be observed, this constitutive equation is based on the decoupling of

the deformation in its volumetric and deviatoric parts and it leads to a decoupled expression of the stress

tensor as well. Making use of Eq. (1), momentum equation, together with Eq. (2) and the boundary

conditions the problem can be formulated as: find the displacement field u : X! Rndim and the pressure field

p, for prescribed body force per unit volume: f : X! Rndim and t : oXt ! Rndim , such that:

rp þ 2lr � dev½rsu� þ f ¼ 0 in X; ð3Þ

1

K
p 
r � u ¼ 0 in X; ð4Þ

u ¼ 0 on oXu; ð5Þ

r � n ¼ t on oXt: ð6Þ
Observe that the formulation is valid in both compressible and incompressible cases, within this context

the incompressibility constraint is given by Eq. (4), which close to the limit (K !1) transforms into:
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r � u ¼ 0 in X ð7Þ

or, alternatively, ev ¼ 0, with no volumetric change.

The variational statement of this problem consists in finding ðu; pÞ 2V0 � Q, such that:

aðu; vÞ þ ðp;r � vÞ ¼ LðvÞ 8v 2V0; ð8Þ

ðr � u; qÞ 
 1

K
p; q

� �
¼ 0 8q 2 Q; ð9Þ

where the bilinear form aðu; vÞ and the operator LðvÞ are given by

aðu; vÞ ¼
Z

X
2ldev½rsu� : rsvdX; ð10Þ

LðvÞ ¼
Z

X
f � vdXþ

Z
oXt

v � tdC: ð11Þ

Observe that for the continuous problem the spaces for the displacement and pressure fields are

V0 ¼ H1
0ðXÞ and Q ¼ L2ðXÞ, respectively. Finally, the discrete form of the problem is: find ðuh; phÞ 2

Vh;0 � Qh, such that:

aðuh; vhÞ þ ðph;r � vhÞ ¼ LðvhÞ 8vh 2Vh;0; ð12Þ

ðr � uh; qhÞ 

1

K
ph; qh

� �
¼ 0 8qh 2 Qh: ð13Þ

Here Vh;0 � H1
0ðXÞ and Qh � L2ðXÞ are the velocity and the pressure finite element spaces, respectively.

Observe that this means that, in principle, pressure fields may be discontinuous while displacement fields

may not. Likewise, the order of polynomial interpolations may be different as well.

The requirement of the inf–sup or Babu�sska–Brezzi stability condition [1] restricts the relation between

the interpolations of the involved fields, leading to the need of using different interpolations for u and p.
Equal order u=p interpolations, such as convenient linear/linear interpolation, violate this condition and

exhibit poor numerical performance and suffer high oscillations.

The objective of stabilized finite element formulations is to modify conveniently the problem expressed

by (8) and (9) in order to define a method to overcome the requirement of the Babu�sska–Brezzi condition
and, in particular, to make possible the use of equal order continuous interpolations.

In the following section we will introduce the sub-grid scale stabilization method. Hereafter, both dis-

placements and pressure spaces are assumed to be built up using continuous finite element interpolations

of the same order. It is worthwhile to define before some useful notation to rewrite the previous equations
in a compact format.

Let U :¼ ½u; p�t be the vector of nunk unknowns and W :¼ ðH 1ðXÞÞnunk . The problem expressed by (3) and

(4), together with the boundary conditions (5) and (6), can be stated as: find U :¼ ½u; p�t 2W0 ¼
ðH 1

0 ðXÞÞ
nunk , such that:

LðUÞ :¼

rp 
 2lr � dev½rsu�


 1
K p þr � u

" #
¼

f

0

" #
¼: F: ð14Þ

Furthermore, if V :¼ ½v; q�t 2W0, the variational statement for problem (14) can be written as:

BðU;VÞ ¼ LðVÞ 8V 2W0; ð15Þ
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where the bilinear form BðU;VÞ, defined on W0 �W0, is:

BðU;VÞ :¼ aðu; vÞ þ ðp;r � vÞ þ ðr � u; qÞ 
 1

K
p; q

� �
ð16Þ

and operator LðVÞ is given by:

LðVÞ ¼
Z

X
f � vdXþ

Z
oXt

v � tdC: ð17Þ

Likewise, the discrete counterpart of (15) is:

BðUh;VhÞ ¼ LðVhÞ 8Vh 2Wh;0 ð18Þ
being Uh :¼ ½uh; ph�t 2Wh;0.

3. Sub-grid scale method

The basic idea of the sub-grid scale method is to approximate the effect of the component of the con-

tinuous solution which can not be resolved by the finite element mesh on the discrete finite element solution.

This method was introduced by Hughes in [5] for the scalar convection-diffusion equation. This concept will

be used here to stabilize the elastic incompressible problem in solid mechanics, allowing the use of linear/

linear interpolations for u=p.

3.1. The sub-grid scale approach

Let ~WW be any space to complete Wh in W, such that W ¼Wh � ~WW. Likewise, let W0 ¼Wh;0 � ~W0W0,

with ~W0W0 any space to complete Wh;0 in W0. The space ~W0W0 will be called the space of sub-grid scales or sub-

scales. The objective of introducing the sub-grid scale is to approximate ~UU 2 ~WW0, accounting for that part

of the exact solution U 2W0 which effect is not captured by the standard approach Uh 2Wh;0. This means

that within this method the exact solution is now approximated by U ¼ Uh þ ~UU. Thus, the continuous

problem (16) transforms into finding Uh 2Wh;0 and ~UU 2 ~WW0 such that:

BðUh;VhÞ þ Bð~UU;VhÞ ¼ LðVhÞ 8Vh 2Wh;0; ð19Þ

BðUh; ~VVÞ þ Bð~UU; ~VVÞ ¼ Lð~VVÞ 8~VV 2 ~WW0: ð20Þ
Integrating by parts in (19) and (20) within each element, and introducing the notation

R
X0 :¼

Pnelm
e¼1

R
Xe

and
R
oX0 :¼

Pnelm
e¼1

R
oXe , where nelm is the number of elements of the finite element partition, these two

equations can be written as:

BðUh;VhÞ þ
Z

X0
~UU �L�ðVhÞdXþ

Z
oX0

~uu � ðrðVhÞ � nÞdC ¼ LðVhÞ; ð21Þ

Z
X0

~VV �Lð~UUÞdXþ
Z
oX0

~vv � ðrðUh þ ~UUÞ � nÞdC ¼
Z

X0

~VV � ½F
LðUhÞ�dX; ð22Þ

where n is the unit normal exterior to the integration domain, ðrð�Þ � nÞ stands for the tractions vector and
L� is the formal adjoint of the operator L, given by:

L�ðVhÞ ¼

rqh 
 2lr � dev rsvh½ �


 1
K qh þr � vh

� 	
: ð23Þ
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Observe that rðUh þ ~UUÞ � n represents the exact tractions, assumed to be continuous across interelement
boundaries, and thus the sum across these boundaries is null. Thus, the second term in Eq. (22) vanishes,

leading to the following equivalent expression for a specific Vh;ort 2 ~WW?
0

Lð~UUÞ ¼ ½F
LðUhÞ� þ Vh;ort: ð24Þ
This equation is the key point to capture the effects of the component ~UU used to enrich the standard finite

element solution Uh. Indeed, the objective is to account for this effects in the momentum Eq. (21) rather

than to calculate ~UU. Thus, the following simplification could be considered

Lð~UUÞ � s
1 ~UU; ~UU 2 ~WW0 ð25Þ
where s is a nunk � nunk matrix defined within each element domain and referred to as the matrix of sta-

bilization parameters which depends on the coefficients of L.

We will consider only the integrals over element domains and neglect the effect of the integrals over

element faces. This is as much as assume that ~UU vanishes on the element boundaries. Thus, Eq. (21) can be

written as

BðUh;VhÞ þ
Z

X0
L�ðVhÞ � ~UUdX ¼ LðVhÞ ð26Þ

which is the general expression of the stabilized method. Observe that there is an additional stabilizing term

if compared to the standard formulation represented by (18).

3.2. Orthogonal sub-scales

Having introduced the general form of the sub-grid scale method, the objective now is how to obtain a

reliable approximation for ~UU 2 ~WW0 at low computational cost. A possible choice, the one adopted here, is
to take as complementary space the space of orthogonal sub-scales. Thus, we will take for ~WW the following

approximation:

~WW �W?
h ð27Þ

together with the assumption that ~W0W0 � ~WW. This idea was first introduced by Codina in [2] as an extension

of a stabilization method formulated for the Stokes problem in [4]. Therefore

~W0W0 � ~WW �W?
h : ð28Þ

Thus, if we call Ph the L2 orthogonal projection onto Wh, and P?h the orthogonal projection onto W?
h ,

after imposing that ~UU 2 ~WW?
h , one can find the following approximations

~UU ¼ P?h fs½F
LðUhÞ�g 2W?
h : ð29Þ

As we will show, a definition of s, the matrix of stabilization parameters as

s ¼ diag s; . . . ; s|fflfflfflffl{zfflfflfflffl}
ndim

; 0

0
B@

1
CA ð30Þ

leads to satisfactory results in the case of the incompressible elasticity problem. The value of s has been

studied by many authors for the solution of fluid-mechanics problems, either by convergence analysis or,

more recently, by means of Fourier analysis [3]. In a solid-mechanics context, following similar guidelines,
one can find that the corresponding value of s can be taken as:

s ¼ c
2l
h2

� �
1
; ð31Þ
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where c is a numerical constant and h is a characteristic length of the element. Observe that to consider the

pressure component in (30) equal to zero is equivalent to neglect the sub-scale component of the pressure

field.

It must be pointed out that F in (29) belongs to the space Wh, therefore P?h ðFÞ ¼ 0. On the other hand,

r � ruh and r � rvh in (14) and (23), involve second derivatives of finite element functions which vanish

when linear elements are used. In case of higher order elements these derivatives can be neglected in

computing ~UU, leading to a method which is still consistent [3].

If we assume that the orthogonal projection of a variable ð�Þ can be computed as: P?h ð�Þ ¼ ð�Þ 
 Phð�Þ, the
components of vector ~UU transforms in

~uu ¼ seðrph 
 PhðrphÞÞ; ð32Þ

~pp ¼ 0: ð33Þ
Inserting this result in (26), a computable expression for the stabilization term can be obtained asZ

X0
L�ðVhÞ � ~UUdX ¼

Z
X0

s
�

rqh � P?h ðrphÞ

�
dX ¼

Z
X0

sð 
 rqh � ½rph 
 PhðrphÞ�ÞdX:

Calling Ph ¼ PhðrphÞ, we can rewrite the last expression as:Z
X0
L�ðVhÞ � ~UUdX ¼

Xnelm
e¼1

se

Z
Xe

rqh � ½rph 
Ph�dX; ð34Þ

Ph is the projection of the pressure gradient onto Wh defined as an additional nodal (continuous)

variable. This unknown can be computed using the following relation between the pressure gradient and its

projection Ph:

ðrp;whÞ ¼ ðPh;whÞ 8wh 2Vh: ð35Þ
Finally, we can write the stabilized version of problem (8) and (9), together with the boundary conditions

as: find ðuh; ph;PhÞ 2Vh;0 � Qh �Vh, such that:

aðuh; vhÞ þ ðph;r � vhÞ ¼ LðvhÞ 8vh 2Vh;0;

ðr � uh; qhÞ 

1

K
ph; qh

� �


Xnelm
e¼1

se

Z
Xe
rqh � ½rph 
Ph�dX ¼ 0 8qh 2 Qh;

ðrph;whÞ 
 ðPh;whÞ ¼ 0 8wh 2Vh:

ð36Þ

4. Implementation aspects

To obtain the matrix structure of the stabilized system of equations proposed in (36), let us firstly define

the elemental matrix KðeÞ ¼ ½KAB�ðeÞ

½KAB�ðeÞ ¼
KAB

dev GAB 0

ðGABÞT ð
 1
K M

AB
p 
 seLABÞ seðGABÞT

0 seG
AB 
seM

AB

2
64

3
75; ð37Þ

where the entry ð�ÞAB
is a sub-matrix corresponding to the local nodes A and B. In Eq. (37), KAB

dev is the

deviatoric component of the standard elastic stiffness matrix defined as:

KAB
dev ¼

Z
Xe

BT
ADdevBB dX; ð38Þ
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where Ddev is the deviatoric constitutive matrix and B is a standard deformation sub-matrix. The generic

term of the discrete gradient matrix operator GAB is given by:

GAB ¼
Z

Xe

½rNA�NB dX; where ½rNA� ¼ ½NA
;x N

A
;y N

A
;z �

T ð39Þ

while the laplacian term LAB can be expressed as:

LAB ¼
Z

Xe

½rNA�T½rNB�dX: ð40Þ

Finally MAB
p and MAB are the ‘‘mass’’ matrices associated to the pressure and displacement fields, re-

spectively:

MAB
p ¼

Z
Xe

NANB dX; ð41Þ

MAB ¼
Z

Xe

NANB dX

� �
dij i; j ¼ 1; . . . ; 3: ð42Þ

The associated global matrix structure of problem (36) is:

Kdev G 0

GT 
 1
K Mp 
 sL

� �
sGT

0 sG 
sM

2
4

3
5 U

P

P

2
4

3
5 ¼ F

0

0

2
4

3
5: ð43Þ

The monolithic solution of system (43) can be avoided by using a staggered procedure, in which the

pressure projection P is solved independently and explicitly. To this end, from the third equation, it is

possible to express P in terms of P as:

P ¼M
1ðGPÞ: ð44Þ
Substituting P into the second equation it is possible to formally condensate P, to obtain a solving

system only in terms of the nodal displacements and pressures, as:

Kdev G

GT 
 1
K Mp 
 sðL
GTM
1GÞ

� 	
U

P

� 	
¼ F

0

� 	
: ð45Þ

Observe that the stabilization effect of the proposed technique, formally reduces to a stability term given

by s L
GTM
1G
� �

.

From the computational point of view, this suggests an iterative solution of the problem. In a first step

the nodal displacements and pressure fields UðiÞ and PðiÞ respectively, are computed using the previous it-

eration value of the projected pressure gradient Pði
1Þ in the RHS. In the next step it is possible to compute

the projections PðiÞ in terms of current values of the pressure field. The resulting iterative algorithm is the

following:

Box 1: Algorithm to solve the stabilized system.

Solve at global level UðiÞ and PðiÞ:
Kdev G

GT 
 1
K Mp 
 sL

� 	
UðiÞ

PðiÞ

� 	
¼ F


sGT �Pði
1Þ
� 	

Compute and store: PðiÞ ¼M
1ðGPðiÞÞ
Perform next iteration: i iþ 1

M. Chiumenti et al. / Comput. Methods Appl. Mech. Engrg. 191 (2002) 5253–5264 5259



Note that the computation of the projections P can be transformed in a trivial system by considering the
lumped mass matrix as an approximation to M. Note also that the computational cost due to the iterative

algorithm proposed is negligible in a nonlinear context. In fact, in this case the equilibrium iterations in-

duced by the nonlinearity are also used to compute the projected pressure gradient.

5. Numerical results

In this section the formulation proposed is validated assuming both compressibility and incompres-
sibility conditions. The stabilized system of Eq. (36) is solved using the algorithm presented in Box-1.

Linear elastic constitutive behaviour is assumed. Performance of the method is tested considering both a

2D plane-strain triangular mesh and a 3D tetrahedral mesh.

5.1. Plane strain Cook’s membrane problem

The Cook�s membrane problem is a bending dominated example that has been used by many authors as

a reference test to check their element formulations, see: [7,9] among others. Here it will be used to compare
results for compressible and incompressible elasticity, showing the behaviour of both quadrilateral and

triangular elements. As reference solution the mixed mean dilatation/pressure element, generally referred as

Q1P0 (see [10]), is used. The problem consists in a tapered panel, clamped on one side and subjected to a

shearing load at the free end. Initial geometry of this plane strain problem is shown in Fig. 1. In order to

test the convergence behaviour of the different formulations, the problem has been discretized into 2� 2,

5� 5, 10� 10, 20� 20 and 50� 50 finite element meshes.

In Fig. 2 the comparison with different formulations for quadrilateral elements in the case of com-

pressible elasticity (Poisson ratio m ¼ 0:3) is shown: Q1 standard displacement formulation, Q1P0 mixed
mean dilatation/pressure approach and Q1P1, the proposed mixed formulation for quadrilateral elements.

In the same figure it is also possible to appreciate the behaviour of the T1/P1 triangular elements, using the

formulation proposed in this work.

Fig. 3 shows the behaviour of both quadrilateral and triangular elements in the case of near incom-

pressible elasticity (Poisson ratio m ¼ 0:4999). Observe how the proposed formulation converges faster to

the exact solution than Q1P0 mixed approach, even if triangular meshes are used. The figure also shows the

poor performance of the Q1 and T1 standard elements within the context of nearly incompressible elas-

ticity, due to an extreme locking effect.

Fig. 1. Plane strain Cook�s membrane problem: original and deformed geometries for triangular and quadrilateral meshes.
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5.2. Upsetting problem

The purpose of this example is to illustrate that, within the formulation presented, a suitable treatment

of near incompressible elasticity is obtained even if coarse tetrahedral meshes are used. The example

consists of an upsetting problem where a 14� 14� 10 specimen is deformed up to 7% of its height. The

upper head is assumed to be perfectly fixed to a rigid plate which moves downward producing increasing

compression. The bottom surface displacements are prescribed to zero. A small strain linear elastic

Fig. 2. Plane strain Cook�s membrane problem: convergence of different element formulations for compressible elasticity (Poisson

ratio ¼ 0:3). (Q1): standard displacement model for quadrilateral elements, (T1): standard displacement model for triangular elements,

(Q1P0): mixed mean dilatation/pressure approach for quadrilateral elements, (Q1P1): proposed mixed formulation for quadrilateral

elements and (T1P1): proposed mixed formulation for triangular elements.
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constitutive model is used: Young�s modulus is set to 2:0E þ 5 Mpa and to achieve the volume preserving
constraint Poisson�s ratio is fixed to 0.4999.

Fig. 4 shows the behaviour obtained using the different formulations. We may observe the similarity, in

terms of deformed shapes, between the Q1P0 formulation and the proposed stabilized formulation. On the

other hand, the locking behaviour of the standard formulation for tetrahedral elements is also evident. The

stress response using the different formulations is presented in terms of both J2-von Mises deviatoric stress

indicator and pressure variable contour fills. Also in this case the similarity between the Q1P0 formulation

and the proposed stabilized formulation can be observed and compared to the response of a standard

formulation for tetrahedra elements, which exhibits a severe locking effect.

Fig. 3. Plane strain Cook�s membrane problem: convergence of different element formulations for near incompressible elasticity

(Poisson ratio ¼ 0:4999). (Q1): standard displacement model for quadrilateral elements, (T1): standard displacement model for tri-

angular elements, (Q1P0): mixed mean dilatation/pressure approach for quadrilateral elements, (Q1P1): proposed mixed formulation

for quadrilateral elements and (T1P1): proposed mixed formulation for triangular elements.
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Fig. 4. Elastic upsetting problem: pressure and J2 von Mises deviatoric stress indicator contour fills achieved with different formu-

lations. (a) Hexahedral mesh with a Q1P0 formulation, (b) tetrahedral mesh using the proposed stabilized formulation and (c) tet-

rahedral mesh with standard formulation.
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6. Conclusions

In this paper a stabilized finite element method to deal with incompressibility in solid mechanics

problems is presented. The method is based on the concept of orthogonal sub-scales decomposition and

overcomes the Babu�sska–Brezzi condition allowing an accurate and stable mixed formulation with equal

order u=p interpolations. The method presented is suitable not only for quadrilateral and hexahedral ele-

ments but, interestingly, for triangular and tetrahedral elements as well. The drawback is the computational

cost, due to the iterative algorithm introduced to avoid the monolithic solution. The formulation, which has
been presented here for incompressible elasticity, appears to be appropriate for elasto-plastic analysis of

metals by means of the J2-model as well, due to the decoupled characteristic of this constitutive model. The

ultimate goal is to extend this method to the numerical simulation of rubber materials or bulk metal

forming processes. Generalization of this work in the context of elasto-plasticity will be published soon.
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